

Low On Resistance (4  $\Omega$ ) On Resistance Flatness 0.2  $\Omega$ 

44 V Supply Maximum Ratings

Fully Specified @ ±5 V, +12 V, ±15 V

Ultralow Power Dissipation (18 µW)

and ADG431/ADG432/ADG433

±15 V Analog Signal Range

**Continuous Current 100 mA** 

**Fast Switching Times** 

TTL/CMOS Compatible

**FEATURES** 

ESD 2 kV

t<sub>on</sub> 70 ns

t<sub>off</sub> 60 ns

APPLICATIONS

**Relay Replacement** 

Audio and Video Switching

Automatic Test Equipment

Precision Data Acquisition

**Battery Powered Systems** 

**Communication Systems** 

Sample Hold Systems

# $LC^{2}MOS$ 5 $\Omega$ R<sub>on</sub> SPST Switches

# ADG451/ADG452/ADG453

### FUNCTIONAL BLOCK DIAGRAMS



The ADG453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

### **PRODUCT HIGHLIGHTS**

- 1. Low  $R_{ON}$  (5  $\Omega$  max)
- 2. Ultralow Power Dissipation
- Extended Signal Range The ADG451, ADG452 and ADG453 are fabricated on an enhanced LC<sup>2</sup>MOS process giving an increased signal range that fully extends to the supply rails.
- 4. Break-Before-Make Switching This prevents channel shorting when the switches are configured as a multiplexer. (ADG453 only.)
- 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG451, ADG452 and ADG453 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5.0 V.
- Dual Supply Operation For applications where the analog signal is bipolar, the ADG451, ADG452 and ADG453 can be operated from a dual power supply ranging from ±4.5 V to ±20 V.

#### One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998

### PBX, PABX Systems Avionics

#### GENERAL DESCRIPTION

The ADG451, ADG452 and ADG453 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced  $LC^2MOS$  process that provides low power dissipation yet gives high switching speed and low on resistance.

Pin Compatible Upgrade for ADG411/ADG412/ADG413

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG451, ADG452 and ADG453 contain four independent single-pole/single-throw (SPST) switches. The ADG451 and ADG452 differ only in that the digital control logic is inverted. The ADG451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG452. The ADG453 has two switches with digital control logic similar to that of the ADG451 while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked.

### REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

# ADG451/ADG452/ADG453-SPECIFICATIONS<sup>1</sup>

**Dual Supply** ( $V_{DD}$  = +15 V,  $V_{SS}$  = -15 V,  $V_L$  = +5 V, GND = 0 V. All specifications T<sub>MIN</sub> to T<sub>MAX</sub> unless otherwise noted.)

|                                                                           | <b>B</b> Version      |                                         |                            |                                                                                           |
|---------------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|
| Parameter                                                                 | +25°C                 | T <sub>MIN</sub> to<br>T <sub>MAX</sub> | Units                      | Test Conditions/Comments                                                                  |
| ANALOG SWITCH                                                             |                       | - MAX                                   | emb                        |                                                                                           |
|                                                                           |                       | $V_{SS}$ to $V_{DD}$                    | V                          |                                                                                           |
| Analog Signal Range<br>On-Resistance (R <sub>ON</sub> )                   | 4.0                   | V <sub>SS</sub> to V <sub>DD</sub>      |                            | $V_{\rm D} = -10$ V to +10 V, $I_{\rm S} = -10$ mA                                        |
| OII-RESISTANCE (R <sub>ON</sub> )                                         | 4.0<br>5              | 7                                       | Ω typ                      | $v_{\rm D} = -10 \ v \ 10 + 10 \ v, \ 1_{\rm S} = -10 \ {\rm IIIA}$                       |
| On-Resistance Match Between                                               |                       | 1                                       | $\Omega \max_{\alpha}$     | $V \pm 10 V I = 10 m \Lambda$                                                             |
|                                                                           | 0.1<br>0.5            | 0.5                                     | Ω typ<br>Ω max             | $V_{\rm D} = \pm 10$ V, $I_{\rm S} = -10$ mA                                              |
| Channels ( $\Delta R_{ON}$ )<br>On-Resistance Flatness ( $R_{FLAT(ON)}$ ) | 0.5                   | 0.5                                     |                            | $V_{\rm D} = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}, \text{ I}_{\rm S} = -10 \text{ mA}$ |
| On-Resistance Flattless (R <sub>FLAT(ON)</sub> )                          | 0.2                   | 0.5                                     | Ω typ<br>Ω max             | $v_{\rm D} = -3 v, 0 v, +3 v, 1_{\rm S} = -10 \text{ mA}$                                 |
| LEAKAGE CURRENTS <sup>2</sup>                                             |                       |                                         |                            |                                                                                           |
| Source OFF Leakage I <sub>S</sub> (OFF)                                   | $\pm 0.02$            |                                         | nA typ                     | $V_{\rm D} = \pm 10$ V, $V_{\rm S} = \pm 10$ V;                                           |
|                                                                           | $\pm 0.5$             | $\pm 2.5$                               | nA max                     | Test Circuit 2                                                                            |
| Drain OFF Leakage I <sub>D</sub> (OFF)                                    | $\pm 0.02$            |                                         | nA typ                     | $V_{\rm D} = \pm 10$ V, $V_{\rm S} = \pm 10$ V;                                           |
| _ · · · · · · · · · · · · · · · · · · ·                                   | $\pm 0.5$             | $\pm 2.5$                               | nA max                     | Test Circuit 2                                                                            |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON)                   | $\pm 0.04$            |                                         | nA typ                     | $V_{\rm D} = V_{\rm S} = \pm 10 \text{ V};$                                               |
|                                                                           | $\pm 0.04$<br>$\pm 1$ | $\pm 5$                                 | nA max                     | Test Circuit 3                                                                            |
| DIGITAL INPUTS                                                            |                       |                                         |                            |                                                                                           |
| Input High Voltage, V <sub>INH</sub>                                      |                       | 2.4                                     | V min                      |                                                                                           |
| Input Low Voltage, V <sub>INI</sub>                                       |                       | 0.8                                     | V max                      |                                                                                           |
| Input Current                                                             |                       |                                         |                            |                                                                                           |
| I <sub>INL</sub> or I <sub>INH</sub>                                      | 0.005                 |                                         | μA typ                     | $V_{IN} = V_{INL}$ or $V_{INH}$ , All Others = 2.4 V                                      |
|                                                                           |                       | $\pm 0.5$                               | μA max                     | or 0.8 V Respectively                                                                     |
| DYNAMIC CHARACTERISTICS <sup>3</sup>                                      |                       |                                         |                            |                                                                                           |
| t <sub>ON</sub>                                                           | 70                    |                                         | ns typ                     | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                                      |
|                                                                           | 180                   | 220                                     | ns max                     | $V_{\rm S} = \pm 10$ V; Test Circuit 4                                                    |
| t <sub>OFF</sub>                                                          | 60                    |                                         | ns typ                     | $R_{L} = 300 \Omega$ , $C_{L} = 35 pF$ ;                                                  |
|                                                                           | 140                   | 180                                     | ns max                     | $V_{\rm S} = \pm 10$ V; Test Circuit 4                                                    |
| Break-Before-Make Time Delay, t <sub>D</sub>                              | 15                    |                                         | ns typ                     | $R_{L} = 300 \Omega$ , $C_{L} = 35 pF$ ;                                                  |
| (ADG453 Only)                                                             | 5                     | 5                                       | ns min                     | $V_{S1} = V_{S2} = +10$ V;                                                                |
| , , , , , , , , , , , , , , , , , , ,                                     |                       |                                         |                            | Test Circuit 5                                                                            |
| Charge Injection                                                          | 20                    |                                         | pC typ                     | $V_{S} = 0 V, R_{S} = 0 \Omega, C_{L} = 1.0 nF;$                                          |
| 0                                                                         | 30                    |                                         | pC max                     | Test Circuit 6                                                                            |
| OFF Isolation                                                             | 65                    |                                         | dB typ                     | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;<br>Test Circuit 7                        |
| Channel-to-Channel Crosstalk                                              | -90                   |                                         | dB typ                     | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;                                          |
| Chaimer-to-Chaimer Crusstaik                                              | -30                   |                                         | un tyh                     | $R_L = 50.02, C_L = 5 \text{ pr}, 1 = 1 \text{ MHz},$<br>Test Circuit 8                   |
| C <sub>S</sub> (OFF)                                                      | 15                    |                                         | pF typ                     | f = 1 MHz                                                                                 |
| C <sub>D</sub> (OFF)                                                      | 15                    |                                         | pF typ                     | f = 1 MHz                                                                                 |
| $C_{\rm D}, C_{\rm S}$ (ON)                                               | 100                   |                                         | pF typ                     | f = 1 MHz                                                                                 |
| POWER REQUIREMENTS                                                        |                       |                                         |                            | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$                                      |
| I <sub>DD</sub>                                                           | 0.0001                |                                         | μA typ                     | Digital Inputs = 0 V or 5 V                                                               |
|                                                                           | 0.5                   | 5                                       | µA max                     |                                                                                           |
| I <sub>SS</sub>                                                           | 0.0001                | -                                       | μA typ                     |                                                                                           |
| 66                                                                        | 0.5                   | 5                                       | μA max                     |                                                                                           |
| IL                                                                        | 0.0001                | -                                       | μA typ                     |                                                                                           |
| *L                                                                        | 0.5                   | 5                                       | $\mu A typ$<br>$\mu A max$ |                                                                                           |
| I <sub>GND</sub> <sup>3</sup>                                             | 0.0001                | v                                       | μA typ                     |                                                                                           |
| A1 - IN L I                                                               | 0.0001                |                                         | migh                       | 1                                                                                         |

NOTES

<sup>1</sup>Temperature range is as follows: B Version:  $-40^{\circ}$ C to  $+85^{\circ}$ C. <sup>2</sup>T<sub>MAX</sub> =  $+70^{\circ}$ C

 $^{3}$ Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

# **Single Supply** $(V_{DD} = +12 V, V_{SS} = 0 V, V_L = +5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX}$ unless otherwise noted.)

|                                                         | B Version  |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|------------|-----------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                               | +25°C      | T <sub>MIN</sub> to<br>T <sub>MAX</sub> | Units            | Test Conditions/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANALOG SWITCH                                           |            |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analog Signal Range                                     |            | 0 V to V <sub>DD</sub>                  | V                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| On-Resistance (R <sub>ON</sub> )                        | 6          |                                         | Ω typ            | $V_{\rm D} = 0$ V to 10 V, $I_{\rm S} = -10$ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         | 8          | 10                                      | $\Omega \max$    | $\mathbf{v}_{\mathrm{D}} = \mathbf{v} \mathbf{v}$ to refer to the test of the test of the test of the test of |
| On-Resistance Match Between                             | 0.1        | 10                                      | $\Omega$ typ     | $V_{\rm D} = 10 \text{ V}, \text{ I}_{\rm S} = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Channels ( $\Delta R_{ON}$ )                            | 0.1        | 0.5                                     | $\Omega$ max     | $v_{\rm D} = 10 v, 1s = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| On-Resistance Flatness ( $R_{FLAT(ON)}$ )               | 1.0        | 1.0                                     | $\Omega$ typ     | $V_{\rm D} = 0 \text{ V}, +5 \text{ V}, \text{ I}_{\rm S} = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         | 1.0        | 1.0                                     | sztyp            | $v_{\rm D} = 0 v_{\rm r} + 5 v_{\rm r} + 5 = -10 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LEAKAGE CURRENTS <sup>2, 3</sup>                        |            |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Source OFF Leakage I <sub>S</sub> (OFF)                 | $\pm 0.02$ |                                         | nA typ           | $V_D = 0 V, 10 V, V_S = 0 V, 10 V;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         | $\pm 0.5$  | $\pm 2.5$                               | nA max           | Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drain OFF Leakage I <sub>D</sub> (OFF)                  | $\pm 0.02$ |                                         | nA typ           | $V_{\rm D} = 0 \text{ V}, \ 10 \text{ V}, \ V_{\rm S} = 0 \text{ V}, \ 10 \text{ V};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                       | $\pm 0.5$  | $\pm 2.5$                               | nA max           | Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | $\pm 0.04$ |                                         | nA typ           | $V_{\rm D} = V_{\rm S} = 0$ V, 10 V;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                                                       | ±1         | $\pm 5$                                 | nA max           | Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIGITAL INPUTS                                          |            |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Input High Voltage, V <sub>INH</sub>                    |            | 2.4                                     | V min            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Input Low Voltage, V <sub>INI</sub>                     |            | 0.8                                     | V max            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Input Current                                           |            | 0.8                                     | V IIIdX          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         | 0.005      |                                         | uA two           | $V_{IN} = V_{INI}$ or $V_{INH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I <sub>INL</sub> or I <sub>INH</sub>                    | 0.005      | $\pm 0.5$                               | μA typ<br>μA max | $\mathbf{v}_{\rm IN} = \mathbf{v}_{\rm INL}$ or $\mathbf{v}_{\rm INH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |            | ±0.5                                    | µA max           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DYNAMIC CHARACTERISTICS <sup>4</sup>                    |            |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| t <sub>ON</sub>                                         | 100        |                                         | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                         | 220        | 260                                     | ns max           | $V_{\rm S} = +8$ V; Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t <sub>OFF</sub>                                        | 80         |                                         | ns typ           | $R_{L} = 300 \Omega, C_{L} = 35 pF;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                         | 160        | 200                                     | ns max           | $V_{\rm S} = +8$ V; Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Break-Before-Make Time Delay, t <sub>D</sub>            | 15         |                                         | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (ADG453 Only)                                           | 10         | 10                                      | ns min           | $V_{S1} = V_{S2} = +8V;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>v</b> -                                              |            |                                         |                  | Test Circuit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Charge Injection                                        | 10         |                                         | pC typ           | $V_{S} = 0 V, R_{S} = 0 \Omega, C_{L} = 1.0 nF;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C V                                                     |            |                                         |                  | Test Circuit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Channel-to-Channel Crosstalk                            | -90        |                                         | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         |            |                                         |                  | Test Circuit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C <sub>S</sub> (OFF)                                    | 15         |                                         | pF typ           | f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_{\rm D}$ (OFF)                                       | 15         |                                         | pF typ           | f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $C_D, C_S$ (ON)                                         | 100        |                                         | pF typ           | f = 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                         |            |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| POWER REQUIREMENTS                                      |            |                                         |                  | $V_{DD} = +13.2 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ŧ                                                       | 0.0001     |                                         | <b>.</b> .       | Digital Inputs = 0 V or 5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I <sub>DD</sub>                                         | 0.0001     | -                                       | μA typ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                                                       | 0.5        | 5                                       | μA max           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $I_L$                                                   | 0.0001     | -                                       | μA typ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - 1                                                     | 0.5        | 5                                       | μA max           | $V_{L} = +5.5 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ${ m I_{GND}}^4$                                        | 0.0001     | _                                       | μA typ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         | 0.5        | 5                                       | μA max           | $V_{\rm L} = +5.5 \ {\rm V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

NOTES

<sup>1</sup>Temperature range is as follows: B Version:  $-40 \,^{\circ}\text{C}$  to  $+85 \,^{\circ}\text{C}$ . <sup>2</sup>T<sub>MAX</sub> =  $+70 \,^{\circ}\text{C}$ . <sup>3</sup>Tested with dual supplies. <sup>4</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

# ADG451/ADG452/ADG453-SPECIFICATIONS<sup>1</sup>

**Dual Supply** ( $V_{DD}$  = +5 V,  $V_{SS}$  = -5 V,  $V_L$  = +5 V, GND = 0 V. All specifications  $T_{MIN}$  to  $T_{MAX}$  unless otherwise noted.)

|                                                         | B Version  |                                         |              |                                                                                              |
|---------------------------------------------------------|------------|-----------------------------------------|--------------|----------------------------------------------------------------------------------------------|
| Parameter                                               | +25°C      | T <sub>MIN</sub> to<br>T <sub>MAX</sub> | Units        | <b>Test Conditions/Comments</b>                                                              |
| ANALOG SWITCH                                           |            |                                         |              |                                                                                              |
| Analog Signal Range                                     |            | $V_{SS}$ to $V_{DD}$                    | V            |                                                                                              |
| On-Resistance (R <sub>ON</sub> )                        | 7          |                                         | Ω typ        | $V_{\rm D} = -3.5$ V to $+3.5$ V, $I_{\rm S} = -10$ mA                                       |
|                                                         | 12         | 15                                      | $\Omega$ max |                                                                                              |
| On-Resistance Match Between                             | 0.3        |                                         | Ω typ        | $V_{\rm D} = 3.5 \text{ V}, \text{ I}_{\rm S} = -10 \text{ mA}$                              |
| Channels ( $\Delta R_{ON}$ )                            | 0.5        | 0.5                                     | $\Omega$ max |                                                                                              |
| LEAKAGE CURRENTS <sup>2, 3</sup>                        |            |                                         |              |                                                                                              |
| Source OFF Leakage I <sub>S</sub> (OFF)                 | ±0.02      |                                         | nA typ       | $V_{\rm D} = \pm 4.5, V_{\rm S} = \pm 4.5;$                                                  |
|                                                         | $\pm 0.5$  | $\pm 2.5$                               | nA max       | Test Circuit 2                                                                               |
| Drain OFF Leakage $I_D$ (OFF)                           | $\pm 0.02$ | _#10                                    | nA typ       | $V_{\rm D} = 0 \text{ V}, 5 \text{ V}, V_{\rm S} = 0 \text{ V}, 5 \text{ V};$                |
|                                                         | $\pm 0.5$  | $\pm 2.5$                               | nA max       | Test Circuit 2                                                                               |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | $\pm 0.04$ | _#10                                    | nA typ       | $V_{\rm D} = V_{\rm S} = 0$ V, 5 V;                                                          |
|                                                         | ±1         | $\pm 5$                                 | nA max       | Test Circuit 3                                                                               |
| DIGITAL INPUTS                                          |            |                                         |              |                                                                                              |
| Input High Voltage, V <sub>INH</sub>                    |            | 2.4                                     | V min        |                                                                                              |
| Input Low Voltage, V <sub>INL</sub>                     |            | 0.8                                     | V max        |                                                                                              |
| Input Current                                           |            | 0.0                                     | V IIIux      |                                                                                              |
| I <sub>INL</sub> or I <sub>INH</sub>                    | 0.005      |                                         | μA typ       | $V_{IN} = V_{INI}$ or $V_{INH}$                                                              |
|                                                         |            | $\pm 0.5$                               | µA max       |                                                                                              |
| DYNAMIC CHARACTERISTICS <sup>4</sup>                    |            |                                         |              |                                                                                              |
| t <sub>on</sub>                                         | 160        |                                         | ns typ       | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                                         |
| ton                                                     | 220        | 300                                     | ns max       | $V_{\rm S} = 3$ V; Test Circuit 4                                                            |
| t <sub>OFF</sub>                                        | 60         | 000                                     | ns typ       | $R_L = 300 \Omega, C_L = 35 pF;$                                                             |
| COFF                                                    | 140        | 180                                     | ns max       | $V_{\rm S} = 3 \text{ V}; \text{ Test Circuit 4}$                                            |
| Break-Before-Make Time Delay, t <sub>D</sub>            | 50         | 100                                     | ns typ       | $R_{L} = 300 \Omega, C_{L} = 35 pF;$                                                         |
| (ADG453 Only)                                           | 5          | 5                                       | ns min       | $V_{S1} = V_{S2} = 3 V;$                                                                     |
| (ADG455 Olly)                                           | 5          | 5                                       |              | Test Circuit 5                                                                               |
| Charge Injection                                        | 10         |                                         | pC typ       | $V_{\rm S} = 0 \text{ V}, \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1.0 \text{ nF};$ |
| Charge Injection                                        | 10         |                                         | pc typ       | Test Circuit 6                                                                               |
| OFF Isolation                                           | 65         |                                         | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;                                             |
|                                                         |            |                                         | up typ       | Test Circuit 7                                                                               |
| Channel-to-Channel Crosstalk                            | -76        |                                         | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;                                             |
| Chamier to Chamier Crosstant                            |            |                                         | up typ       | Test Circuit 8                                                                               |
| C <sub>S</sub> (OFF)                                    | 15         |                                         | pF typ       | f = 1  MHz                                                                                   |
| $C_{\rm D}$ (OFF)                                       | 15         |                                         | pF typ       | f = 1  MHz                                                                                   |
| $C_D$ (OPP)<br>$C_D$ , $C_S$ (ON)                       | 100        |                                         | pF typ       | f = 1  MHz                                                                                   |
| POWER REQUIREMENTS                                      |            |                                         |              | V <sub>DD</sub> = +5.5 V                                                                     |
|                                                         |            |                                         |              | $v_{DD} = +3.5 v$<br>Digital Inputs = 0 V or 5 V                                             |
| I <sub>DD</sub>                                         | 0.0001     |                                         | µA typ       |                                                                                              |
|                                                         | 0.5        | 5                                       | μA max       |                                                                                              |
| I <sub>SS</sub>                                         | 0.0001     |                                         | μA typ       |                                                                                              |
|                                                         | 0.5        | 5                                       | μA max       |                                                                                              |
| IL                                                      | 0.0001     |                                         | μA typ       |                                                                                              |
|                                                         | 0.5        | 5                                       | μA max       | $V_{L} = +5.5 V$                                                                             |
| $I_{GND}^{4}$                                           | 0.0001     |                                         | µA typ       |                                                                                              |
| -                                                       | 0.5        | 5                                       | μA max       | $V_{L} = +5.5 V$                                                                             |

NOTES

<sup>1</sup>Temperature range is as follows: B Version: -40°C to +85°C.

 $^{2}T_{MAX} = +70^{\circ}C.$   $^{3}Tested with dual supplies.$   $^{4}Guaranteed by design, not subject to production test. Specifications subject to change without notice.$ 

#### Truth Table (ADG451/ADG452)

| ADG451 In | ADG452 In | Switch Condition |
|-----------|-----------|------------------|
| 0         | 1         | ON               |
| 1         | 0         | OFF              |

#### PIN CONFIGURATION (DIP/SOIC)

| 9 P | (Not to 3<br>S4 6<br>D4 7<br>IN4 8 | 11 S3<br>10 D3<br>9 IN3 |
|-----|------------------------------------|-------------------------|
|-----|------------------------------------|-------------------------|

### Truth Table (ADG453)

| Logic | Switch 1, 4 | Switch 2, 3 |
|-------|-------------|-------------|
| 0     | OFF         | ON          |
| 1     | ON          | OFF         |

#### **ORDERING GUIDE**

| Model    | Temperature<br>Range | Package<br>Options* |
|----------|----------------------|---------------------|
| ADG451BN | -40°C to +85°C       | N-16                |
| ADG451BR | -40°C to +85°C       | R-16A               |
| ADG452BN | -40°C to +85°C       | N-16                |
| ADG452BR | -40°C to +85°C       | R-16A               |
| ADG453BN | -40°C to +85°C       | N-16                |
| ADG453BR | -40°C to +85°C       | R-16A               |

\*N = Plastic DIP; R = Small Outline IC (SOIC).

### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| $(T_A = +25^{\circ}C \text{ unless otherwise noted})$                 |
|-----------------------------------------------------------------------|
| $V_{DD}$ to $V_{SS}$ +44 V                                            |
| $V_{DD}$ to GND $\hdots0.3$ V to +25 V                                |
| $V_{SS}$ to GND $\ldots$                                              |
| $V_L$ to GND                                                          |
| Analog, Digital Inputs <sup>2</sup> $V_{SS}$ –2 V to $V_{DD}$ +2 V or |
| 30 mA, Whichever Occurs First                                         |
| Continuous Current, S or D 100 mA                                     |
| Peak Current, S or D 300 mA                                           |
| (Pulsed at 1 ms, 10% Duty Cycle max)                                  |
| Operating Temperature Range                                           |
| Industrial (B Version)40°C to +85°C                                   |
| Storage Temperature Range65°C to +150°C                               |
| Junction Temperature                                                  |
| Plastic Package, Power Dissipation                                    |
| $\theta_{JA}$ Thermal Impedance 117°C/W                               |
| Lead Temperature, Soldering (10 sec) +260°C                           |

| SOIC Package, Power Dissipation | 600 mW |
|---------------------------------|--------|
| $\theta_{JA}$ Thermal Impedance | 77°C/W |
| Lead Temperature, Soldering     |        |
| Vapor Phase (60 sec)            | +215°C |
| Infrared (15 sec)               |        |
| ESD                             | 2 kV   |

#### NOTES

<sup>1</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

<sup>2</sup>Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

#### CAUTION \_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG451/ADG452/ADG453 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



| V <sub>DD</sub>                      | Most positive power supply potential.              | V <sub>D</sub> (V <sub>S</sub> )     | Analog voltage on terminals D, S.                                                                |
|--------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|
| V <sub>SS</sub>                      | Most negative power supply potential in dual       | C <sub>S</sub> (OFF)                 | "OFF" switch source capacitance.                                                                 |
|                                      | supplies. In single supply applications, it may be | C <sub>D</sub> (OFF)                 | "OFF" switch drain capacitance.                                                                  |
| <b>T</b> 7                           | connected to GND.                                  | C <sub>D</sub> , C <sub>S</sub> (ON) | "ON" switch capacitance.                                                                         |
| $V_L$                                | Logic power supply (+5 V).                         | t <sub>ON</sub>                      | Delay between applying the digital control input                                                 |
| GND                                  | Ground (0 V) reference.                            | UN                                   | and the output switching on. See Test Circuit 4.                                                 |
| S                                    | Source terminal. May be an input or output.        | t <sub>OFF</sub>                     | Delay between applying the digital control input                                                 |
| D                                    | Drain terminal. May be an input or output.         |                                      | and the output switching off.                                                                    |
| IN                                   | Logic control input.                               | t <sub>D</sub>                       | "OFF" time or "ON" time measured between                                                         |
| R <sub>ON</sub>                      | Ohmic resistance between D and S.                  |                                      | the 90% points of both switches, when switching from one address state to another. See Test      |
| $\Delta R_{ON}$                      | On resistance match between any two channels       |                                      | Circuit 5.                                                                                       |
|                                      | i.e., R <sub>ON</sub> max – R <sub>ON</sub> min.   | Crosstalk                            | A measure of unwanted signal coupled through<br>from one channel to another as a result of para- |
| R <sub>FLAT(ON)</sub>                | Flatness is defined as the difference between the  | Crosstan                             |                                                                                                  |
|                                      | maximum and minimum value of on-resistance as      |                                      | sitic capacitance.                                                                               |
|                                      | measured over the specified analog signal range.   | Off Isolation                        | A measure of unwanted signal coupling through                                                    |
| I <sub>S</sub> (OFF)                 | Source leakage current with the switch "OFF."      |                                      | an "OFF" switch.                                                                                 |
| I <sub>D</sub> (OFF)                 | Drain leakage current with the switch "OFF."       | Charge                               | A measure of the glitch impulse transferred                                                      |
| I <sub>D</sub> , I <sub>S</sub> (ON) | Channel leakage current with the switch "ON."      | Injection                            | from the digital input to the analog output dur-<br>ing switching.                               |





Figure 1. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Various Dual Supplies



Figure 2. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures with Dual Supplies

# Typical Performance Characteristics-ADG451/ADG452/ADG453



Figure 3. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Various Single Supplies



Figure 4. Leakage Currents as a Function of Temperature



Figure 5. Supply Current vs. Input Switching Frequency



Figure 6. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures with Single Supplies



Figure 7. Leakage Currents as a Function of  $V_D$  ( $V_S$ )



Figure 8. Off Isolation vs. Frequency







Figure 10. Frequency Response with Switch On

### APPLICATION

Figure 11 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output  $V_{\rm OUT}$  follows the input signal  $V_{\rm IN}$ . In the hold mode, SW1 is opened and the signal is held by the hold capacitor  $C_{\rm H}$ .



#### Figure 11. Fast, Accurate Sample-and-Hold Circuit

Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG451/ ADG452/ADG453 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30  $\mu$ V/ $\mu$ s.

A second switch, SW2, that operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD711, which will minimize charge injection effects. Pedestal error is also reduced by the compensation network  $R_C$  and  $C_C$ . This compensation network reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the  $\pm 10$  V input range. Both the acquisition and settling times are 850 ns.

# **Test Circuits**







Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage



Test Circuit 4. Switching Times



Test Circuit 5. Break-Before-Make Time Delay



Test Circuit 6. Charge Injection



Test Circuit 7. Off Isolation



Test Circuit 8. Channel-to-Channel Crosstalk

#### **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).



16-Lead SOIC (R-16A)



C3119a-0-2/98