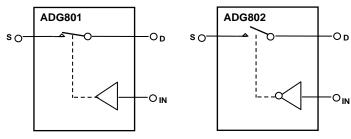
a

$< \! 0.5 \; \Omega$ CMOS, Low Voltage, SPST Switches


ADG801/ADG802

FEATURES

Low On Resistance < 0.5 Ω max at 5 V supply 0.1 Ω On Resistance Flatness +1.8 V to +5.5 V Single Supply 100pA Leakage Currents 14ns Switching Times Extended Temperature Range -40°C to +125°C High Current Carrying Capability Tiny 6 lead SOT23 and 8 Lead μ SOIC Packages Low Power Consumption TTL/CMOS Compatible Inputs Pin Compatible with ADG701/ADG702

APPLICATIONS
Power Routing
Audio and Video Signal Routing
Cellular Phones
Modems
PCMCIA Cards
Hard Drives
Data Acquisition Systems
Communication Systems
Relay replacement
Audio and Video Switching
Battery Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG801/ADG802 are monolithic CMOS SPST (Single Pole, Single Throw) switches with On Resistance of less than 0.5Ω . These switches are designed on an advanced submicron process that provides extremely low on resistance, high switching speed and low leakage currents.

The low On Resistance of $<0.5\Omega$ means these parts are ideal for applications where low on resistance switching is critical.

The ADG801 is a normally open (NO) switch, while the ADG802 is normally closed (NC). Each switch conducts equally well in both directions when ON.

The ADG801 and ADG802 are available in 6-lead SOT-23 and 8 Lead μ SOIC packages.

PRODUCT HIGHLIGHTS

- 1. Low On Resistance (0.25 Ω typical).
- 2. +1.8V to +5.5V Single Supply Operation.
- 3. Tiny 6 Lead SOT23 and 8 Lead µSOIC Packages.
- 4. Pin Compatible with ADG701 (ADG801) Pin Compatible with ADG702 (ADG802).

REV. PrE Jan '02

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002

ADG801/ADG802-SPECIFICATIONS¹

($V_{DD} = 5 \text{ V} \pm 10\%$, $V_{SS} = GND = 0 \text{ V}$. All specifications -40°C to $+125^{\circ}\text{C}$ unless otherwise noted.)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance (R _{ON})	0.25			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$
	0.4	0.5	0.75	Ω max	Test Circuit 1
On-Resistance Flatness (R _{FLAT(ON)})	0.05			Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		0.1	0.2	Ω max	
LEAKAGE CURRENTS					$V_{\rm DD} = +5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01			nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
· ·	± 0.5	± 1	tbd	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01			nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
	± 0.5	± 1	tbd	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or } 4.5 \text{ V;}$
	±0.5	±1	tbd	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I_{INL} or I_{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
t_{ON}	30			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	TBD		TBD	ns max	V _S = 3 V; Test Circuit 4
t_{OFF}	20			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	TBD		TBD	ns max	$V_S = 3 \text{ V}$; Test Circuit 4
Charge Injection	±20			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, Test}$
Off Indation	0.5			JD 4	Circuit 5
Off Isolation	-65			dB typ	$R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz,$ Test Circuit 6
Bandwidth –3 dB	30			MHz tyn	R _L = 50 Ω , C _L = 5 pF, Test Circuit 7
C _S (OFF)	55			pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	55				f = 1 MHz
$C_{\rm D}$, $C_{\rm S}$ (ON)	110				f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
• עע	0.001		1.0	μΑ typ μΑ max	Digital Inputs = 0 \ 01 0.0 \
				L	

NOTES

Specifications subject to change without notice.

-2- REV. PrE

 $^{^{1}\}text{Temperature}$ ranges are as follows: Extended Temperature Range: -40°C to $+125^{\circ}\text{C}.$

²Guaranteed by design, not subject to production test.

ADG801/ADG802

 $SPECIFICATIONS^{1}_{(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V, V}_{SS} = \text{GND} = 0 \text{ V. All specifications} -40^{\circ}\text{C to } +125^{\circ}\text{C unless otherwise noted.})$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH	120 0	100 0	1140 0	Circs	Test conditions comments
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R_{ON})	0.3		1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA};$
Colv.	0.7	0.8		Ω max	Test Circuit 1
On-Resistance Flatness $(R_{FLAT(ON)})$	0.1		0.3	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = +3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01			nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
0 - · · ·	±0.5	± 0.1	tbd	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01			nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
-	± 0.5	± 0.1	tbd	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)				nA typ	$V_{\rm S} = V_{\rm D} = 1 \text{V}, \text{ or } 3 \text{V};$
	±0.5	± 0.1	tbd	nA max	Test Circuit 3
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.4	V max	
Input Current					
I_{INL} or I_{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			± 0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
t_{ON}	50			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	TBD		TBD	ns max	$V_S = 1.5 \text{ V}$, Test Circuit 4
$t_{ m OFF}$	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	TBD		TBD	_	ns max $V_S = 1.5 \text{ V}$, Test Circuit 4
Charge Injection	±20			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, Test}$
	0.5			ID .	Circuit 5
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, Test Circuit 6
Bandwidth -3 dB	30			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 7
C _S (OFF)	55			pF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	55			pF typ	f = 1 MHz
C_D , C_S (ON)	110			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = +3.3 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = 0 V or 3.3 V
טט			1.0	μA max	6
NOTEG	l			r	

${\tt NOTES}$

Specifications subject to change without notice.

REV. PrE -3-

 $^{^1} Temperature\ ranges\ are\ as\ follows:$ Extended Temperature Range: -40°C to +125°C.

²Guaranteed by design, not subject to production test.

ADG801/ADG802

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +7 V
Analog Inputs ²
or 30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D 800 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Extended40°C to +125°C
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
μSOIC Package, Power Dissipation 315 mW
θ_{JA} Thermal Impedance 206°C/W
θ_{IC} Thermal Impedance
SOT-23 Package, Power Dissipation 282 mW
θ_{JA} Thermal Impedance
θ_{JC} Thermal Impedance91.99°C/W
Lead Temperature, Soldering (10seconds) 300°C
IR Reflow, Peak Temperature+220°C
ESD2kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

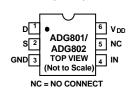
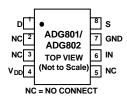

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table


ADG801 In	ADG802 In	Switch Condition
0	1	OFF
1	0	ON

PIN CONFIGURATIONS

6-Lead Plastic Surface Mount (SOT-23) (RT-6)

8-Lead Small Outline µSOIC (RM-8)

ORDERING GUIDE

Model	Temperature Range	Supply Option ¹	Brand ¹	Package Descriptions	Package Options
ADG801BRT	-40°C to +125°C	3 V, 5 V	SLB	SOT-23 (Plastic Surface Mount)	RT-6
ADG801BRM	-40°C to $+125$ °C	3 V, 5 V	SLB	μSOIC (Small Outline)	RM-8
ADG802BRT	-40°C to $+125$ °C	3 V, 5 V	SMB	SOT-23 (Plastic Surface Mount)	RT-6
ADG802BRM	-40°C to +125°C	3 V, 5 V	SMB	μSOIC (Small Outline)	RM-8

¹Branding on SOT-23 and μSOIC packages is limited to 3 characters due to space constraints.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG801/ADG802 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG801/ADG802

				_
TER	MIIN	JAI.	αc	J
11.10		4 L / L .	/ (T	

 V_{DD} Most positive power supply potential. Positive supply current. I_{DD} **GND** Ground (0 V) reference. S Source terminal. May be an input or output. D Drain terminal. May be an input or output. ΙN Logic control input. $V_D(V_S)$ Analog voltage on terminals D, S Ron Ohmic resistance between D and S. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured $R_{FLAT(ON)}$ over the specified analog signal range. I_S (OFF) Source leakage current with the switch "OFF." Drain leakage current with the switch "OFF." I_D (OFF) Channel leakage current with the switch "ON." I_D , I_S (ON) Maximum input voltage for logic "0". V_{INI} Minimum input voltage for logic "1". V_{INH} $I_{INL}(I_{INH}) \\$ Input current of the digital input. C_S (OFF) "OFF" switch source capacitance. Measured with reference to ground. C_D (OFF) "OFF" switch drain capacitance. Measured with reference to ground. $C_D, C_S(ON)$ "ON" switch capacitance. Measured with reference to ground. C_{IN} Digital input capacitance. Delay between applying the digital control input and the output switching on. See Test Circuit 4. t_{ON} Delay between applying the digital control input and the output switching off. t_{OFF} Charge A measure of the glitch impulse transferred from the digital input to the analog output during switching. Injection Off Isolation A measure of unwanted signal coupling through an "OFF" switch. Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. Bandwidth The frequency at which the output is attenuated by 3dBs.

The Frequency response of the "ON" switch. On Response Insertion The loss due to the ON resistance of the switch.

Loss

REV. PrE -5-

ADG801/ADG802

TYPICAL PERFORMANCE CHARACTERISTICS

TBD TBD TBD Figure 4. Leakage Currents as a func-Figure 7. Leakage Currents as a Figure 1. On Resistance as a Function tion of $V_D(V_S)$ Function of Temperature of $V_D(V_S)$ **TBD TBD TBD** Figure 5. Leakage Currents as a func-Figure 8. Supply Currents vs. Input Figure 2. On Resistance as a Function tion of $V_D(V_S)$ Switching Frequency of $V_D(V_S)$ for Different Temperatures **TBD TBD TBD** Figure 6. Leakage Currents as a func-Figure 9. Charge Injection vs. Source Figure 3. On Resistance as a Function

tion of Temperature

-6- REV. PrE

Voltage

of $V_D(V_S)$ for Different Temperatures

ADG801/ADG802

TBD

TBD

Figure 10. T_{ON}/T_{OFF} Times vs. Temperature

Figure 13. On Response vs. Frequency

TBD

Figure 11. Off Isolation vs. Frequency

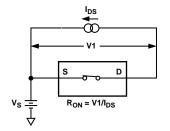
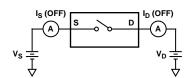
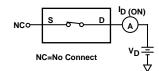
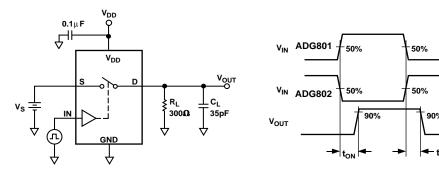

TBD

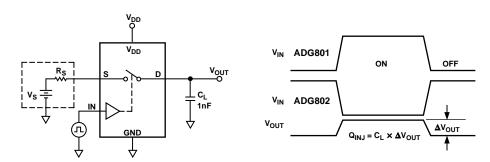
Figure 12. Crosstalk vs. Frequency

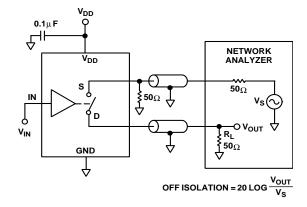

REV. PrE -7-

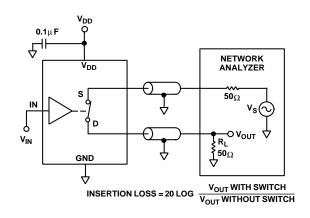
ADG801/ADG802


Test Circuits


Test Circuit 1. On Resistance

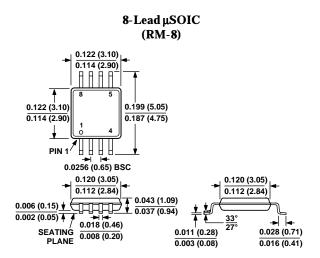

Test Circuit 2. Off Leakage

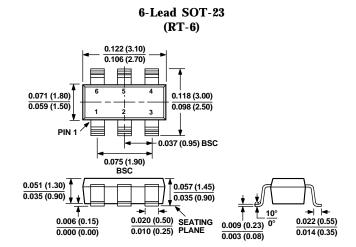

Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

Test Circuit 6. Off Isolation


Test Circuit 7. Bandwidth


-8- REV. PrE

ADG801/ADG802

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

REV. PrE -9-