ADG451/ADG452/ADG453

FEATURES

Low On Resistance (4Ω)
On Resistance Flatness 0.2Ω
44 V Supply Maximum Ratings
± 15 V Analog Signal Range
Fully Specified @ $\pm 5 \mathrm{~V},+12 \mathrm{~V}, \pm 15 \mathrm{~V}$
Ultralow Power Dissipation ($18 \mu \mathrm{~W}$)
ESD 2 kV
Continuous Current 100 mA
Fast Switching Times
$\mathrm{t}_{\mathrm{ON}} 70 \mathrm{~ns}$
$\mathrm{t}_{\text {OFF }} 60 \mathrm{~ns}$
TTL/CMOS Compatible
Pin Compatible Upgrade for ADG411/ ADG412/ ADG413
and ADG431/ADG432/ ADG433
APPLICATIONS
Relay Replacement
Audio and Video Switching
Automatic Test Equipment
Precision Data Acquisition
Battery Powered Systems
Sample Hold Systems
Communication Systems
PBX, PABX Systems
Avionics

GENERAL DESCRIPTION

The ADG 451, AD G452 and AD G 453 are monolithic CM OS devices comprising four independently selectable switches. They are designed on an enhanced LC²M OS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. F ast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CM OS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.
The AD G 451, AD G 452 and AD G 453 contain four independent single-pole/single-throw (SPST) switches. The AD G 451 and AD G452 differ only in that the digital control logic is inverted. The AD G 451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the AD G452. T he AD G 453 has two switches with digital control logic similar to that of the AD G 451 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked.

REV. A

[^0]
FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC " 1 " INPUT

The AD G 453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Low RoN (5Ω max)
2. U ltralow Power Dissipation
3. Extended Signal Range

The AD G 451, AD G 452 and AD G 453 are fabricated on an enhanced LC ${ }^{2} \mathrm{M}$ OS process giving an increased signal range that fully extends to the supply rails.
4. Break-B efore-M ake Switching This prevents channel shorting when the switches are configured as a multiplexer. (AD G 453 only.)
5. Single Supply Operation

For applications where the analog signal is unipolar, the AD G 451, AD G 452 and AD G453 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5.0 V .
6. Dual Supply Operation

For applications where the analog signal is bipolar, the AD G 451, AD G 452 and AD G453 can be operated from a dual power supply ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http:// www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 1998

ADG451/ADG452/ADG453- SPECIFICATIONS ${ }^{1}$

Dual Supply $\left(\mathrm{V}_{D 0}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, G \mathrm{GD}=0 \mathrm{~V}\right.$. All specifications $\mathrm{T}_{M N}$ to $\mathrm{T}_{\text {Mxx }}$ unless otherwise noted.)

Parameter	$+25^{\circ} \mathrm{C}$	sion $T_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance M atch Between Channels ($\Delta \mathrm{R}_{\text {on }}$) On-Resistance F latness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 4.0 \\ & 5 \\ & 0.1 \\ & 0.5 \\ & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 7 \\ & 0.5 \\ & 0.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=-5 \mathrm{~V}, 0 \mathrm{~V},+5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS ${ }^{2}$ Source OFF Leakage Is (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.5 \\ & \pm 0.02 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; }$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; }$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$, All Others $=2.4 \mathrm{~V}$ or 0.8 V Respectively
DYNAMIC CHARACTERISTICS3 $t_{0 N}$ $t_{\text {OFF }}$ Break-Before-M ake Time D elay, t_{D} (AD G453 Only) C harge Injection OFF Isolation Channel-to-C hannel C rosstalk C_{S} (OFF) C_{D} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 70 \\ & 180 \\ & 60 \\ & 140 \\ & 15 \\ & 5 \\ & 20 \\ & 30 \\ & 65 \\ & \\ & -90 \\ & \\ & 15 \\ & 15 \\ & 100 \end{aligned}$	$\begin{aligned} & 220 \\ & 180 \\ & 5 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{T}_{\text {est }} \mathrm{C} \text { ircuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=+10 \mathrm{~V} ; \end{aligned}$ Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \text {; }$ Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $\begin{aligned} & I_{D D} \\ & I_{S S} \\ & I_{L} \\ & I_{G N D}{ }^{3} \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.5 \\ & 0.0001 \\ & 0.5 \\ & 0.0001 \\ & 0.5 \\ & 0.0001 \\ & 0.5 \end{aligned}$	5 5 5 5	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^1]Single Supply ${ }_{\left(V_{00}=+12\right.} v, V_{s s}=0 V, V_{L}=+5 v$, GND $=0 V$.all speciification $T_{\text {mun }}$ to $T_{\text {Tmx }}$ unless otherwise noted.)

[^2]
ADG451/ADG452/ADG453- SPECIFICATIONS ${ }^{1}$

Dual Supply ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise noted.)

Parameter	B Version		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$T_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		
ANALOG SWITCH A nalog Signal Range On-Resistance (R_{ON}) On-Resistance M atch Between Channels ($\Delta \mathrm{R}_{\text {ON }}$)	$\begin{aligned} & 7 \\ & 12 \\ & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 15 \\ & 0.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=-3.5 \mathrm{~V} \text { to }+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS ${ }^{2,3}$ Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.5 \\ & \pm 0.02 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$V_{D}= \pm 4.5, V_{S}= \pm 4.5 ;$ T est Circuit 2 $V_{D}=0 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, 5 \mathrm{~V} \text {; }$ Test Circuit 2 $V_{D}=V_{S}=0 V, 5 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL IN PUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current I INL or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{4}$ t_{ON} $t_{\text {OFF }}$ Break-Before-M ake T ime Delay, t_{D} (AD G 453 Only) Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) C_{D} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 160 \\ & 220 \\ & 60 \\ & 140 \\ & 50 \\ & 5 \\ & 10 \\ & 10 \\ & 65 \\ & \\ & -76 \\ & \\ & 15 \\ & 15 \\ & 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 180 \\ & 5 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS $\begin{aligned} & I_{D D} \\ & I_{S S} \\ & I_{L} \\ & I_{G N D}{ }^{4} \end{aligned}$	0.0001 0.5 0.0001 0.5 0.0001 0.5 0.0001 0.5	5 5 5 5	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{D} \text { igital } \operatorname{Inputs}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{~T}_{\text {MAX }}=+70^{\circ} \mathrm{C}$.
${ }^{3} \mathrm{~T}$ ested with dual supplies.
${ }^{4}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG451/ADG452/ADG453

Truth Table (ADG451/ADG452)

ADG451 In	ADG452 In	Switch Condition
0	1	ON
1	0	OFF

PIN CONFIGURATION (DIP/SOIC)

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to $V_{S S}$. +44 V
$V_{D D}$ to GND 0.3 V to +25 V
V SS to GND . +0.3 V to -25 V
V to GND . -0.3 V to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$
Analog, Digital Inputs ${ }^{2} \ldots V_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 30 mA , W hichever Occurs F irst
Continuous C urrent, S or D . 100 mA
Peak Current, S or D . 300 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Operating T emperature R ange
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage T emperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation 470 mW $\theta_{\text {JA }}$ Thermal Impedance . $117^{\circ} \mathrm{C} / \mathrm{W}$ Lead Temperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$

Truth Table (ADG453)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

ORDERING GUIDE

Model	Temperature Range	Package Options*
AD G 451BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD 451BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
AD G452BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 452BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
AD G 453BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 453BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$

*N = Plastic DIP; R = Small Outline IC (SOIC).

Abstract

SOIC Package, Power Dissipation 600 mW θ_{JA} Thermal Impedance . $77^{\circ} \mathrm{C} / \mathrm{W}$ Lead Temperature, Soldering Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$ Infrared (15 sec) . $+220^{\circ} \mathrm{C}$ ESD .. . 2 kV NOTES ${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. ${ }^{2} O$ vervoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG451/ADG452/ADG453 feature proprietary ESD protection circuitry, permanent damagemay occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

$V_{D D}$	M ost positive power supply potential. $V_{S S}$
V_{L} ost negative power supply potential in dual	
supplies. In single supply applications, it may be	
connected to $G N D$.	

$V_{D}\left(V_{S}\right)$
$C_{S}(O F F)$
$C_{D}(O F F)$
$C_{D}, C_{S}(O N)$
$t_{O N}$
$t_{\text {OFF }}$
t_{D}
$C r o s s t a l k$

Off Isolation

Charge
Injection

Analog voltage on terminals D, S.
"OFF" switch source capacitance.
"OFF" switch drain capacitance.
"ON" switch capacitance.
D elay between applying the digital control input and the output switching on. See T est Circuit 4.
D elay between applying the digital control input and the output switching off.
"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another. See T est C ircuit 5.
A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.
A measure of unwanted signal coupling through an "OFF" switch.
A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Various Dual Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures with Dual Supplies

Typical Performance Characteristics- ADG451/ADG452/ADG453

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Various Single Supplies

Figure 4. Leakage Currents as a Function of Temperature

Figure 5. Supply Current vs. Input Switching Frequency

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures with Single Supplies

Figure 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 8. Off Isolation vs. Frequency

Figure 9. Crosstalk vs. Frequency

Figure 10. Frequency Response with Switch On

APPLICATION

Figure 11 illustrates a precise, fast, sample-and-hold circuit. An AD 845 is used as the input buffer while the output operational amplifier is an AD 711. During the track mode, SW 1 is closed and the output $\mathrm{V}_{\text {OUt }}$ follows the input signal $\mathrm{V}_{\text {IN }}$. In the hold mode, SW 1 is opened and the signal is held by the hold capacitor C_{H}.

Figure 11. Fast, Accurate Sample-and-Hold Circuit
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG451/ ADG452/AD G453 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically $30 \mu \mathrm{~V} / \mu \mathrm{s}$.
A second switch, SW 2, that operates in parallel with SW 1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD 711, which will minimize charge injection effects. Pedestal error is also reduced by the compensation network R_{c} and C_{c}. This compensation network reduces the hold time glitch while optimizing the acquisition time. U sing the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the $\pm 10 \mathrm{~V}$ input range. Both the acquisition and settling times are 850 ns .

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead SOIC
(R-16A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2} \mathrm{~T}_{\text {MAX }}=+70^{\circ} \mathrm{C}$
 ${ }^{3}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^2]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2} \mathrm{~T}_{\text {MAX }}=+70^{\circ} \mathrm{C}$.
 ${ }^{3} \mathrm{~T}$ ested with dual supplies.
 ${ }^{4}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

