
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74VHC21F, TC74VHC21FN, TC74VHC21FT

DUAL 4-INPUT AND GATE

(Note) The JEDEC SOP (FN) is not available in Japan.

TOSHIBA

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	-0.5~7.0	V
DC Input Voltage	VIN	-0.5~7.0	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	Ι _{ικ}	- 20	mA
Output Diode Current	Ι _{οκ}	±20	mA
DC Output Current	I _{OUT}	±25	mA
DC V _{cc} /Ground Current	I _{cc}	± 50	mA
Power Dissipation	PD	180	mW
Storage Temperature	T _{stg}	-65~150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2.0~5.5	V
Input Voltage	VIN	0~5.5	V
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	opr - 40~85	
Input Rise and Fall Time	dt/dv	0~100 (V _{CC} = 3.3 ± 0.3V) 0~20 (V _{CC} = 5±0.5V)	ns / V

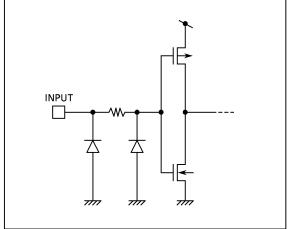
DC ELECTRICAL CHARACTERISTICS

PARAMETER SYMBOL		TEST CONDITION		V _{cc}	Ta = 25°C			Ta = 4	UNIT	
			(V)	MIN.	TYP.	MAX.	MIN.	MAX.		
High - Level Input Voltage	VIH			2.0 3.0~ 5.5	1.50 V _{cc} × 0.7	-	-	1.50 V _{cc} ×0.7		v
Low - Level Input Voltage	VIL			2.0 3.0~ 5.5	-	_	0.50 V _{cc} ×0.3	_	0.50 V _{cc} × 0.3	v
High - Level Output Voltage	V _{OH}	V _{IN} = V _{IH}	I _{ОН} = — 50µА	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		v
			I _{OH} = — 4mA I _{OH} = — 8mA	3.0 4.5	2.58 3.94	-	_	2.48 3.80		
Low - Level Output Voltage V _{OL}	V _{1 N} =	I _{OL} = 50μA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	v	
	V _{IH} or V _{IL}	$I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		
Input Leakage Current	I _{IN}	$V_{IN} = 5.5V \text{ or } GND$		0~5.5		_	±0.1	—	± 1.0	μA
Quiescent Supply Current	I _{cc}	$V_{IN} = V_{CC} \text{ or } GND$		5.5	_	_	2.0	_	20.0	μ A

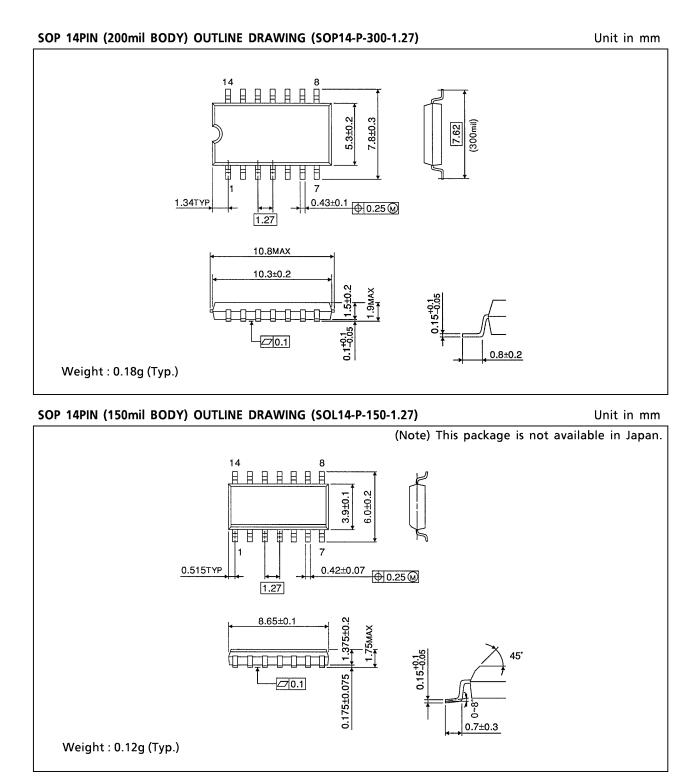
961001EBA2'

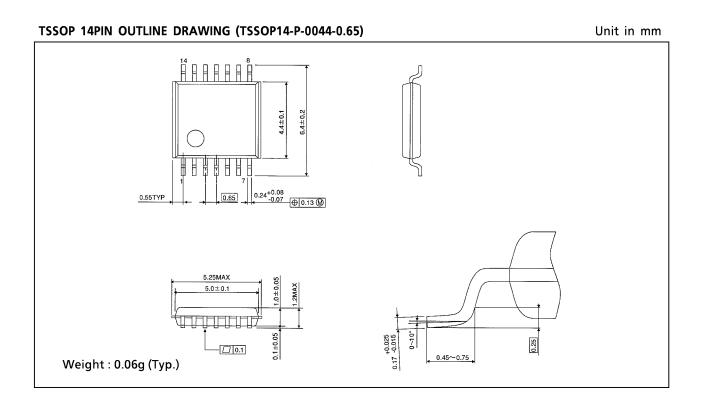
The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

1997-08-06 2/5


AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$)

PARAMETER	SYMBOL	TES	TEST CONDITION		Ta = 25°C			Ta = −40~85°C		UNIT
	STIVIBUL		V _{cc} (V)	CL (pF)	MIN.	TYP.	MAX.	MIN.	MAX.	
Propagation Delay Time	t _{pLH} t _{pHL}		3.3±0.3	15	-	4.8	7.0	1.0	8.5	ns
				50	-	7.3	10.5	1.0	12.0	
			5.0 ± 0.5	15	-	3.3	5.0	1.0	6.0	
			5.0 ± 0.5	50	-	4.8	7.0	1.0	8.0	
Input Capacitance	C _{IN}				—	4	10	—	10	μE
Power Dissipation Capacitance	C _{PD}	(Note 1)		_	20	_	_	_	pF


Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation : $I_{CC\,(opr.)}=C_{PD}\cdot V_{CC}\cdot f_{\,|N}+I_{CC}\,/\,2\,(\,per\,\,Gate\,)$

INPUT EQUIVALENT CIRCUIT

TOSHIBA

