FAIRCHILD

SEMICONDUCTOR

74LCX574 Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

General Description

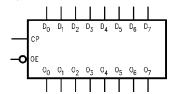
The LCX574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\text{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The LCX574 is functionally identical to the LCX374 except for the pinouts.

The LCX574 is designed for low voltage (2.5V or 3.3V) $V_{\rm CC}$ applications with capability of interfacing to a 5V signal environment. The LCX574 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- **I** 7.5 ns t_{PD} max (V_{CC} = 3.3V), 10 μ A I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V


Note 1: To Ensure the high-Impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX574WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX574MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
СР	Clock Pulse Input
OE	3-STATE Output Enable Input
O ₀ O ₇	3-STATE Outputs

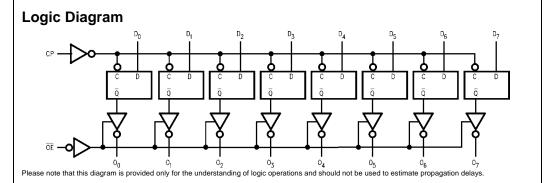
Connection Diagram

'4LCX574 Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

© 1999 Fairchild Semiconductor Corporation DS012406.prf

Functional Description

The LCX574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flipflops.


Truth Table

Ir	Inputs		puts Internal Outputs			Outputs	Function
OE	СР	D	Q	On			
Н	Н	L	NC	Z	Hold		
н	н	Н	NC	Z	Hold		
н	~	L	L	Z	Load		
н	~	Н	н	Z	Load		
L	~	L	L	L	Data Available		
L	~	Н	н	н	Data Available		
L	н	L	NC	NC	No Change in Data		
L	н	Н	NC	NC	No Change in Data		

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance $rac{}{} = LOW-to-HIGH Transition$ NC = No Change

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	
		+50	$V_{O} > V_{CC}$	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

74LCX574

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC}=2.3V-2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°C	to +85°C	Units	
Symbol	Falameter	conditions	(V)	Min Max		Units	
VIH	HIGH Level Input Voltage		2.3 – 2.7	1.7		v	
			2.7 – 3.6	2.0		v	
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	v	
			2.7 – 3.6		0.8	v	
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2			
		I _{OH} = - 8mA	2.3	1.8		1	
		I _{OH} = -12 mA	2.7	2.2		V	
		I _{OH} = -18 mA	3.0	2.4		1	
		I _{OH} = -24 mA	3.0	2.2		1	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2		
		I _{OL} = 8 mA	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4		
		I _{OL} = 24 mA	3.0		0.55		
lı	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μA	
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA	
		$V_I = V_{IH} \text{ or } V_{IL}$				μΑ	
I _{OFF}	Power-Off Leakage Current	$V_{I} \text{ or } V_{O} = 5.5 V$	0		10	μA	

74LCX574

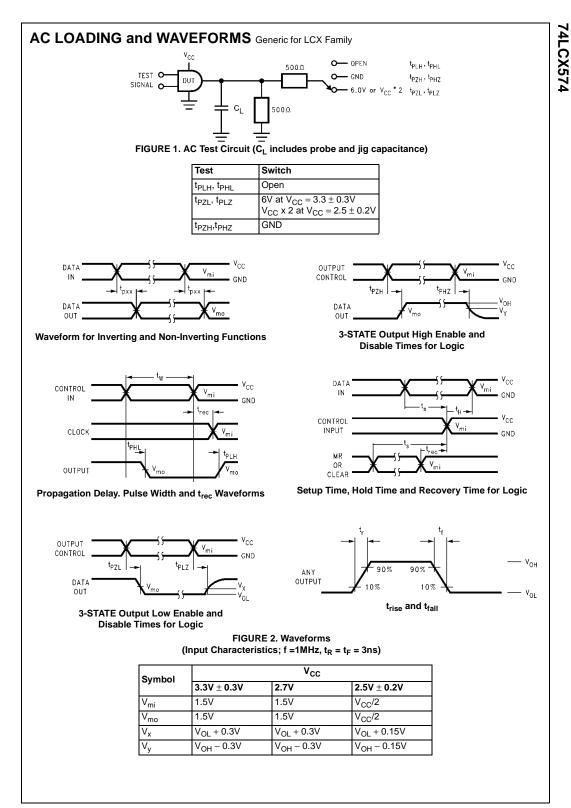
DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Gymbol		Conditions	(V)	Min	Max	Units
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 - 3.6		10	μΑ
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ

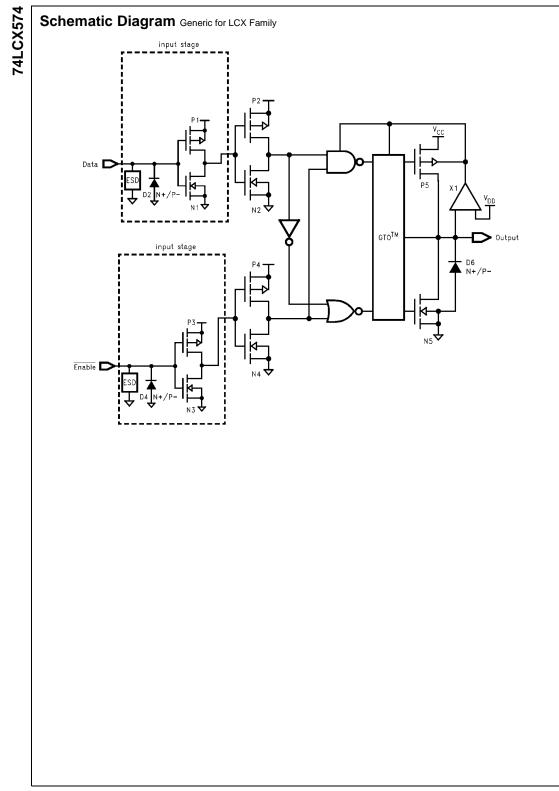
Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

			TA	= −40°C to +	85°C, R _L = 50	0Ω		
Symbol	Parameter	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5 \pm 0.2 V$ $C_L = 30 \text{ pF}$		Units
		MAX	Maximum Clock Frequency	150				
PHL	Propagation Delay	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLH}	CP to O _n	1.5	8.5	1.5	9.5	1.5	10.5	10.5
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	ns
PLZ	Output Disable Time	1.5	6.5	1.5	7.0	1.5	7.8	ns
t _{PHZ}		1.5	6.5	1.5	7.0	1.5	7.8	115
ts	Setup Time	2.5		2.5		4.0		ns
^t H	Hold Time	1.5		1.5		2.0		ns
t _W	Pulse Width	3.3		3.3		4.0		ns
OSHL	Output to Output Skew (Note 6)		1.0					
t _{OSLH}			1.0					ns

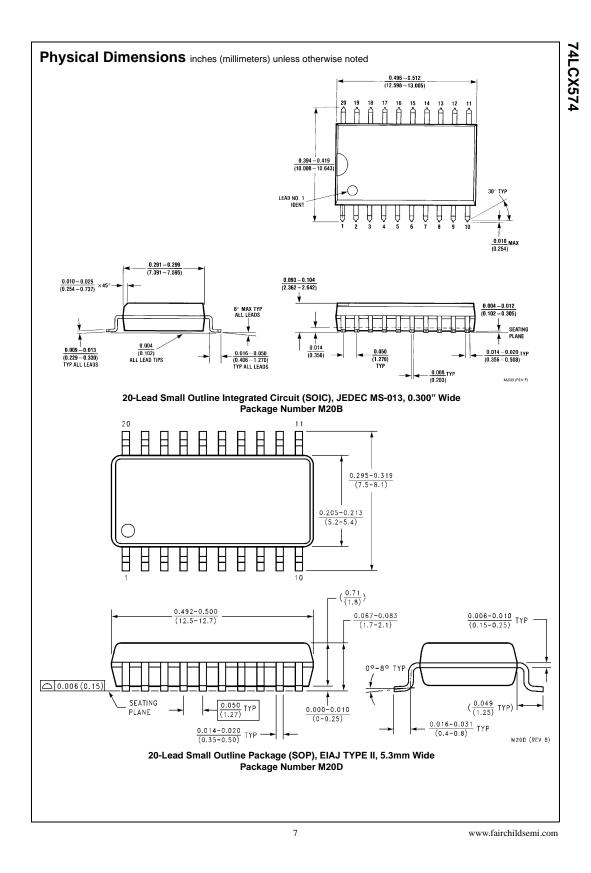

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

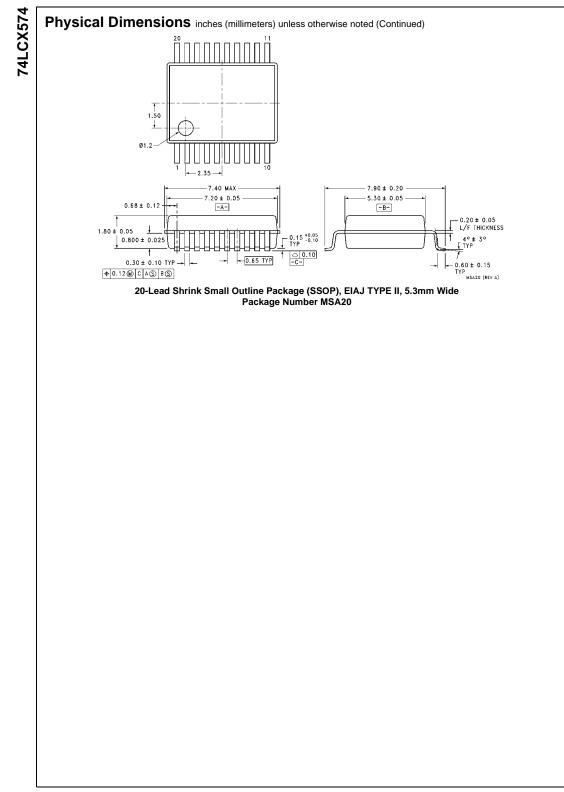
Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Units
V _{OLP}		$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
VOLV		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$ $C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	2.5 3.3	0.6 0.8	
0LV	1 1 1 02	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

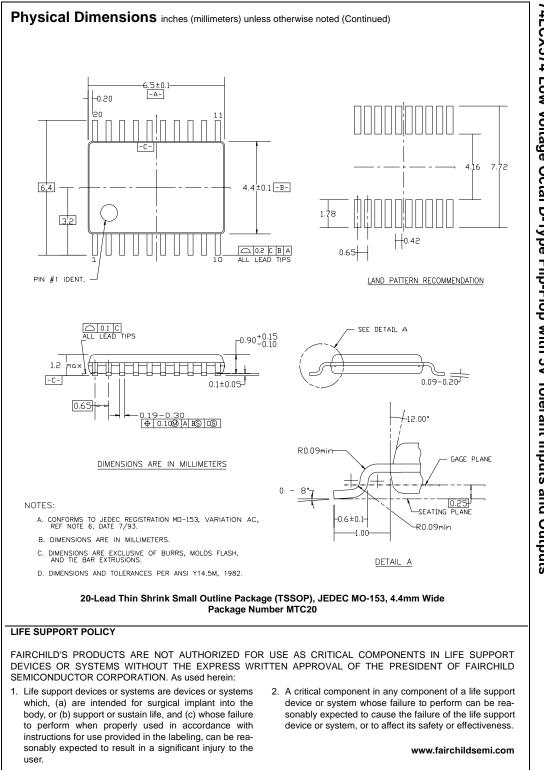
Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	25	pF




5

www.fairchildsemi.com


6

www.fairchildsemi.com

8

