FEATURES

44 V Supply Maximum Ratings \mathbf{V}_{SS} to V_{DD} Analog Signal Range
Low On Resistance (45Ω max)
Low $\Delta R_{\text {ON }}$ (5Ω max)
Low Row Match ($\mathbf{4} \Omega$ max)
Low Power Dissipation
Fast Switching Times
$\mathrm{t}_{\mathrm{oN}}<175 \mathrm{~ns}$
$t_{\text {OFF }}<145$ ns
Low Leakage Currents (5 nA max)
Low Charge Injection (10 pC max)
Break-Before-Make Switching Action
APPLICATIONS
Audio and Video Switching
Battery Powered Systems
Test Equipment
Communication Systems

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The AD G 333A is a monolithic CM OS device comprising four independently selectable SPDT switches. It is designed on an LC ${ }^{2}$ M OS process which provides low power dissipation yet achieves a high switching speed and a low on resistance.
The on resistance profile is very flat over the full analog input range ensuring good linearity and low distortion when switching audio signals. High switching speed also makes the part suitable for video signal switching. CM OS construction ensures ultralow power dissipation making the part ideally suited for portable, battery powered instruments.
When they are ON , each switch conducts equally well in both directions and has an input signal range which extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

REV. 0

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The AD G333A is fabricated on an enhanced LC ${ }^{2}$ M OS process, giving an increased signal range which extends to the supply rails.
2. Low Power Dissipation
3. Low Ron
4. Single Supply Operation For applications where the analog signal is unipolar, the AD G 333A can be operated from a single rail power supply. The part is fully specified with a single +12 V supply.

ADG333A- SPECIFICATIONS ${ }^{1}$

DUAL SUPPLY ($\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range $\mathrm{R}_{\text {ON }}$ $\Delta \mathrm{R}_{\text {ON }}$ Ron M atch	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 45 \\ & 5 \\ & 4 \end{aligned}$	V Ω typ Ω max Ω max Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{D}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{S}=\overline{+15.5} \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² t_{ON} $t_{\text {OFF }}$ Break-Before-M ake Delay, $\mathrm{t}_{\text {open }}$ C harge Injection OFF Isolation Channel-to-C hannel C rosstalk C_{S} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 90 \\ & 80 \\ & 10 \\ & 2 \\ & 10 \\ & 72 \\ & 85 \\ & \\ & 5 \\ & 20 \end{aligned}$	175 145	ns typ ns max ns typ ns max ns min pC typ pC max dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { T est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 5 \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{S}}=2.3 \mathrm{Vrms}, \mathrm{~T} \text { est C ircuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{S}}=2.3 \mathrm{~V} \mathrm{rms}, \text { T est Circuit } 8 \end{aligned}$
POWER REQUIREMENTS $I_{D D}$ $I_{S S}$ $V_{D D} / V_{S S}$	$\begin{aligned} & 0.05 \\ & 0.25 \\ & 0.01 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 5 \\ & \pm 3 / \pm 20 \end{aligned}$	mA typ mA max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V \min / V \max$	Digital Inputs $=0 \mathrm{~V}$ or 5 V $\left\|V_{D D}\right\|=\left\|V_{S S}\right\|$

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SINGLE SUPPLY $\left(\mathrm{V}_{D 0}=+12 \mathrm{~V}, \mathrm{~V}_{55}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range $\mathrm{R}_{\text {ON }}$	35	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 75 \end{aligned}$	V Ω typ Ω max	$\mathrm{V}_{\mathrm{D}}=+1 \mathrm{~V},+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC CHARACTERISTICS² $t_{0 N}$ $\mathrm{t}_{\text {OFF }}$ Break-Before-M ake D elay, $\mathrm{t}_{\text {open }}$ Charge Injection OFF Isolation Channel-to-C hannel C rosstalk C_{S} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 110 \\ & 100 \\ & 10 \\ & 5 \\ & 72 \\ & 85 \\ & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	ns typ ns max ns typ ns max ns min ns min pC typ dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \mathrm{T} \text { est C ircuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V} ; \mathrm{T}^{\text {est }} \mathrm{C} \text { ircuit } 5 \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} ; \\ & \mathrm{V}_{\mathrm{D}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-0 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{Vrms}, \mathrm{~T} \text { est Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{S}}=1.15 \mathrm{~V} \mathrm{rms}, \mathrm{~T} \text { est Circuit } 8 \end{aligned}$
POWER REQUIREMENTS $I_{D D}$ $V_{D D}$	$\begin{aligned} & 0.05 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.35 \\ & +3 /+30 \end{aligned}$	mA typ mA max V min/V max	$\begin{aligned} & \mathrm{V}_{D D}=+13.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ T emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG333A

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to $V_{S S}$. +44 V
$V_{D D}$ to GND . -0.3 V to +30 V
$V_{\text {ss }}$ to GND . +0.3 V to -30 V
Analog, Digital Inputs ${ }^{2} \ldots \ldots V_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , Whichever Occurs First
C ontinuous Current, S or D 20 mA
Peak Current, S or D . 40 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ D uty Cycle M ax)
O perating T emperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
Plastic Package
$\theta_{\text {JA }}$, T hermal Impedance . $103^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$

SOIC Package	
θ_{JA}, T hermal Impedance . $74^{\circ} \mathrm{C} / \mathrm{W}$	
Lead T emperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$
SSOP Package	
Lead T emperature, Soldering	
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$	
Infrared (15 sec)	
NOTES	
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional	
operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute	
Only one absolute maximum rating may be applied at any one time.	
${ }^{2}$ O vervoltages at IN, S or D will be clamped by internal diodes. Current should be	

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G 333A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Option*
AD G 333A BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-20$
AD G 333A BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-20
AD G 333A BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RS-20

*N = Plastic DIP, R = Small Outline IC (SOIC). RS = Shrink Small Outline Package (SSOP).

Table I. Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

TERMINOL	
S	Source T erminal. M ay be an input or output.
D	D rain T erminal. M ay be an input or output.
IN	Logic Control Input.
$\mathrm{R}_{\text {ON }}$	O hmic resistance between D and S .
$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{R}_{\text {ON }}$ variation due to a change in the analog input voltage with a constant load current.
$\mathrm{R}_{\text {ON }} \mathrm{M}$ atch	Difference between the $R_{\text {ON }}$ of any two channels.
$\mathrm{I}_{\text {S }}($ OFF $)$	Source leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$	D rain leakage current with the switch "OFF."
$I_{D}, I_{S}(O N)$	C hannel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	A nalog voltage on terminals D, S.
$\mathrm{C}_{S}(\mathrm{OFF})$	"OFF" Switch Source C apacitance.
$C_{\text {D }}$ (OFF)	"OFF" Switch D rain C apacitance.

$C_{D}, C_{S}(O N) \quad$ "ON" Switch C apacitance.
$\mathrm{t}_{\mathrm{ON}} \quad$ D elay between applying the digital control input and the output switching on.
D elay between applying the digital control input and the output switching off.
Break B efore M ake delay when switches are configured as a multiplexer.
M aximum input voltage for logic " 0 ."
M inimum input voltage for logic "1."
Input current of the digital input.
A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation A measure of unwanted signal coupling through an "OFF" switch.
Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.

PIN CONFIGURATION

DIP/SOIC/SSOP

Figure 1. $R_{O N}$ as a Function of V_{D} (V_{S}): Dual Supply

Figure 2. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Power Supply

Figure 3. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures: Dual Supply

Figure 4. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures: Single Supply

Figure 5. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$: Single Supply

Figure 7. Charge Injection as a Function of V_{S}

Figure 8. Switching Time as a Function of $V_{D D}$

Figure 9. $I_{D D}$ as a Function of Switching Frequency

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Delay, $t_{\text {OPEN }}$

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

ADG333A

APPLICATIONS INFORMATION ADG333A Supply Voltages

The AD G 333A can operate off a dual or signal supply. $\mathrm{V}_{\text {S }}$ should be connected to GND when operating with a single supply. When using a dual supply the AD G 333A can also operate with unbalanced supplies, for example $\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$ and $\mathrm{V}_{\text {SS }}$ $=-5 \mathrm{~V}$. The only restrictions are that $\mathrm{V}_{D D}$ to GND must not exceed $30 \mathrm{~V}, \mathrm{~V}_{\text {SS }}$ to $G N D$ must not drop below -30 V and V_{DD} to $\mathrm{V}_{\text {SS }}$ must not exceed +44 V . It is important to remember that the AD G333A supply voltage directly affects the input signal range, the switch ON resistance and the switching times of the part. The effects of the power supplies on these characteristics
can be clearly seen from the characteristic curves in this data sheet.

Power Supply Sequencing

When using CM OS devices care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond those maximum ratings listed in the data sheet. This is also true for the AD G 333A. Always sequence V_{DD} on first followed by $\mathrm{V}_{\text {SS }}$ and the logic signals. An external signal within the maximum specified ratings can then be safely presented to the source or drain of the switch

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Pin SSOP (RS-20)

