MN101C70C

Туре	MN101C70C	MN101CF70D		
Internal ROM type	Mask ROM	FLASH		
ROM (byte)	48K	64K		
RAM (byte)	2K	4K		
Package (Lead-free)	LQFP080-P-1414A, TQFP080-P-1212D (Under planning)	LQFP080-P-1414A (Under development), TQFP080-P-1212D (Under planning)		
		0.25 μs (at 3.0 V to 3.6 V, 8 MHz) 0.50 μs (at 2.28 V to 3.6 V, 4 MHz) 62.5 μs (at 2.2 V to 3.6 V, 32 kHz)		

Interrupts

RESET, Watchdog, External 0 to 2, External 4 (key interrupt dedicated), Timer 0 to 3, Timer 6, Timer 7 (2 systems), Timer 8 (2 systems), Time base, Serial 0 (2 systems), Serial 2, A/D conversion finish, Automatic transfer finish

■ Timer Counter

Timer counter 0 : 8-bit \times 1

(square-wave/8-bit PWM output, event count, generation of remote control carrier, simple pulse width measurement, added pluse

(2-bit) system PWM output, real time output control)

(square-wave/PWM output to large current terminal P50 possible)

Interrupt source coincidence with compare register 0

Timer counter 1:8-bit \times 1

(square-wave output, event count, synchronous output event, serial transfer clock output)

Interrupt source coincidence with compare register 1

Timer counter 0, 1 can be cascade-connected.

Timer counter 2 : 8-bit \times 1

(square-wave output, added pluse (2-bit) system PWM output, PWM output, serial transfer clock output, real time output control, event count, synchronous output event, simple pulse width measurement)

(square-wave/PWM output to large current terminal P52 possible)

Interrupt source coincidence with compare register 2

Timer counter 3:8-bit \times 1

(square-wave output, event count, generation of remote control carrier, serial transfer clock)

Interrupt source coincidence with compare register 3

Timer counter 2, 3 can be cascade-connected.

Timer counter 6 : 8-bit freerun timer

Interrupt source coincidence with compare register 6

Timer counter 7: 16-bit × 1

(square-wave output, 16-bit PWM output (cycle / duty continuous variable), event count, synchronous output event, pulse width measurement, input capture, real time output control, high performance IGBT output (Cycle/Duty can be changed constantly))

(square-wave/PWM output to large current terminal P51 possible)

 $Clock\ source......1/1,\ 1/2,\ 1/4,\ 1/16\ of\ system\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\$

1/2, 1/4, 1/16 of external clock input frequency

Interrupt source coincidence with compare register 7 (2 lines), input capture register

Panasonic MAD00035JEM

Timer counter 8: 16 bit × 1

(square-wave/16-bit PWM output [duty continuous variable], event count, pulse width measurement, input capture)(square-wave/PWM output to large current terminal P53 possible)

 $Clock\ source......1/1,\ 1/2,\ 1/4,\ 1/16\ of\ system\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2,\ 1/2,\ 1/4,\ 1/16\ of\ OSC\ oscillation\ clock\ frequency;\ 1/1,\ 1/2$

1/2, 1/4, 1/16 of external clock input frequency

Interrupt source coincidence with compare register 8 (2 lines), input capture register

Timer counters 7, 8 can be cascade-connected. (square-wave output, PWM is possible as a 32-bit timer.)

Time base timer (one-minute count setting)

Watchdog timer

Interrupt source 1/65536, 1/262144, 1/1048576 of system clock frequency

■ Serial interface

Serial 0 : synchronous type/UART (full-duplex) × 1

Serial 2 : synchronous type/single-master I²C × 1

■ DMA controller

Max. Transfer cycles: 255

Starting factor: external request, various types of interrupt, software Transfer mode: 1-byte transfer, word transfer, burst transfer

■ I/O Pins

I/O	66	Common use, Specified pull-up resistor available, Input/output selectable (bit unit)
-----	----	--

■ A/D converter

10-bit \times 16-ch. (with S/H)

■ Display control function

LCD

32 segments \times 4 commons (static, 1/2, 1/3, or 1/4 duty)

LCD power supply separated from VDD (usable if VDD \leq VLCD \leq 3.6 V)

LCD power step-up circuit contained (3/2, 2 and 3 times)

LCD power shunt resistance contained

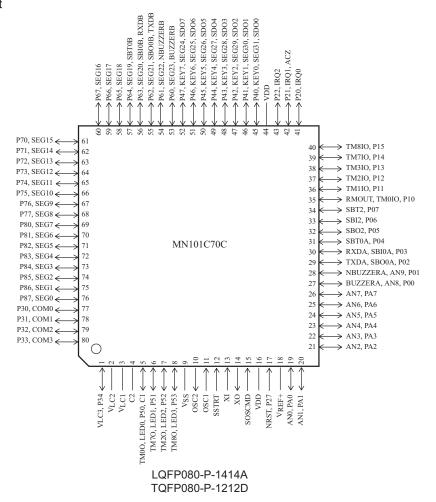
LCD reference voltage is contained.

Special Ports

Buzzer output, remote control carrier signal output, high-current drive port

■ ROM Correction

Correcting address designation : up to 3 addresses possible


■ Electrical Charactreistics (Supply current)

Parameter	Symbol	Condition		Limit		
Parameter				typ	max	Unit
Operating supply current	IDD1	fosc = 4 MHz, VDD = 3 V		1	1.8	mA
	IDD2	fx = 32 kHz, $VDD = 3 V$		4	15	μΑ
Supply current at HALT	IDD3	$fx = 32 \text{ kHz}$, $VDD = 3 \text{ V}$, $Ta = 25^{\circ}\text{C}$		2	5	μΑ
	IDD4	$fx = 32 \text{ kHz}$, $VDD = 3 \text{ V}$, $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$			10	μΑ
Supply current at STOP	IDD5	VDD = 3 V , Ta = 25°C			2	μΑ
Supply current at STOP	IDD6	VDD = 3 V, $Ta = -40$ °C to $+85$ °C			8	μΑ

MAD00035JEM Panasonic

■ Development tools In-circuit Emulator PX-ICE101C/D+PX-PRB101C70-LQFP080-P-1414A-M PX-ICE101C/D+PX-PRB101C70-TQFP080-P-1212-M

■ Pin Assignment

Panasonic MAD00035JEM

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd. Industrial Co., Ltd.