

Microcomputer Components

16-Bit CMOS Single-Chip Microcontroller

Data Sheet 06.95 Advance Information

Edition 06.95

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1995. All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

Ausgabe 06.95

Herausgegeben von Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1995. Alle Rechte vorbehalten.

Wichtige Hinweise!

Gewähr für die Freiheit von Rechten Dritter leisten wir nur für Bauelemente selbst, nicht für Anwendungen, Verfahren und für die in Bauelementen oder Baugruppen realisierten Schaltungen.

Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert.

Liefermöglichkeiten und technische Änderungen vorbehalten.

Fragen über Technik, Preise und Liefermöglichkeiten richten Sie bitte an den Ihnen nächstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesellschaften im Ausland.

Bauelemente können aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Auskünfte darüber bitten wir unter Angabe des betreffenden Typs ebenfalls über den Vertrieb Halbleiter einzuholen.

Die Siemens AG ist ein Hersteller von CECCqualifizierten Produkten.

Verpackung

Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter – wenden Sie sich an Ihren für Sie zuständigen Vertrieb Halbleiter. Nach Rücksprache nehmen wir Verpackungsmaterial sortiert zurück. Die Transportkosten müssen Sie tragen.

Für Verpackungsmaterial, das unsortiert an uns zurückgeliefert wird oder für das wir keine Rücknahmepflicht haben, müssen wir Ihnen die anfallenden Kosten in Rechnung stellen.

Bausteine in lebenserhaltenden Geräten oder Systemen müssen ausdrücklich dafür zugelassen sein!

Kritische Bauelemente¹ des Bereichs Halbleiter der Siemens AG dürfen nur mit ausdrücklicher schriftlicher Genehmigung des Bereichs Halbleiter der Siemens AG in lebenserhaltenden Geräten oder Systemen² eingesetzt werden.

- 1 Ein kritisches Bauelement ist ein in einem lebenserhaltenden Gerät oder System eingesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, daß das lebenserhaltende Gerät oder System ausfällt bzw. dessen Sicherheit oder Wirksamkeit beeinträchtigt wird.
- 2 Lebenserhaltende Geräte und Systeme sind (a) zur chirurgischen Einpflanzung in den menschlichen Körper gedacht, oder (b) unterstützen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, daß die Gesundheit des Anwenders gefährdet werden kann.

SIEMENS

C16x-Family of High-Performance CMOS 16-Bit Microcontrollers

C167SR

Advance Information

C167SR 16-Bit Microcontroller

- High Performance 16-bit CPU with 4-Stage Pipeline
- 100 ns Instruction Cycle Time at 20 MHz CPU Clock
- 500 ns Multiplication (16 \times 16 bit), 1 µs Division (32 / 16 bit)
- Enhanced Boolean Bit Manipulation Facilities
- Additional Instructions to Support HLL and Operating Systems
- Register-Based Design with Multiple Variable Register Banks
- Single-Cycle Context Switching Support
- Clock Generation via on-chip PLL or via direct clock input
- Up to 16 MBytes Linear Address Space for Code and Data
- 2 KBytes On-Chip Internal RAM (IRAM)
- 2 KBytes On-Chip Extension RAM (XRAM)
- Programmable External Bus Characteristics for Different Address Ranges
- 8-Bit or 16-Bit External Data Bus
- Multiplexed or Demultiplexed External Address/Data Buses
- Five Programmable Chip-Select Signals
- Hold- and Hold-Acknowledge Bus Arbitration Support
- 1024 Bytes On-Chip Special Function Register Area
- Idle and Power Down Modes
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- 16-Priority-Level Interrupt System with 56 Sources, Sample-Rate down to 50 ns
- 16-Channel 10-bit A/D Converter with 9.7 µs Conversion Time
- Two 16-Channel Capture/Compare Units
- 4-Channel PWM Unit
- Two Multi-Functional General Purpose Timer Units with 5 Timers
- Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
- Programmable Watchdog Timer
- Up to 111 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis
- Supported by a Wealth of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Bootstrap Loader
- 144-Pin MQFP Package (EIAJ)

This document describes the **SAB-C167SR-LM**, the **SAF-C167SR-LM** and the **SAK-C167SR-LM**. For simplicity all versions are referred to by the term **C167SR** throughout this document.

Downloaded from **Elcodis.com** electronic components distributor

Introduction

The C167SR is a new derivative of the Siemens C16x Family of full featured single-chip CMOS microcontrollers. It combines high CPU performance (up to 10 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. It also provides on-chip high-speed RAM and clock generation via PLL.

Figure 1 Logic Symbol

Ordering Information

Pin Configuration

(top view)

Pin Definitions and Functions

Functional Description

The architecture of the C167SR combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C167SR.

Note: All time specifications refer to a CPU clock of 20 MHz (see definition in the AC Characteristics section).

Figure 3 Block Diagram

Memory Organization

The memory space of the C167SR is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C167SR is prepared to incorporate on-chip mask-programmable ROM or Flash Memory for code or constant data. Currently no ROM is integrated.

2 KBytes of on-chip Internal RAM are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, …, RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C16x family.

2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitadressable. The XRAM allows 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the microcontroller.

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories. In addition, different address ranges may be accessed with different bus characteristics. Up to 5 external $\overline{\text{CS}}$ signals can be generated in order to save external glue logic. Access to very slow memories is supported via a particular 'Ready' function. A HOLD/HLDA protocol is available for bus arbitration.

For applications which require less than 16 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte or to 64 KByte. In this case Port 4 outputs four, two or no address lines at all. It outputs all 8 address lines, if an address space of 16 MBytes is used.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C167SR's instructions can be executed in just one machine cycle which requires 100 ns at 20-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16 \times 16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 4 CPU Block Diagram

The CPU disposes of an actual register context consisting of up to 16 wordwide GPRs which are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at a time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 2048 bytes is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C167SR instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 250 ns to 600 ns (in case of internal program execution), the C167SR is capable of reacting very fast to the occurence of nondeterministic events.

The architecture of the C167SR supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C167SR has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

The following table shows all of the possible C167SR interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers:

Note: Three nodes in the table (X-Peripheral nodes) are prepared to accept interrupt requests from integrated X-Bus peripherals. Nodes, where no X-Peripherals are connected, may be used to generate software controlled interrupt requests by setting the respective XPnIR bit.

The C167SR also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

The following table shows all of the possible exceptions or error conditions that can arise during runtime:

Capture/Compare (CAPCOM) Units

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 400 ns (at 20-MHz system clock). The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function. Each register has one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin (except for CC24...CC27) to indicate the occurence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('capture'd) into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event. The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers. When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Figure 5 CAPCOM Unit Block Diagram

PWM Module

The Pulse Width Modulation Module can generate up to four PWM output signals using edgealigned or center-aligned PWM. In addition the PWM module can generate PWM burst signals and single shot outputs. The frequency range of the PWM signals covers 4.8 Hz to 1 MHz (referred to a CPU clock of 20 MHz), depending on the resolution of the PWM output signal. The level of the output signals is selectable and the PWM module can generate interrupt requests.

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for one of three basic modes of operation, which are Timer, Gated Timer, and Counter Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 400 ns (@ 20-MHz CPU clock).

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e. g. position tracking.

Timers T3 and T4 have output toggle latches (TxOTL) which change their state on each timer overflow/underflow. The state of these latches may be output on port pins (TxOUT) e. g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

With its maximum resolution of 200 ns (@ 20 MHz), the GPT2 module provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, or it may be output on a port pin (T6OUT). The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows absolute time differences to be measured or pulse multiplication to be performed without software overhead.

Downloaded from **Elcodis.com** electronic components distributor

C167SR

Figure 7 Block Diagram of GPT2

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 25 µs and 420 ms can be monitored (@ 20 MHz). The default Watchdog Timer interval after reset is 6.55 ms (@ 20 MHz).

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 16 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 16 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C167SR supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In addition, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/ Synchronous Serial Channel (ASC0) and a High-Speed Synchronous Serial Channel (SSC).

ASC0 is upward compatible with the serial ports of the Siemens SAB 8051x microcontroller family and support full-duplex asynchronous communication up to 625 KBaud and half-duplex synchronous communication up to 2.5 Mbaud on the @ 20-MHz system clock.

The SSC allows half duplex synchronous communication up to 5 Mbaud @ 20-MHz system clock.

Two dedicated baud rate generators allow to set up all standard baud rates without oscillator tuning. For transmission, reception, and erroneous reception 3 separate interrupt vectors are provided for each serial channel.

In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data + wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The SSC transmits or receives characters of 2...16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB, while the ASC0 always shifts the LSB first.

A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

Parallel Ports

The C167SR provides up to 111 I/O lines which are organized into eight input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of five I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 2, Port 3, Port 7 and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17...A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 2, Port 8 and Port 7 are associated with the capture inputs or compare outputs of the CAPCOM units and/or with the outputs of the PWM module.

Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip select signals. Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal **BHE** and the system clock output (CLKOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

All port lines that are not used for these alternate functions may be used as general purpose IO lines.

Instruction Set Summary

The table below lists the instructions of the C167SR in a condensed way. The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"C16x Family Instruction Set Manual"**.

This document also provides a detailled description of each instruction.

Instruction Set Summary

Instruction Set Summary (cont'd)

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C167SR in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Special Function Registers Overview

Special Function Registers Overview (cont'd)

Special Function Registers Overview (cont'd)

Special Function Registers Overview (cont'd)

Special Function Registers Overview (cont'd)

 $1)$ The system configuration is selected during reset.

2) Bit WDTR indicates a watchdog timer triggered reset.

Note: The Interrupt Control Registers XPnIC are prepared to control interrupt requests from integrated X-Bus peripherals. Nodes, where no X-Peripherals are connected, may be used to generate software controlled interrupt requests by setting the respective XPnIR bit.

Absolute Maximum Ratings

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{\text{IN}} > V_{\text{CC}}$ or $V_{\text{IN}} < V_{\text{SS}}$) the voltage on pins with respect to ground (V_{ss}) must not exceed the values defined by the Absolute Maximum Ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C167SR and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (**C**ontroller **C**haracteristics):

The logic of the C167SR will provide signals with the respective timing characteristics.

SR (**S**ystem **R**equirement):

The external system must provide signals with the respective timing characteristics to the C167SR.

DC Characteristics

 $V_{\text{CC}} = 5 \text{ V} \pm 10 \text{ %};$ $V_{\text{SS}} = 0 \text{ V};$ $f_{\text{CPU}} = 20 \text{ MHz};$ Reset active $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to $+85$ °C for SAF-C167SR-LM $T_A = -40$ to + 125 °C for SAK-C167SR-LM

Notes

- $1)$ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- $2)$ The maximum current may be drawn while the respective signal line remains inactive.
- ³⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁴⁾ This specification is only valid during Reset, or during Hold- or Adapt-mode. Port 6 pins are only affected, if they are used for $\overline{\text{CS}}$ output and the open drain function is not enabled.
- 5) Not 100 % tested, guaranteed by design characterization.
- $6)$ The supply current is a function of the operating frequency. This dependency is illustrated in the figure below. These parameters are tested at *V_{CCmax}* and 20 MHz CPU clock with all outputs disconnected and all inputs at V_{II} or V_{IH} .
- $7)$ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{CC} – 0.1 V to V_{CC} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.
- ⁸⁾ Overload conditions occur if the standard operatings conditions are exceeded, ie. the voltage on any pin exceeds the specified range (i.e. $V_{\text{OV}} > V_{\text{CC}} + 0.5$ V or $V_{\text{OV}} < V_{\text{SS}} - 0.5$ V). The absolute sum of input overload currents on all port pins may not exceed **50 mA**.

SIEMENS

Figure 8 Supply/Idle Current as a Function of Operating Frequency

A/D Converter Characteristics

 $V_{\text{cc}} = 5 \text{ V} \pm 10 \text{ %}; \quad V_{\text{SS}} = 0 \text{ V}$ $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to $+85$ °C for SAF-C167SR-LM $T_A = -40$ to + 125 °C for SAK-C167SR-LM $4.0 V \leq V_{\text{AREF}} \leq V_{\text{CC}} + 0.1 V$; $V_{\text{SS}} - 0.1 V \leq V_{\text{AGND}} \leq V_{\text{SS}} + 0.2 V$

Sample time and conversion time of the C167SR's ADC are programmable. The table below should be used to calculate the above timings.

Notes

- ¹⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be $X000_H$ or $X3FF_H$, respectively.
- ²⁾ During the sample time the input capacitance C_1 can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sample time $t_{\rm S}$, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{SC} depend on programming and can be taken from the table above.
- $3)$ This parameter includes the sample time t_S , the time for determining the digital result and the time to load the result register with the conversion result.

Values for the conversion clock *t_{cc}* depend on programming and can be taken from the table above.

- $4)$ This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.
- ⁵⁾ TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{CC} = 4.9 V. It is guaranteed by design characterization for all other voltages within the defined voltage range. The specified TUE is guaranteed only if an overload condition (see *I_{OV}* specification) occurs on maximum 2 not selected analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA. During the reset calibration sequence the maximum TUE may be \pm 4 LSB.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within t_{CC} . The maximum internal resistance results from the programmed conversion timing.
- $7)$ Not 100 % tested, guaranteed by design characterization.

Testing Waveforms

Figure 9 Input Output Waveforms

Figure 10 Float Waveforms

AC Characteristics Definition of Internal Timing

The internal operation of the C167SR is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see figure below).

Figure 11 Generation Mechanisms for the CPU Clock

The CPU clock signal can be generated via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate f_{CPI} . This influence must be regarded when calculating the timings for the C167SR.

Direct Drive

When pin P0.15 (P0H.7) is low ('0') during reset the on-chip phase locked loop is disabled and the CPU clock is directly driven from the oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{XTAL} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{XTAL} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

$$
TCL_{min} = 1/f_{\text{XTAL}} \times DC_{min}
$$
 (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{XTAL} is compensated so the duration of 2TCL is always 1/ $f_{X\text{TAL}}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1,3,...). Timings that require an even number of TCLs $(2,4,...)$ may use the formula 2TCL = $1/f_{XTAL}$.

Note: The address float timings in Multiplexed bus mode $(t_{11}$ and $t_{45})$ use the maximum duration of TCL (TCL_{max} = $1/f_{XTAL}$ × DC_{max}) instead of TCL_{min}.

Phase Locked Loop

When pin P0.15 (P0H.7) is high ('1') during reset the on-chip phase locked loop is enabled and provides the CPU clock. The PLL multiplies the input frequency by 4 (i.e. $f_{\text{CPU}} = f_{\text{XTAL}} \times 4$). With every fourth transition of f_{XTAL} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothely, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{XTAL} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and figure below).

For a period of $N \times TCL$ the minimum value is computed using the corresponding deviation D_N :

$$
TCL_{min} = TCL_{NOM} \times (1 - D_{\mathbf{N}} / 100)
$$

where $\mathbf{N} =$ number of consecutive TCLs
and $1 \le \mathbf{N} \le 40$.

So for a period of 3 TCLs (i.e. $N = 3$): D₃ = 4 – 3/15 = 3.8 %, and TCL_{min} = TCL_{NOM} \times (1 – 3.8 / 100) = TCL_{NOM} \times 0.962 (24.1 nsec @ f_{CPU} = 20 MHz).

This is especially important for bus cycles using waitstates and eg. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Figure 12 Approximated Maximum PLL Jitter

AC Characteristics External Clock Drive XTAL1

 $V_{\text{CC}} = 5 \text{ V} \pm 10 \text{ %};$ $V_{\text{SS}} = 0 \text{ V}$
 $T_A = 0 \text{ to } +70 \text{ °C}$ for SAB-C167SR-LM $T_{\rm A} = 0$ to + 70 °C $T_A = -40$ to +85 °C for SAF-C167SR-LM $T_A = -40$ to + 125 °C for SAK-C167SR-LM

¹⁾ For temperatures above T_A = +85 °C the minimum value for t_1 and t_2 is 25 ns.

 $^{2)}$ The clock input signal must reach the defined levels $\rm{\it{V}_{\rm IL}}$ and $\rm{\it{V}_{\rm IH2}}$.

Figure 13 External Clock Drive XTAL1

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

AC Characteristics Multiplexed Bus

 $V_{\text{cc}} = 5 \text{ V} \pm 10 \text{ %}; \quad V_{\text{SS}} = 0 \text{ V}$ $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to +85 °C for SAF-C167SR-LM $T_A = -40$ to + 125 °C for SAK-C167SR-LM C_{L} (for PORT0, PORT1, Port 4, ALE, \overline{RD} , \overline{WR} , \overline{BHE} , CLKOUT) = 100 pF C_{L} (for Port 6, \overline{CS}) = 100 pF

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20-MHz CPU clock without waitstates)

C167SR

SIEMENS

C167SR

C167SR

SIEMENS

C167SR

AC Characteristics Demultiplexed Bus

 $V_{\text{cc}} = 5 \text{ V} \pm 10 \text{ %}; \quad V_{\text{ss}} = 0 \text{ V}$ $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to $+85$ °C for SAF-C167SR-LM $T_A = -40$ to + 125 °C for SAK-C167SR-LM C_{L} (for PORT0, PORT1, Port 4, ALE, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{BHE}}$, CLKOUT) = 100 pF C_{L} (for Port 6, \overline{CS}) = 100 pF ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (100 ns at 20-MHz CPU clock without waitstates)

¹⁾ RW-delay and t_A refer to the next following bus cycle.

C167SR

AC Characteristics CLKOUT and READY

 $V_{\text{cc}} = 5 \text{ V} \pm 10 \text{ %}; \quad V_{\text{ss}} = 0 \text{ V}$ $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to +85 °C for SAF-C167SR-LM $T_A = -40$ to $+ 125$ °C for SAK-C167SR-LM C_L (for PORT0, PORT1, Port 4, ALE, \overline{RD} , \overline{WR} , \overline{BHE} , CLKOUT) = 100 pF C_{L} (for Port 6, \overline{CS}) = 100 pF

Notes

 $1)$ These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

²⁾ Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY. The $2t_A$ refer to the next following bus cycle.

Figure 16 CLKOUT and READY

Notes

- ¹⁾ Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- $2)$ The leading edge of the respective command depends on RW-delay.
- ³⁾ READY sampled HIGH at this sampling point generates a READY controlled waitstate, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- ⁴⁾ READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- ⁵⁾ If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT (eg. because CLKOUT is not enabled), it must fulfill t_{37} in order to be safely synchronized. This is guaranteed, if $\overline{\text{READV}}$ is removed in reponse to the command (see Note 4).
- ⁶⁾ Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here. For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without MTTC waitstate this delay is zero.
- $7)$ The next external bus cycle may start here.

AC Characteristics External Bus Arbitration

 $V_{\text{cc}} = 5 \text{ V} \pm 10 \text{ %}; \quad V_{\text{SS}} = 0 \text{ V}$ $T_A = 0$ to + 70 °C for SAB-C167SR-LM $T_A = -40$ to +85 °C for SAF-C167SR-LM $T_A = -40$ to $+125$ °C for SAK-C167SR-LM C_{L} (for PORT0, PORT1, Port 4, ALE, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{BHE}}$, CLKOUT) = 100 pF C_{L} (for Port 6, \overline{CS}) = 100 pF

Figure 17 External Bus Arbitration, Releasing the Bus

Notes

- $1)$ The C167SR will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for $\overline{\text{BREG}}$ to get active.
- ³⁾ The $\overline{\text{CS}}$ outputs will be resistive high (pullup) after t_{64} .

Figure 18 External Bus Arbitration, (Regaining the Bus)

Notes

- ¹⁾ This is the last chance for $\overline{\text{BREG}}$ to trigger the indicated regain-sequence. Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the C167SR requesting the bus.
- 2) The next C167SR driven bus cycle may start here.