

Connection Diagram

Top View

Ordering Information

Package	Temperature Range	Transport Media	NSC Drawing
	Industrial $-40^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$		N08E
8-Pin Molded DIP	LM6171AIN LM6171BIN	Rails	M08A
8-Pin Small Outline	LM6171AIM, LM6171BIM	LM6171AIMX, LM6171BIMX	

$\mathbf{\pm 1 5 V}$ DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes
Symbol

$\pm 15 \mathrm{~V}$ AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface

Symbol	Parameter	Conditions		$\begin{aligned} & \hline \text { LM6171AI } \\ & \text { Limit } \\ & (\text { Note } 6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LM6171BI } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
SR	Slew Rate (Note 9)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {IN }}=13 \mathrm{~V}_{\mathrm{PP}}$	3600			V/ $\mu \mathrm{s}$
		$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V} \mathrm{PP}$	3000			
GBW	Unity Gain-Bandwidth Product		100			MHz
	-3 dB Frequency	$\mathrm{A}_{\mathrm{V}}=+1$	160			MHz
		$\mathrm{A}_{\mathrm{V}}=+2$	62			MHz
$\phi \mathrm{m}$	Phase Margin		40			deg
$\mathrm{t}_{\text {s }}$	Settling Time (0.1\%)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	48			ns
	Propagation Delay	$\begin{aligned} & V_{I N}= \pm 5 \mathrm{~V}, R_{L}=500 \Omega, \\ & A_{V}=-2 \end{aligned}$	6			ns
A_{D}	Differential Gain (Note 10)		0.03			\%
$\phi_{\text {D }}$	Differential Phase (Note 10)		0.5			deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	12			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	1			$\frac{\mathrm{pA}}{\sqrt{\mathrm{~Hz}}}$

¥5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { Typ } \\ (\text { Note 5) } \end{gathered}$	LM6171AI Limit (Note 6)	LM6171BI Limit (Note 6)	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.2	$\begin{aligned} & \hline 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
TC V ${ }_{\text {Os }}$	Input Offset Voltage Average Drift		4			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		1	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
los	Input Offset Current		0.03	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

士5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions		LM6171AI Limit (Note 6)	LM6171BI Limit (Note 6)	Units
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode	40			$\mathrm{M} \Omega$
		Differential Mode	4.9			
R_{O}	Open Loop Output Resistance		14			Ω
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$	105	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	95	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{CM}	Input Common-Mode Voltage Range	CMRR $\geq 60 \mathrm{~dB}$	± 3.7			V
A_{V}	Large Signal Voltage Gain (Note 7)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	84	$\begin{aligned} & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$	80	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	3.5	$\begin{gathered} 3.2 \\ \mathbf{3} \end{gathered}$	$\begin{gathered} 3.2 \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-3.4	$\begin{gathered} -3.2 \\ -3 \end{gathered}$	$\begin{gathered} \hline-3.2 \\ -3 \end{gathered}$	V max
		$\mathrm{R}_{\mathrm{L}}=100 \Omega$	3.2	$\begin{aligned} & \hline 2.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			-3.0	$\begin{aligned} & \hline-2.8 \\ & -2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-2.8 \\ & -2.5 \end{aligned}$	V max
	Continuous Output Current (Open Loop) (Note 8)	Sourcing, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	32	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
		Sinking, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	30	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$
$\mathrm{I}_{\text {sc }}$	Output Short Circuit Current	Sourcing	130			mA
		Sinking	100			mA
I_{s}	Supply Current		2.3	$\begin{gathered} \hline 3 \\ 3.5 \end{gathered}$	$\begin{gathered} \hline 3 \\ 3.5 \end{gathered}$	mA max

士5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ (\text { Note } 5) \end{gathered}$	LM6171AI Limit (Note 6)	LM6171BI Limit (Note 6)	Units
SR	Slew Rate (Note 9)	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {IN }}=3.5 \mathrm{~V}_{\mathrm{PP}}$	750			V/ $\mu \mathrm{s}$
GBW	Unity Gain-Bandwidth Product		70			MHz
	-3 dB Frequency	$\mathrm{A}_{\mathrm{V}}=+1$	130			MHz
		$\mathrm{A}_{\mathrm{V}}=+2$	45			
¢m	Phase Margin		57			deg
t_{s}	Settling Time (0.1\%)	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{\text {OUT }}=+1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	60			ns
	Propagation Delay	$\mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$,	8			ns

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Boldface limits apply at the temperature extremes						
Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ (\text { Note } 5) \end{gathered}$	LM6171AI Limit (Note 6)	LM6171BI Limit (Note 6)	Units
		$A_{V}=-2$				
A_{D}	Differential Gain (Note 10)		0.04			\%
$\phi_{\text {D }}$	Differential Phase (Note 10)		0.7			deg
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	11			$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	1			$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 3: Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 4: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=$
$\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 5: Typical Values represent the most likely parametric norm.
Note 6: All limits are guaranteed by testing or statistical analysis.
Note 7: Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. For $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$. For $\mathrm{V}_{S}=+5 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}= \pm 1 \mathrm{~V}$.
Note 8: The open loop output current is the output swing with the 100Ω load resistor divided by that resistor.
Note 9: Slew rate is the average of the rising and falling slew rates.
Note 10: Differential gain and phase are measured with $A_{V}=+2, V_{I N}=1 \mathrm{~V}_{P P}$ at 3.58 MHz and both input and output 75Ω terminated.
Note 11: Differential input voltage is measured at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.

Typical Performance Characteristics Unless otherwise noted, $T_{A}=25^{\circ} \mathrm{C}$

DS012336-20

Supply Current vs

 Temperature

Input Offset Voltage vs Common Mode Voltage

Input Offset Voltage vs Temperature

Short Circuit Current vs Temperature (Sourcing)

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Short Circuit Current

 vs Temperature (Sinking)

Output Voltage

 vs Output Current

PSRR vs Frequency

Open Loop
Frequency Response

Output Voltage vs Output Current

PSRR vs Frequency

Gain Bandwidth Product vs Supply Voltage

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Input Voltage Noise
 vs Frequency

Input Current Noise

vs Frequency

Large Signal Voltage Gain
 vs Load

Input Voltage Noise

 vs Frequency

Slew Rate vs
Supply Voltage

Large Signal Voltage Gain
vs Load

Input Current Noise vs Frequency

Slew Rate vs Input Voltage

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Large Signal
Pulse Response
$A_{V}=-1, V_{S}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} /$ div)

Large Signal
Pulse Response
$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$

TIME ($2 \mathrm{~ns} / \mathrm{div}$)
DS012336-50

Open Loop Output Impedance vs Frequency

Large Signal

Pulse Response
$A_{v}=-1, V_{s}= \pm 5 \mathrm{~V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)

DS012336-48

Large Signal
Pulse Response
$\mathrm{A}_{\mathrm{V}}=\mathbf{+ 2}, \mathrm{V}_{\mathrm{s}}= \pm \mathbf{1 5} \mathrm{V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)
DS012336-51

Open Loop Output Impedance vs Frequency

Large Signal
Pulse Response
$A_{V}=+1, V_{s}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} /$ div)
DS012336-49

Large Signal
Pulse Response
$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Small Signal Pulse Response

$A_{V}=-1, V_{S}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} /$ div)

Small Signal
Pulse Response
$A_{v}=+1, V_{s}= \pm 5 \mathrm{~V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$) DS012336-56

Closed Loop Frequency
Response vs Supply
Voltage ($\mathrm{A}_{\mathrm{V}}=\boldsymbol{+ 1}$)

Small Signal

Pulse Response
$A_{v}=-1, V_{s}= \pm 5 \mathrm{~V}$

TIME ($20 \mathrm{~ns} / \mathrm{div}$)
DS012336-54

Small Signal
Pulse Response
$A_{V}=+2, V_{S}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} /$ div)
DS012336-57

Closed Loop Frequency
Response vs Supply
Voltage ($\mathrm{A}_{\mathrm{V}}=\mathbf{+ 2}$)

Small Signal
Pulse Response
$A_{V}=+1, V_{S}= \pm 15 \mathrm{~V}$

TIME ($20 \mathrm{~ns} /$ div)
DS012336-55

Small Signal
Pulse Response
$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$

DS012336-58

Closed Loop Frequency Response vs Capacitive Load ($A_{V}=+1$)

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Total Harmonic Distortion
vs Frequency

Total Harmonic Distortion
vs Frequency

Closed Loop Frequency Response vs Capacitive Load ($\mathrm{A}_{\mathrm{V}}=+2$)

Total Harmonic Distortion vs Frequency

Undistorted Output Swing vs Frequency

Closed Loop Frequency
Response vs Capacitive
Load ($\mathrm{A}_{\mathrm{V}}=+2$)

Total Harmonic Distortion vs Frequency

Undistorted Output Swing vs Frequency

Typical Performance Characteristics Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

Undistorted Output Swing vs Frequency

Undistorted Output Swing

 vs Frequency

Total Power Dissipation vs Ambient Temperature

LM6171 Simplified Schematic

Application Information

LM6171 Performance Discussion

The LM6171 is a high speed, unity-gain stable voltage feedback amplifier. It consumes only 2.5 mA supply current while providing a gain-bandwidth product of 100 MHz and a slew rate of $3600 \mathrm{~V} / \mu \mathrm{s}$. It also has other great features such as low differential gain and phase and high output current. The LM6171 is a good choice in high speed circuits.
The LM6171 is a true voltage feedback amplifier. Unlike current feedback amplifiers (CFAs) with a low inverting input impedance and a high non-inverting input impedance, both inputs of voltage feedback amplifiers (VFAs) have high impedance nodes. The low impedance inverting input in CFAs will couple with feedback capacitor and cause oscillation. As a result, CFAs cannot be used in traditional op amp circuits such as photodiode amplifiers, l-to-V converters and integrators.

LM6171 Circuit Operation

The class AB input stage in LM6171 is fully symmetrical and has a similar slewing characteristic to the current feedback amplifiers. In the LM6171 Simplfied Schematic, Q1 through Q4 form the equivalent of the current feedback input buffer, R_{E} the equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the gain stage from the load to provide low output impedance.

LM6171 Slew Rate Characteristic

The slew rate of LM6171 is determined by the current available to charge and discharge an internal high impedance node capacitor. The current is the differential input voltage divided by the total degeneration resistor R_{E}. Therefore, the

Application Information (Continued)

slew rate is proportional to the input voltage level, and the higher slew rates are achievable in the lower gain configurations.
When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as $1 \mathrm{k} \Omega$ to the input of LM6171, the bandwidth is reduced to help lower the overshoot.

Layout Consideration

PRINTED CIRCUIT BOARDS AND HIGH SPEED OP AMPS

There are many things to consider when designing PC boards for high speed op amps. Without proper caution, it is very easy and frustrating to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board without using any socket.

USING PROBES

Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that will produce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads and probe jackets and using scope probe jacks.

COMPONENTS SELECTION AND FEEDBACK RESISTOR

It is important in high speed applications to keep all component leads short because wires are inductive at high frequency. For discrete components, choose carbon composition-type resistors and mica-type capacitors. Surface mount components are preferred over discrete components for minimum inductive effect.

Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as ringing or oscillation in high speed amplifiers. For LM6171, a feedback resistor of 510Ω gives optimal performance.

Compensation for Input

 CapacitanceThe combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peaking or oscillation. To solve this problem, a feedback capacitor with a value

$$
C_{F}>\left(R_{G} \times C_{I_{N}}\right) / R_{F}
$$

can be used to cancel that pole. For LM6171, a feedback capacitor of 2 pF is recommended. Figure 1 illustrates the compensation circuit.

FIGURE 1. Compensating for Input Capacitance

Power Supply Bypassing

Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by placing $0.01 \mu \mathrm{~F}$ ceramic capacitors directly to power supply pins and $2.2 \mu \mathrm{~F}$ tantalum capacitors close to the power supply pins.

FIGURE 2. Power Supply Bypassing

Termination

In high frequency applications, reflections occur if signals are not properly terminated. Figure 3 shows a properly terminated signal while Figure 4 shows an improperly terminated signal.

FIGURE 3. Properly Terminated Signal

Application Information (Continued)

FIGURE 4. Improperly Terminated Signal
To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cable should be terminated with the same value terminator or resistor. For the commonly used cables, RG59 has 75Ω characteristic impedance, and RG58 has 50Ω characteristic impedance.

Driving Capacitive Loads

Amplifiers driving capacitive loads can oscillate or have ringing at the output. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as shown below in Figure 5. The combination of the isolation resistor and the load capacitor forms a pole to increase stablility by adding more phase margin to the overall system. The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped the pulse response becomes. For LM6171, a 50Ω isolation resistor is recommended for initial evaluation. Figure 6 shows the LM6171 driving a 200 pF load with the 50Ω isolation resistor.

FIGURE 6. The LM6171 Driving a 200 pF Load with a 50Ω Isolation Resistor

Power Dissipation

The maximum power allowed to dissipate in a device is defined as:

$$
P_{D}=\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}
$$

Where P_{D} is the power dissipation in a device
$T_{J(\max)}$ is the maximum junction temperature
T_{A} is the ambient temperature
θ_{JA} is the thermal resistance of a particular package For example, for the LM6171 in a SO-8 package, the maximum power dissipation at $25^{\circ} \mathrm{C}$ ambient temperature is 730 mW .
Thermal resistance, θ_{JA}, depends on parameters such as die size, package size and package material. The smaller the die size and package, the higher θ_{JA} becomes. The 8 -pin DIP package has a lower thermal resistance $\left(108^{\circ} \mathrm{C} / \mathrm{W}\right)$ than that of 8 -pin SO $\left(172^{\circ} \mathrm{C} / \mathrm{W}\right)$. Therefore, for higher dissipation capability, use an 8 -pin DIP package.

Application Information (Continued)

The total power dissipated in a device can be calculated as:

$$
P_{D}=P_{Q}+P_{L}
$$

P_{Q} is the quiescent power dissipated in a device with no load connected at the output. P_{L} is the power dissipated in the device with a load connected at the output; it is not the power dissipated by the load.
Furthermore,
$P_{Q}=$ supply current x total supply voltage with no load
$P_{L}=$ output current \times (voltage difference between supply voltage and output voltage of the same supply)
For example, the total power dissipated by the LM6171 with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and output voltage of 10 V into $1 \mathrm{k} \Omega$ load resistor (one end tied to ground) is

$$
P_{D}=P_{Q}+P_{L}
$$

$$
=(2.5 \mathrm{~mA}) \times(30 \mathrm{~V})+(10 \mathrm{~mA}) \times(15 \mathrm{~V}-10 \mathrm{~V})
$$

$=75 \mathrm{~mW}+50 \mathrm{~mW}$
$=125 \mathrm{~mW}$

Application Circuits

$$
f=\frac{1}{2\left(R 1 C \ln \left(1+2 \frac{R 2}{R 3}\right)\right)}
$$

$$
\mathrm{f}=4 \mathrm{MHz}
$$

Pulse Width Modulator

Design Kit

A design kit is available for the LM6171. The design kit contains:

- High Speed Evaluation Board
- LM6171 in 8-pin DIP Package
- LM6171 Datasheet
- Pspice Macromodel Diskette With the LM6171 Macromodel
- An Amplifier Selection Guide

Pitch Pack

A pitch pack is available for the LM6171. The pitch pack contains:

- High Speed Evaluation Board
- LM6171 in 8-pin DIP Package
- LM6171 Datasheet
- Pspice Macromodel Diskette With the LM6171 Macromodel
Contact your local National Semiconductor sales office to obtain a pitch pack.

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president of national SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
Notes

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
ational.com	Italiano Tel: +49 (0) 1 80-534 1680		

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

