ADG411/ADG412/ADG413

FEATURES
44 V Supply Maximum Ratings ± 15 V Analog Signal Range
Low On Resistance ($<35 \Omega$)
Ultralow Power Dissipation ($35 \mu \mathrm{~W}$)
Fast Switching Times
$t_{\text {ON }}<175$ ns
$t_{\text {off }}<145$ ns
TTL/CMOS Compatible
Plug-In Replacement for DG411/DG412/ DG413

APPLICATIONS

Audio and Video Switching
Automatic Test Equipment
Precision Data Acquisition
Battery Powered Systems
Sample Hold Systems
Communication Systems

GENERAL DESCRIPTION

The AD G 411, AD G 412 and AD G 413 are monolithic CM OS devices comprising four independently selectable switches. They are designed on an enhanced LC ${ }^{2} \mathrm{M}$ OS process which provides low power dissipation yet gives high switching speed and low on resistance.
The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. F ast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CM OS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.
The AD G411, AD G 412 and AD G 413 contain four independent SPST switches. The ADG 411 and AD G 412 differ only in that the digital control logic is inverted. The AD G 411 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG 412. The AD G413 has two switches with digital control logic similar to that of the AD G 411 while the logic is inverted on the other two switches.
Each switch conducts equally well in both directions when ON and each has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

REV. A

[^0]FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The AD G411, AD G 412 and AD G 413 are fabricated on an enhanced LC ${ }^{2}$ M OS, giving an increased signal range which extends fully to the supply rails.
2. U Itralow Power Dissipation
3. Low Ron
4. Break-Before-M ake Switching This prevents channel shorting when the switches are configured as a multiplexer.
5. Single Supply Operation

For applications where the analog signal is unipolar, the AD G 411, AD G 412 and AD G 413 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V .

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/ 329-4700 World Wide Web Site: http:// www.analog.com Fax: 781/326-8703

ADG411/ADG412/ADG413- SPECIFICATIONS ${ }^{1}$

Dual Supply ($\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{5 S}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$$		T Version		Units	Test Conditions/Comments
				$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range R_{ON}	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 45 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \Omega \operatorname{typ} \\ & \Omega \max \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{S}=\mp 15.5 \mathrm{~V} ; \\ & T \text {;est Circuit } 2 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} ; \\ & \text { Test Circuit 2 } \\ & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}= \pm 15.5 \mathrm{~V} ; \\ & \text { Test Circuit 3 } \end{aligned}$
DIGITAL INPUTS Input H igh Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\text {OfF }}$ Break-Before-M ake Time D elay, t_{D} (ADG413 Only) Charge Injection OFF Isolation Channel-to-C hannel Crosstalk C_{s} (OFF) CD (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 110 \\ & 100 \\ & 25 \\ & 5 \\ & 5 \\ & 68 \\ & 85 \\ & \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	175 145	$\begin{aligned} & 110 \\ & 100 \\ & 25 \\ & 5 \\ & \\ & 68 \\ & 85 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	175 145	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS $\begin{aligned} & I_{D D} \\ & I_{S S} \\ & I_{L} \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	5 5 5	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	5 5	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Single Supply $\left(\mathrm{V}_{00}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%, G \mathrm{ND}=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	B Version		T Version		Units	Test Conditions/Comments
ANALOG SIGNAL RANGE R_{ON}	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 100 \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 100 \end{aligned}$	V Ω typ Ω max	$\begin{aligned} & 0<\mathrm{V}_{\mathrm{D}}=8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{DD}}=+10.8 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 40 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 12.2 \mathrm{~V} \text {; } \\ & \mathrm{T}^{\text {est Circuit 2 }} \\ & \mathrm{V}_{\mathrm{D}}=12.2 / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 / 12.2 \mathrm{~V} \text {; } \\ & \mathrm{T}^{\text {est Circuit 2 }} \\ & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=+12.2 \mathrm{~V} /+1 \mathrm{~V} \text {; } \\ & \mathrm{T}_{\text {est Circuit 3 }} \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.5 \end{aligned}$	$V \min$ $V \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $t_{0 N}$ $t_{\text {OFF }}$ Break-Before-M ake T ime Delay, t_{D} (ADG413 Only) Charge Injection OFF Isolation Channel-to-C hannel Crosstalk C_{S} (OFF) C_{D} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 175 \\ & 95 \\ & 25 \\ & 25 \\ & 68 \\ & \\ & 85 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	250 125	$\begin{aligned} & 175 \\ & 95 \\ & 25 \\ & 25 \\ & 68 \\ & \\ & \hline 85 \\ & 9 \\ & 9 \\ & 35 \end{aligned}$	250 125	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=+8 \mathrm{~V} ; \mathrm{T} \text { est Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V} ; \end{aligned}$ Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF} \text {; }$ Test Circuit 6 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} \text {; }$ Test Circuit 8 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{M} \mathrm{~Hz}$
POWER REQUIREMENTS $\begin{aligned} & I_{D D} \\ & I_{L} \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	5 5	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$V_{D D}=+13.2 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or 5 V $\mathrm{V}_{\mathrm{L}}=+5.25 \mathrm{~V}$

NOTES
${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Truth Table (ADG411/ADG412)

ADG411 In	ADG412 In	Switch Condition
0	1	ON
1	0	OFF

Truth Table (ADG413)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

ADG411/ADG412/ADG413

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

V		
$V_{D D}$ to $G N D$................................... 0.3 V to +25 V	$V_{\text {D }}$	M ost positive power supply potential.
	S	M ost negative power supply potential in dual
VL to GND -0.3 V to $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$		supplies. In single supply applications, it may
A nalog, Digital Inputs ${ }^{2} \ldots V_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}+2 \mathrm{~V}$ or		be
30 mA , Whichever Occurs First	V_{L}	L ogic power supply (+5 V).
Continuous Current, S or D . 30 mA	GND	Ground (0 V) reference.
Peak Current, S or D . 100 mA	S	Source terminal. M ay be an input or output.
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)	D	D rain terminal. M ay be an input or output.
Operating T emperature R ange	IN	L ogic control input.
Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
Storage T emperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$I_{S}(O F F)$	Source leakage current with the switch "OFF.
Junction Temperature . $+150^{\circ} \mathrm{C}$	I_{D} (OFF)	D rain leakage current with the switch "OFF."
Cerdip Package, Power Dissipation 900 mW	$I_{D}, I_{S}(O N)$	Channel leakage current with the switch "ON."
$\theta_{\text {JA }}$ T hermal Impedance . $766^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
Lead Temperature, Soldering (10 sec) $+300^{\circ} \mathrm{C}$	$\mathrm{C}_{\text {S }}(\mathrm{OFF})$	"OFF" switch source capacitance.
$\theta_{\text {IA }}$ Thermal Impedance . $117^{\circ} \mathrm{C} / \mathrm{W}$	$C_{\text {d }}(\mathrm{OFF})$	"OFF" switch drain capacitance.
Lead T emperature, Soldering (10 sec) $+260^{\circ} \mathrm{C}$	$C_{D}, C_{S}(O N)$	"ON" switch capacitance.
SOIC Package, Power Dissipation 600 mW $\theta_{\text {JA }}$ Thermal Impedance . $77^{\circ} \mathrm{C} / \mathrm{W}$	t_{ON}	D elay between applying the digital control input and the output switching on.
TSSOP Package, Power Dissipation 450 mW θ_{μ} Thermal Impedance $115^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{t}_{\text {OFF }}$	D elay between applying the digital control
$\theta_{\text {JC }}$ Thermal Impedance . $35^{\circ} \mathrm{C} / \mathrm{W}$	t_{0}	"OFF" time or "ON" time measured between
Lead Temperature, Soldering Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$ Infrared (15 sec) .		the 90% points of both switches, when switching from one address state to another.
NOTES ${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the	C rosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute	Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
maximum rating may be applied at any one time.	C harge	A measure of the glitch impulse transferred
${ }^{2}$ O vervoltages at IN , S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.	Injection	from the digital input to the analog output during switching.

ORDERING GUIDE

Model ${ }^{\text {l }}$	Temperature Range	Package Option ${ }^{2}$
ADG411BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG411BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG 411TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Q-16
ADG411BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU-16
ADG 412BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG412BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG 412T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Q-16
ADG 413BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG413BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A

NOTES

${ }^{1}$ T o order M IL-ST D-883, C lass B processed parts, add /883B to T grade part numbers.
 Outline (TSSOP); Q = Cerdip.

TERMINOLOGY

PIN CONFIGURATION

 (DIP/SOIC)

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G411/AD G412/A D G 413 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Graphs

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Dual Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 3. Leakage Currents as a Function of Temperature

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supply

Figure 5. Supply Current vs. Input Switching Frequency

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 7. Off Isolation vs. Frequency

Figure 8. Crosstalk vs. Frequency

APPLICATION

Figure 9 illustrates a precise, fast, sample-and-hold circuit. An AD 845 is used as the input buffer while the output operational amplifier is an AD 711. D uring the track mode, SW 1 is closed and the output $\mathrm{V}_{\text {OUT }}$ follows the input signal $\mathrm{V}_{\text {IN }}$. In the hold mode, SW 1 is opened and the signal is held by the hold capacitor C_{H}.
Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG 411/ADG412/ AD G413 minimizes this droop due to its low leakage specifications. T he droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically $30 \mu \mathrm{~V} / \mu \mathrm{s}$.
A second switch, SW 2, which operates in parallel with SW 1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp AD 711, which will minimize charge injection effects. Pedestal error is also reduced by the compensation network R_{C} and C_{C}. This compensation network also reduces the hold time glitch while optimizing the acquisition time. U sing the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the $\pm 10 \mathrm{~V}$ input range. Both the acquisition and settling times are 850 ns .

Figure 9. Fast, Accurate Sample-and-Hold

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

MECHANICAL INFORMATION
Dimensions are shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

