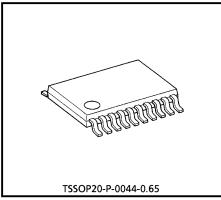
TOSHIBA TC74VCX2541FT

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# **TC74VCX2541FT**

## LOW-VOLTAGE OCTAL BUS BUFFER WITH 3.6 V TOLERANT INPUTS AND OUTPUTS


The TC74VCX2541FT is a high performance CMOS OCTAL BUS BUFFER. Designed for use in 1.8, 2.5 or 3.3 Volt systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to 3.6 V.

This device is a non-inverting 3-state buffer having two active-low output enables. When either  $\overline{OE}1$  or  $\overline{OE}2$  are high, the terminal outputs are in the high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

The 26- $\Omega$  series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.



Weight: 0.08 g (Typ.)

#### **FEATURES**

26- $\Omega$  Series Resistors on Outputs.

Low Voltage Operation :  $V_{CC} = 1.8 \sim 3.6 \text{ V}$ 

High Speed Operation :  $t_{pd} = 4.4 \text{ ns (max)}$  at  $V_{CC} = 3.0 \sim 3.6 \text{ V}$ 

 $t_{pd} = 5.6 \text{ ns (max) at V}_{CC} = 2.3 \sim 2.7 \text{ V}$  $t_{pd} = 9.8 \text{ ns (max) at V}_{CC} = 1.8 \text{ V}$ 

3.6 V Tolerant inputs and outpus.

**Output Current** :  $I_{OH}/I_{OL} = \pm 12 \text{ mA (min) at } V_{CC} = 3.0 \text{ V}$ 

 $I_{OH}/I_{OL} = \pm 8 \text{ mA (min)}$  at  $V_{CC} = 2.3 \text{ V}$  $I_{OH}/I_{OL} = \pm 4 \text{ mA (min)}$  at  $V_{CC} = 1.8 \text{ V}$ 

: ±300 mA Latch-up Performance

**ESD** Performance : Human Body Model > ±2000 V

Machine Model > ±200 V

Package

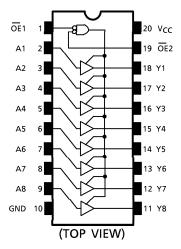
(Thin Shrink Small Outline Package)

- Power Down Protection is provided on all inputs and outputs.
- Supports live insertion/withdrawal (Note 1)

(Note 1): To ensure the high-impedance state during power up or power down,  $\overline{\text{OE}}$  should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

1999-09-07 1/8

#### **PIN ASSIGNMENT**



#### **IEC LOGIC SYMBOL**

| OE1 (1) NOE2 (19) NOE2                                  | & EN       |                                                                                      |
|---------------------------------------------------------|------------|--------------------------------------------------------------------------------------|
| A1 (2) A2 (3) A3 (4) A4 (5) A5 (6) A6 (7) A7 (8) A8 (9) | <b>→ →</b> | (18) Y1<br>(17) Y2<br>(16) Y3<br>(15) Y4<br>(14) Y5<br>(13) Y6<br>(12) Y7<br>(11) Y8 |

#### TRUTH TABLE

|     | INPUTS | OUTPUTS |         |
|-----|--------|---------|---------|
| OE1 | OE2    | An      | 0011013 |
| Н   | Х      | Х       | Z       |
| Х   | Н      | Х       | Z       |
| L   | L      | Н       | Н       |
| L   | L      | L       | L       |

X : Don't Care Z : High Impedance

#### **MAXIMUM RATINGS**

| PARAMETER                           | SYMBOL                   | RATING                              | UNIT |
|-------------------------------------|--------------------------|-------------------------------------|------|
| Power Supply Voltage                | Vcc                      | -0.5~4.6                            | V    |
| DC Input Voltage                    | VIN                      | -0.5~4.6                            | ٧    |
| DC Output Voltage                   | \/ <b>-</b> <del>-</del> | −0.5~4.6 (Note 1)                   | V    |
| DC Output Voltage                   | Vout                     | -0.5~V <sub>CC</sub> + 0.5 (Note 2) | V    |
| Input Diode Current                 | ΙK                       | <b>–</b> 50                         | mA   |
| Output Diode Current                | <sup>I</sup> ОК          | ±50 (Note 3)                        | mA   |
| DC Output Current                   | IOUT                     | ± 50                                | mΑ   |
| Power Dissipation                   | PD                       | 180                                 | mW   |
| DC V <sub>CC</sub> / Ground Current | ICC / IGND               | ± 100                               | mΑ   |
| Storage Temperature                 | T <sub>stg</sub>         | <b>- 65∼150</b>                     | °C   |

(Note 1) : Off-State

(Note 2) : High or Low State. IOUT absolute maximum rating must be observed.

(Note 3) :  $V_{OUT} < GND$ ,  $V_{OUT} > V_{CC}$ 

#### **RECOMMENDED OPERATING RANGE**

| PARAMETER                | SYMBOL           | RATING                      | UNIT        |
|--------------------------|------------------|-----------------------------|-------------|
| Supply Voltage           | V                | 1.8~3.6                     | V           |
| Supply Voltage           | VCC              | 1.2~3.6 (Note 4)            | V           |
| Input Voltage            | VIN              | -0.3~3.6                    | ٧           |
| Output Voltage           | V                | 0~3.6 (Note 5)              | V           |
| Output Voltage           | Vout             | 0~ V <sub>CC</sub> (Note 6) | <b>&gt;</b> |
|                          |                  | ± 12 (Note 7)               |             |
| Output Current           | IOH/IOL          | ±8 (Note 8)                 | mΑ          |
|                          |                  | ±4 (Note 9)                 |             |
| Operating Temperature    | T <sub>opr</sub> | <b>- 40∼85</b>              | °C          |
| Input Rise And Fall Time | dt/dv            | 0~10 (Note 10)              | ns / V      |

(Note 4) : Data Retention Only

(Note 5) : Off-State

(Note 6) : High or Low State (Note 9): High of Low State (Note 7):  $V_{CC} = 3.0 \sim 3.6 \text{ V}$ (Note 8):  $V_{CC} = 2.3 \sim 2.7 \text{ V}$ (Note 9):  $V_{CC} = 1.8 \text{ V}$ (Note 10):  $V_{IN} = 0.8 \sim 2.0 \text{ V}$ ,  $V_{CC} = 3.0 \text{ V}$ 

#### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C, 2.7 V < V<sub>CC</sub>  $\leq$  3.6 V)

| PARAI                       | METER           | SYMBOL          | TEST                                                                     | CONDITION                                                                | V <sub>CC</sub> (V) | MIN                       | MAX    | UNIT    |
|-----------------------------|-----------------|-----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------|---------------------------|--------|---------|
| Input                       | "H" Level       | VIH             |                                                                          |                                                                          | 2.7~3.6             | 2.0                       | _      | V       |
| Voltage                     | "L" Level       | VIL             |                                                                          |                                                                          | 2.7~3.6             | _                         | 0.8    | · '     |
|                             |                 |                 | .,                                                                       | I <sub>OH</sub> = -100 μA                                                | 2.7~3.6             | V <sub>C</sub> C<br>- 0.2 |        |         |
|                             | "H" Level       | Voн             | $V_{IN} = V_{IN}$                                                        | $I_{OH} = -6  \text{mA}$                                                 | 2.7                 | 2.2                       | _      |         |
| 0                           |                 |                 | V <sub>IH</sub> or V <sub>IL</sub>                                       | $I_{OH} = -8  \text{mA}$                                                 | 3.0                 | 2.4                       | _      |         |
| Output                      |                 |                 |                                                                          | $I_{OH} = -12 \text{ mA}$                                                | 3.0                 | 2.2                       | _      | V       |
| Voltage                     |                 |                 |                                                                          | $I_{OL} = 100  \mu A$                                                    | 2.7~3.6             | _                         | 0.2    |         |
|                             | "L" Level       | V <sub>OL</sub> | $V_{IN} = V_{IH} \text{ or } V_{IL} = 0$ $I_{OL} = 0$ mA $I_{OL} = 0$ mA | $I_{OL} = 6 \text{ mA}$                                                  | 2.7                 | _                         | 0.4    |         |
|                             | L Level         | VOL VIH or      |                                                                          | $I_{OL} = 8 \text{ mA}$                                                  | 3.0                 | _                         | 0.55   |         |
|                             |                 |                 |                                                                          | $I_{OL} = 12 \text{ mA}$                                                 | 3.0                 | _                         | 0.8    |         |
| Input Leaka                 | ge Current      | IN              | $V_{IN} = 0 \sim 3$ .                                                    | 6 V                                                                      | 2.7~3.6             | _                         | ± 5.0  | $\mu$ A |
| 3-State Out<br>Off-State Cu | -               | loz             |                                                                          | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$V_{OUT} = 0 \sim 3.6 \text{ V}$ |                     |                           | ± 10.0 | μΑ      |
| Power Off I<br>Current      | _eakage         | lOFF            | $V_{IN}, V_{OUT} = 0 \sim 3.6 V$                                         |                                                                          | 0                   |                           | 10.0   | μΑ      |
| Quiescent S                 | uiescent Supply |                 | $V_{IN} = V_{CC}$                                                        | V <sub>IN</sub> = V <sub>CC</sub> or GND                                 |                     | 1                         | 20.0   |         |
| Current                     |                 | ICC             | $V_{CC} \leq (V_{IN})$                                                   | $V_{OUT} \le 3.6 V$                                                      | 2.7~3.6             |                           | ± 20.0 | $\mu$ A |
| Increase In<br>Input        | ICC Per         | ∆ارح            | $V_{IH} = V_{CC}$                                                        | - 0.6 V                                                                  | 2.7~3.6             |                           | 750    | μΑ      |

ELECTRICAL CHARACTERISTICS DC characteristics (Ta =  $-40 \sim 85^{\circ}$ C, 2.3 V  $\leq$  V<sub>CC</sub>  $\leq$  2.7 V)

| PARA                      | AMETER             | SYMBOL           | TEST                                                                     | CONDITION                                | V <sub>CC</sub> (V)      | MIN                       | MAX    | UNIT    |                         |     |                        |     |   |     |  |
|---------------------------|--------------------|------------------|--------------------------------------------------------------------------|------------------------------------------|--------------------------|---------------------------|--------|---------|-------------------------|-----|------------------------|-----|---|-----|--|
| Input                     | "H" Level          | $V_{IH}$         |                                                                          |                                          | 2.3~2.7                  | 1.6                       | _      | V       |                         |     |                        |     |   |     |  |
| Voltage                   | "L" Level          | V <sub>IL</sub>  |                                                                          |                                          | 2.3~2.7                  | _                         | 0.7    | V       |                         |     |                        |     |   |     |  |
|                           |                    |                  | .,                                                                       | I <sub>OH</sub> = -100 μA                | 2.3~2.7                  | V <sub>C</sub> C<br>- 0.2 | _      |         |                         |     |                        |     |   |     |  |
|                           | "H" Level          | Voн              | V <sub>IN</sub> =                                                        | $I_{OH} = -4  \text{mA}$                 | 2.3                      | 2.0                       | _      |         |                         |     |                        |     |   |     |  |
| Output                    |                    |                  | V <sub>IH</sub> or V <sub>IL</sub>                                       | VIH or VIL                               | $I_{OH} = -6  \text{mA}$ | 2.3                       | 1.8    | _       | v                       |     |                        |     |   |     |  |
| Voltage                   |                    |                  |                                                                          | $I_{OH} = -8  \text{mA}$                 | 2.3                      | 1.7                       | _      | V       |                         |     |                        |     |   |     |  |
|                           |                    |                  | V                                                                        | $I_{OL} = 100 \mu A$                     | 2.3~2.7                  | _                         | 0.2    |         |                         |     |                        |     |   |     |  |
|                           | "L" Level          | $v_{OL}$         | V <sub>IN</sub> =<br>V <sub>IH</sub> or V <sub>IL</sub>                  |                                          |                          |                           |        |         |                         |     | I <sub>OL</sub> = 6 mA | 2.3 | _ | 0.4 |  |
|                           |                    |                  |                                                                          |                                          |                          |                           |        |         | $I_{OL} = 8 \text{ mA}$ | 2.3 | _                      | 0.6 |   |     |  |
| Input Leak                | age Current        | IN               | $V_{IN} = 0 \sim 3$                                                      | 6 V                                      | 2.3~2.7                  | _                         | ± 5.0  | $\mu$ A |                         |     |                        |     |   |     |  |
| 3-State Ou<br>Off-State C |                    | loz              | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$V_{OUT} = 0 \sim 3.6 \text{ V}$ |                                          | 2.3~2.7                  | _                         | ± 10.0 | $\mu$ A |                         |     |                        |     |   |     |  |
| Power Off<br>Current      | Leakage            | <sup>I</sup> OFF | V <sub>IN</sub> , V <sub>OUT</sub> = 0~3.6 V                             |                                          | 0                        | _                         | 10.0   | $\mu$ A |                         |     |                        |     |   |     |  |
| Quiescent                 | Quiescent Supply V |                  | $V_{IN} = V_{CC}$                                                        | V <sub>IN</sub> = V <sub>CC</sub> or GND |                          |                           | 20.0   |         |                         |     |                        |     |   |     |  |
| Current                   |                    | lcc              | V <sub>CC</sub> ≤ (V <sub>IN</sub>                                       | , V <sub>OUT</sub> ) ≦ 3.6 V             | 2.3~2.7                  | _                         | ± 20.0 | $\mu$ A |                         |     |                        |     |   |     |  |

#### **ELECTRICAL CHARACTERISTICS**

DC characteristics (Ta =  $-40\sim85^{\circ}$ C, 1.8 V  $\leq$  V<sub>CC</sub> < 2.3 V)

| PARA                       | METER       | SYMBOL          | TEST                                | CONDITION                                | V <sub>CC</sub> (V) | MIN                       | MAX                      | UNIT        |
|----------------------------|-------------|-----------------|-------------------------------------|------------------------------------------|---------------------|---------------------------|--------------------------|-------------|
| Input                      | "H" Level   | V <sub>IH</sub> |                                     |                                          | 1.8~2.3             | 0.7 ×<br>V <sub>C</sub> C | _                        | <b>&gt;</b> |
| Voltage                    | "L" Level   | V <sub>IL</sub> |                                     |                                          | 1.8~2.3             | _                         | 0.2 x<br>V <sub>CC</sub> | V           |
| Output                     | "H" Level   | Voн             | V <sub>IN</sub> =                   | I <sub>OH</sub> = -100 μA                | 1.8                 | V <sub>C</sub> C<br>- 0.2 | _                        |             |
| Output<br>Voltage          |             |                 | V <sub>IH</sub> or V <sub>IL</sub>  | $I_{OH} = -4  mA$                        | 1.8                 | 1.4                       | _                        | V           |
| Voltage                    | "L" Level   | V               | V <sub>IN</sub> =                   | $I_{OL} = 100 \mu A$                     | 1.8                 | _                         | 0.2                      |             |
|                            | L Levei     | VOL             | V <sub>IH</sub> or V <sub>IL</sub>  | I <sub>OL</sub> = 4 mA                   | 1.8                 | _                         | 0.3                      |             |
| Input Leak                 | age Current | ΙΝ              | $V_{IN} = 0 \sim 3$ .               | 6 V                                      | 1.8                 | _                         | ± 5.0                    | μΑ          |
| 3-State Out<br>Off-State C | urrent      | loz             | $V_{IN} = V_{IH} \cdot V_{OUT} = 0$ |                                          | 1.8                 | _                         | ± 10.0                   | μΑ          |
| Power Off<br>Current       | Leakage     | loff            | V <sub>IN</sub> , V <sub>OUT</sub>  | = 0~3.6 V                                | 0                   | _                         | 10.0                     | $\mu$ A     |
| Quiescent Supply           |             | loc             | $V_{IN} = V_{CC}$                   | V <sub>IN</sub> = V <sub>CC</sub> or GND |                     | _                         | 20.0                     | ,,A         |
| Current                    |             | lcc             | $V_{CC} \le (V_{IN})$               | , V <sub>OUT</sub> ) ≦ 3.6 V             | 1.8                 | _                         | ± 20.0                   | $\mu$ A     |

AC characteristics (Ta =  $-40 \sim 85 ^{\circ}$ C, Input t<sub>r</sub> = t<sub>f</sub> = 2.0 ns, C<sub>L</sub> = 30 pF, R<sub>L</sub> = 500  $\Omega$ )

| PARAMETER                   | SYMBOL            | TEST CONDITION  | V <sub>CC</sub> (V) | MIN | MAX | UNIT |
|-----------------------------|-------------------|-----------------|---------------------|-----|-----|------|
|                             | <b></b>           |                 | 1.8                 | 1.5 | 9.8 |      |
| Propagation Delay Time      | t <sub>pLH</sub>  | (Fig.1, 2)      | 2.5 ± 0.2           | 0.8 | 5.6 | ns   |
|                             | t <sub>pHL</sub>  |                 | 3.3 ± 0.3           | 0.6 | 4.4 |      |
| 2 State Output Enable       | +                 |                 | 1.8                 | 1.5 | 9.8 |      |
| 3-State Output Enable Time  | t <sub>pZL</sub>  | (Fig.1, 3)      | 2.5 ± 0.2           | 0.8 | 6.5 | ns   |
| Time                        | t <sub>pZH</sub>  | <sup>чр</sup> И |                     | 0.6 | 5.0 |      |
| 2 State Output Disable      | +                 |                 | 1.8                 | 1.5 | 7.7 |      |
| 3-State Output Disable Time | t <sub>pLZ</sub>  | (Fig.1, 3)      | 2.5 ± 0.2           | 0.8 | 4.3 | ns   |
| Time t <sub>pHZ</sub>       | чрнΖ              | 12              |                     | 0.6 | 3.9 |      |
|                             | +                 |                 | 1.8                 | _   | 0.5 |      |
| Output To Output Skew       | t <sub>osLH</sub> | (Note 11)       | 2.5 ± 0.2           | _   | 0.5 | ns   |
|                             | <sup>t</sup> osHL |                 | 3.3 ± 0.3           |     | 0.5 |      |

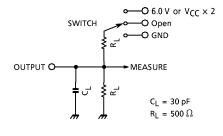
For  $C_L = 50\,\mathrm{pF}$ , add approximately 300 ps to the AC maximum specification.

(Note 11) : Parameter guaranteed by design. 
$$(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, \ t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$$

| Dynamic switching characteristics (Ta = $25^{\circ}$ C, Input $t_r$ : | $t_f = 2.0 \text{ ns}, C_1 = 30 \text{ pF}$ |
|-----------------------------------------------------------------------|---------------------------------------------|
|-----------------------------------------------------------------------|---------------------------------------------|

| PARAMETER                                       | SYMBOL           | TEST CONDITIO                                  | ON        | V <sub>CC</sub> (V) | TYP.   | UNIT |
|-------------------------------------------------|------------------|------------------------------------------------|-----------|---------------------|--------|------|
| Quiet Output Maximum                            |                  | $V_{IH} = 1.8  V,  V_{IL} = 0  V$              | (Note 12) | 1.8                 | 0.15   |      |
| Dynamic VOI                                     | VOLP             | $V_{IH} = 2.5 V, V_{IL} = 0 V$                 | (Note 12) | 2.5                 | 0.25   | V    |
| Dynamic VOL                                     |                  | $V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | (Note 12) | 3.3                 | 0.35   |      |
| Quiet Quanut Minimum                            |                  | V <sub>IH</sub> = 1.8 V, V <sub>IL</sub> = 0 V | (Note 12) | 1.8                 | - 0.15 |      |
| Quiet Output Minimum  Dynamic VOI               | V <sub>OLV</sub> | $V_{IH} = 2.5 V, V_{IL} = 0 V$                 | (Note 12) | 2.5                 | - 0.25 | V    |
| Dynamic vOL                                     |                  | V <sub>IH</sub> = 3.3 V, V <sub>IL</sub> = 0 V | (Note 12) | 3.3                 | - 0.35 |      |
| Quiet Quenut Minimum                            |                  | V <sub>IH</sub> = 1.8 V, V <sub>IL</sub> = 0 V | (Note 12) | 1.8                 | 1.55   |      |
| Quiet Output Minimum<br>Dynamic V <sub>OH</sub> | VOHV             | $V_{IH} = 2.5 V, V_{IL} = 0 V$                 | (Note 12) | 2.5                 | 2.05   | V    |
|                                                 |                  | V <sub>IH</sub> = 3.3 V, V <sub>IL</sub> = 0 V | (Note 12) | 3.3                 | 2.65   |      |

(Note 12): Parameter guaranteed by design.


#### Capacitive characteristics (Ta = 25°C)

| PARAMETER                     | SYMBOL          | TEST CONI                | DITION    | V <sub>CC</sub> (V) | TYP. | UNIT |
|-------------------------------|-----------------|--------------------------|-----------|---------------------|------|------|
| Input Capacitance             | CIN             |                          |           | 1.8, 2.5, 3.3       | 6    | рF   |
| Output Capacitance            | COUT            |                          |           | 1.8, 2.5, 3.3       | 7    | рF   |
| Power Dissipation Capacitance | C <sub>PD</sub> | f <sub>IN</sub> = 10 MHz | (Note 13) | 1.8, 2.5, 3.3       | 20   | рF   |

(Note 13):  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC}$  (opr.) =  $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$  (per bit)

#### **TEST CIRCUIT**

Fig.1



| PARAMETER                           | SWITCH                                                                                                                                |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>pLH</sub> , t <sub>pHL</sub> | Open                                                                                                                                  |
| t <sub>pLZ</sub> , t <sub>pZL</sub> | $6.0 \text{ V}$ $@V_{CC} = 3.3 \pm 0.3 \text{ V}$<br>$V_{CC} \times 2$ $@V_{CC} = 2.5 \pm 0.2 \text{ V}$<br>$@V_{CC} = 1.8 \text{ V}$ |
| t <sub>pHZ</sub> , t <sub>pZH</sub> | GND                                                                                                                                   |

#### **AC WAVEFORM**

Fig.2 t<sub>pLH</sub>, t<sub>pHL</sub>

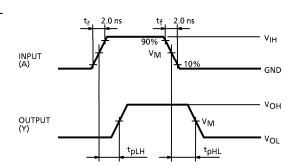
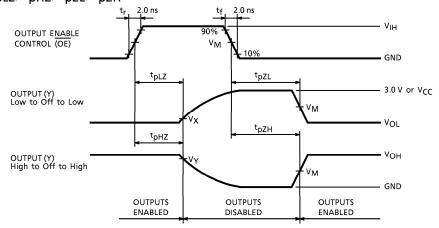
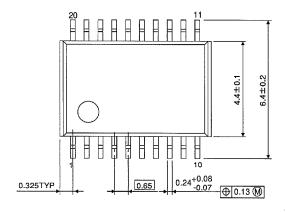
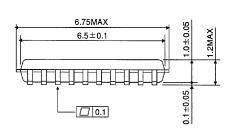
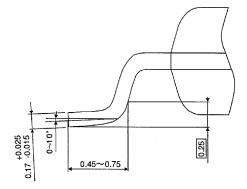




Fig.3  $t_{pLZ}$ ,  $t_{pHZ}$ ,  $t_{pZL}$ ,  $t_{pZH}$ 




| SYMBOL   | V <sub>CC</sub>         |                          |                          |
|----------|-------------------------|--------------------------|--------------------------|
|          | 3.3 ± 0.3 V             | 2.5 ± 0.2 V              | 1.8 V                    |
| $V_{IH}$ | 2.7 V                   | Vcc                      | Vcc                      |
| ٧M       | 1.5 V                   | V <sub>CC</sub> /2       | V <sub>CC</sub> / 2      |
| ۷χ       | V <sub>OL</sub> + 0.3 V | V <sub>OL</sub> + 0.15 V | V <sub>OL</sub> + 0.15 V |
| VY       | V <sub>OH</sub> - 0.3 V | V <sub>OH</sub> - 0.15 V | V <sub>OH</sub> - 0.15 V |


### **OUTLINE DRAWING**


TSSOP20-P-0044-0.65

Unit: mm









Weight: 0.08 g (Typ.)