LINEAR INTEGRATED CIRCUITS

PREAMPLIFIER WITH ALC FOR C, O2 CASSETTE RECORDERS

- EXCELLENT VERSATILITY IN USE (V_S from 4 to 20V)
- HIGH OPEN LOOP GAIN
- LOW DISTORTION
- LOW NOISE
- LARGE AUTOMATIC LEVEL CONTROL RANGE
- STEREO MATCHING BETTER THAN 3 dB (matched pair)

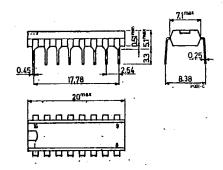
The TDA 2054M is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions incorporated are:

- low noise preamplifier

- automatic level control system (ALC)
- high gain equalization amplifier

It is intended as preamplifier in tape and cassette recorders and players (C_rO₂), dictaphones, compressor and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion receivers; for stereo applications the ALC matching is better than 3 dB.

ABSOLUTE MAXIMUM RATINGS

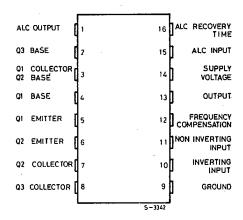

Ve	Supply voltage	20	٧
P _{tot}	Total power dissipation at T _{amb} = 50°C	500	mW
T_{stg} , T_j	Storage and junction temperature	-40 to 150	°C

ORDERING NUMBERS: TDA 2054M mono applications

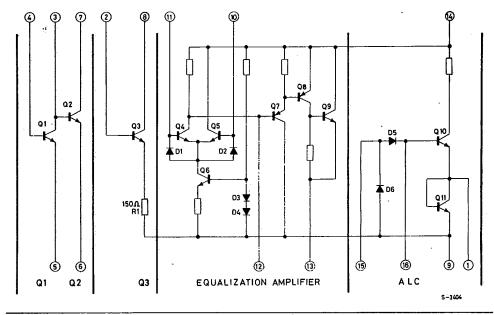
2 TDA 2054M stereo applications

MECHANICAL DATA

Dimensions in mm

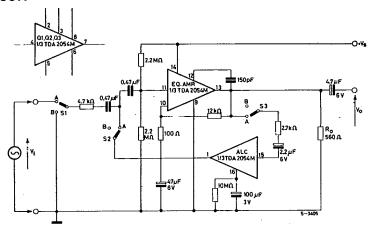


1319 C-12 607


6/82

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM



1320

C-13

TEST CIRCUIT

THERMAL DATA

R _{th j-amb}	Thermal resistance junction-ambient	max	200	°C/W
•				

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $T_{amb} = 25^{\circ}C$)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _s	Supply voltage		4		20	٧
ld	Quiescent drain current	V _s = 9V S1 = S2 = S3 = at B		10		mA
hFE	DC current gain (Q1, Q2, Q3)	I _c = 0.1 mA V _{CE} = 5V	,300	500		_
вИ	Input noise voltage (Q1, Q2, Q3)	I _c = 0.1 mA V _{CE} = 5V		2		nV √Hz
iN	Input noise current (Q1, Q2, Q3)	f = 1 KHz		0.5		pA √Hz
NF	Noise figure (Q1, Q2, Q3)	$I_c = 0.1 \text{ mA}$ $V_{CE} = 5V$ $R_q = 4.7 \text{ K}\Omega$ B (-3 dB)= 20 to 10000 Hz		0.5	4	dB
G _v	Open loop voltage gain(for equalization amplifier)	V _s = 9V f = 1 KHz		60		dB
Vo	Output voltage with A.L.C.	V _s = 9 V V _i = 100 mV f = 1 KHz S1= S2= S3 at A		0.6		v
eИ	Equivalent input noise voltage (for equalization amplifier pin 11)	V _s = 9V G _v = 40 dB S1 at B B (-3 dB)= 20 to 20000 Hz		1.3		μ∨
Rı	Q3 emitter resistance		105	150	195	Ω

1321 C-14

Fig. 1 - Equivalent input spot voltage and noise current vs. bias current (transistors Q1, Q2, Q3)

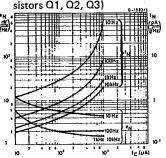


Fig. 2 - Equivalent input noise current vs. frequency (transistors Q1, Q2, Q3)

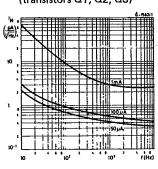


Fig. 3 - Equivalent input noise voltage vs. frequency (transistors Q1, Q2, Q3)

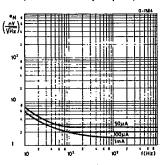


Fig. 4 - Noise figure vs. bias current (transistors Q1, Q2, Q3)

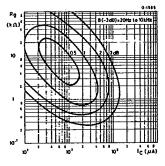


Fig. 5 - Optimum source resistance and minimum NF vs. bias current (transistors Q1, Q2, Q3)

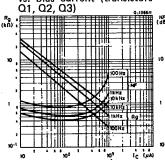


Fig. 6 - Current gain vs. collector current (transistors Q1, Q2, Q3)

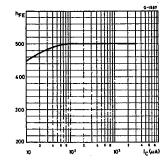


Fig. 7 - Open loop gain vs. frequency (equalization amplifier)

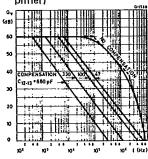


Fig. 8 – Open loop phase response vs. frequency(equalization amplifier)

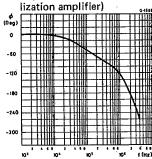
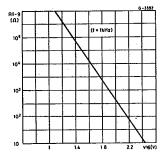



Fig. 9 - Dinamic resistance R₁₋₉ vs. ALC voltage V₁₆

1322 0-01

APPLICATION INFORMATION

Fig. 9 - Application circuit for CrO₂ cassette player and recorder

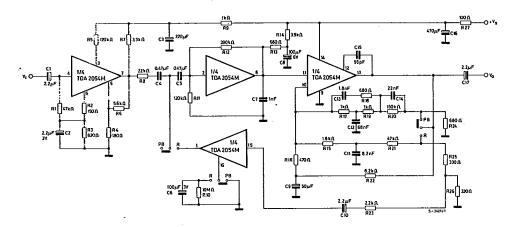
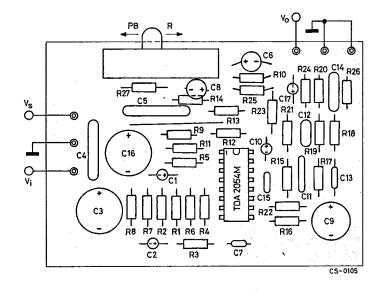



Fig. 10 - P.C. board and component layout for the circuit of Fig. 9 (1:1 scale)

1323

D-02.

TYPICAL PERFORMANCE OF CIRCUIT IN FIG. 9 ($T_{amb} = 25^{\circ}C$, $V_{s} = 9V$)

Parameter		Test conditions	Min.	Тур.	Max.	Unit
LAYB	ACK					
Gv	Voltage gain (open loop)	f = 20 to 20000 Hz		134		dB
Gv	Voltage gain (closed loop)	f = 1 KHz		60		dB
Zį	Input impedance	f = 100 Hz f = 1 KHz f = 10 KHz		10 41 43		ΚΩ ΚΩ ΚΩ
Z _o	Output impedance	f = 1 KHz		12	35	Ω
<u>-</u>	Frequency response			see fig. 11		
d .	Distortion	V _o = 1V		0,2		%
	Output background noise	$Z_{\alpha} = 300\Omega + 120 \text{ mH}$		1.5		mV
***	Output weighted background noise	$Z_g = 300\Omega + 120 \text{ mH}$ (DIN 45405)		1		mV
S+N N	Signal to noise ratio	$V_0 = 1.5V$ $Z_g = 300\Omega + 120 \text{ mH}$		60		dB
ton*	Switch-on time	V _o = 1V		500		ms

RECORDING

G _v	Voltage gain (open loop)	f = 20 to 20000) Hz	134	dB
G _v	Voltage gain (closed loop)	f = 1 KHz		72	dB
В	Frequency response			see fig. 13	
d .	Distortion with ALC	V _o = 1V	f = 10 KHz	0.5	%
ALC	Automatic level control range(for 3 dB of output voltage variation)	V _i ≤ 40 mV	f = 10 KHz	54	dB
V _o	Output voltage before clipping without ALC	f = 1 KHz		3	۱۷
V _o	Output voltage with ALC	V _i = 30 mV	f = 1 KHz	1.1	
tı*	Limiting time (see fig. 17)	417 - 140 dB	f = 1 KHz	75	ms
t _{set} *	Level setting time (see fig. 17)	ΔV _i = +40 dB	1 - 1 10172	300	ms
trec*	Recovery time (see fig. 17)	ΔV _i = -40 dB	f = 1 KHz	150	sec.
ton*	Switch-on-time	V _o = 1V		500	ms
S+N***	Signal to noise ratio with ALC	V _o = 1 V	$R_g = 470\Omega$	64	dB

^{*} This value depends on external network.

1324

^{**} When the DIN 45511 norm for frequency response is not mandatory the equalization peak at 15 KHz can be avoided – so halving the output noise.

^{***} Weighted noise measurement (DIN 45405).

TDA 2054M

Fig. 11 - Frequency response for the circuit in fig. 9 (play-

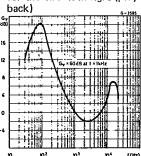


Fig. 12 - Distortion vs. frequency for the circuit in fig. 9 (playback)

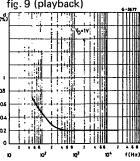


Fig. 13 - Frequency response for the circuit in fig. 9 (recording)

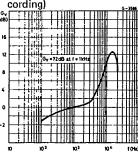


Fig. 14 - Output voltage variation and distortion with ALC vs. input voltage for the circuit in fig. 9 (recording)

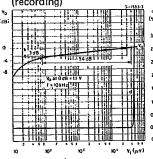


Fig. 15 - Distortion vs. frequency with ALC for the circuit in fig. 9 (recording)

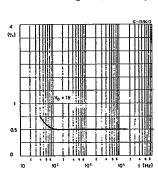


Fig. 16 - Limiting and level setting time vs. input signal variation

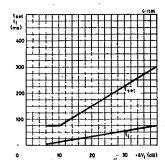
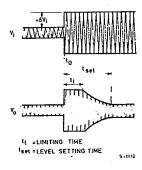



Fig. 17 - Limiting, level setting, recovery time

1325

0-04