16-/32-Channel, 3.5 ת
 1.8 V to $5.5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$, Analog Multiplexers

Preliminary Technical Data ADG726/ADG732

FEATURES

1.8 V to 5.5 V Single Supply
$\pm 2.5 \mathrm{~V}$ Dual Supply Operation
3.5Ω On Resistance
0.5Ω On Resistance Flatness
Rail to Rail Operation
30ns Switching Times
Single 32 to 1 Channel Multiplexer
Dual/Differential 16 to 1 Channel Multiplexer
TTL/CMOS Compatible Inputs
For Functionally Equivalent devices with Serial Interface
See ADG725/ADG731

APPLICATIONS

Optical Applications

Data Acquisition Systems
Communication Systems
Relay replacement
Audio and Video Switching
Battery Powered Systems
Medical Instrumentation
Automatic Test Equipment

GENERAL DESCRIPTION

The ADG726/ADG732 are monolithic CMOS 32 channel/dual 16 channel analog multiplexers. The ADG732 switches one of thirty-two inputs (S1-S32) to a common output, D , as determined by the 5-bit binary address lines A0, A1, A2, A3 and A4. The ADG726 switches one of sixteen inputs as determined by the four bit binary address lines, A0, A1, A2 and A3.

On chip latches facilitate microprocessor interfacing. The ADG726 device may also be configured for differential operation by tying CSA and CSB together. An $\overline{\mathrm{EN}}$ input is used to enable or disable the devices. When disabled, all channels are switched OFF.
These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance and leakage currents. They operate from single supply of 1.8 V to 5.5 V and $\pm 2.5 \mathrm{~V}$ dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few Ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or De-Multiplexers

REV. PrD 2001
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

and have an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels.
They are available in either 48 lead LFCSP or TQFP package.

PRODUCT HIGHLIGHTS

1. +1.8 V to +5.5 V Single or $\pm 2.5 \mathrm{~V}$ Dual Supply operation. These parts are specified and guaranteed with $+5 \mathrm{~V} \pm 10 \%,+3 \mathrm{~V} \pm 10 \%$ single supply and $\pm 2.5 \mathrm{~V} \pm 10 \%$ dual supply rails.
2. On Resistance of 3.5Ω.
3. Guaranteed Break-Before-Make Switching Action.
4. $7 \mathrm{~mm} \times 7 \mathrm{~mm} 48$ lead LF Chip Scale Package (CSP) or 48 lead TQFP package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 Fax: 781/326-8703 World Wide Web Site: http://www.analog.com Analog Devices, Inc., 2001

Parameter	B Version		Units	Test Conditions/Comments	
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			
ANALOG SWITCH					
Analog Signal Range	35	0 V to V_{DD}	V		
On-Resistance (R_{ON})			Ω typ		
	5.5	6	Ω max	Test Circuit 1	
On-Resistance Match Between		0.3	Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	
On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)		0.8	Ω max		
	0.5		Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	
		1.2	Ω max		
LEAKAGE CURRENTS	± 0.01		nA typ nA max		
Source OFF Leakage $\mathrm{I}_{\text {S }}$ (OFF)			$\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} ;$		
	± 0.5	± 5		Test Circuit 2	
Drain OFF Leakage I_{D} (OFF)	± 0.01	+5		nA typ	$\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$;
	± 0.5		$n A$ max	Test Circuit 3	
Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {S }}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 1 \end{aligned}$	± 10	nA typ	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}$, or 4.5 V ;	
			$n \mathrm{n}$ max	Test Circuit 4	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$	2.4		V min	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$	0.005	0.8	V max		
Input Current					
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		± 0.1	$\mu \mathrm{A}$ typ		
	5		$\mu \mathrm{A} \max$		
$\mathrm{C}_{\text {IN }}$, Digital Input Capacitance			pF typ		
DYNAMIC CHARACTERISTICS ${ }^{2}$ $\mathrm{t}_{\text {TRANSITION }}$	40		$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 5 ; \\ & \mathrm{V}_{\mathrm{S} 1}=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 32}=0 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$	
		60			
Break-Before-Make Time Delay, t_{D}	30		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;	
		1	ns min	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 6	
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}, \overline{\mathrm{WR}})$	32		ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$;	
		50	ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 7	
$\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})$	10	14	$\begin{aligned} & \text { ns typ } \\ & \text { ns max } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
				$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 8	
Charge Injection	± 5		pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ Test Circuit 9	
Off Isolation	-60		dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} ;$ Test Circuit 10	
Channel to Channel Crosstalk	-60		dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \text {; } \\ & \text { Test Circuit } 11 \end{aligned}$	
-3 dB Bandwidth	10		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 10	
$\mathrm{C}_{\text {S }}$ (OFF)	13		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
C_{D} (OFF)					
ADG726	180		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
ADG732	360		pF typ	$\mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	200				
ADG726			pF typ pF typ	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	
ADG732	400				
POWER REQUIREMENTS I_{DD}	10	20	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+5.5 \mathrm{~V} \end{aligned}$	

[^0]SPECIFICATIONS ${ }^{1}{ }_{\left(\mathrm{V}_{00}=3 V\right.} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{ov}, 6 \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted) $)$

Parameter	B Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 6 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & 0.4 \\ & 1.2 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $I_{D}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 1 \\ & \pm 0.01 \\ & \pm 1 \\ & \pm 0.01 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 10 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}$ Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+1 \mathrm{~V} \text { or }+3 \mathrm{~V} \text {; }$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$	$\begin{array}{r} 2.0 \\ 0.8 \\ \pm 0.1 \end{array}$	V min $\mathrm{V} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS \({ }^{2}\) \(\mathrm{t}_{\text {tRansition }}\) Break-Before-Make Time Delay, \(\mathrm{t}_{\mathrm{D}}\) \(\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}, \overline{\mathrm{WR}})\) \(\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})\) Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth \(\mathrm{C}_{\mathrm{S}}\) (OFF) \(C_{D}\) (OFF) ADG726 ADG732 \(\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})\) ADG726 ADG732```	$\begin{aligned} & 45 \\ & 30 \\ & 40 \\ & 20 \\ & \pm 5 \\ & \\ & \hline-60 \\ & \\ & -60 \\ & 10 \\ & 13 \\ & 180 \\ & 360 \\ & 200 \\ & 400 \end{aligned}$	75 1 70 28	ns typ   ns max   ns typ   ns min   ns typ   ns max   ns typ   ns max   pC typ   dB typ   dB typ   MHz typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S} 1}=2 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 32}=0 \mathrm{~V} / 2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 8 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \text { Test Circuit } 9 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { Test Circuit } 10 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{Test} \mathrm{Circuit} 11^{\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 10} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS $\mathrm{I}_{\mathrm{DD}}$	10	20	$\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+3.3 \mathrm{~V} \end{aligned}$

[^1]
## ADG726/ADG732-SPECIFICATIONS ${ }^{1}$ Dual Supply <br> $\left(\mathrm{V}_{D D}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	$B$ Version		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH   Analog Signal Range On-Resistance ( $\mathrm{R}_{\mathrm{ON}}$ )   On-Resistance Match Between Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ ) On-Resistance Flatness ( $\mathrm{R}_{\text {Flat(ON) }}$ )	$\begin{aligned} & 3.5 \\ & 5.5 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ss}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 6 \\ & 0.3 \\ & 0.8 \\ & \\ & 1.2 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ; \\ & \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source OFF Leakage IS (OFF)   Drain OFF Leakage $I_{D}(O F F)$   Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 1 \\ & \pm 0.01 \\ & \pm 1 \\ & \pm 0.01 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 10 \end{aligned}$	nA typ $n A \max$ nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V} \end{aligned}$   Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V}$   Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V} \text {, Test Circuit } 4$
DIGITAL INPUTS   Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$   $\mathrm{C}_{\mathrm{IN}}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.7 \\ & \\ & \pm 0.1 \end{aligned}$	V min   $\mathrm{V} \max$   $\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$   pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$   $\mathrm{t}_{\text {TRANSITION }}$   Break-Before-Make Time Delay, $\mathrm{t}_{\mathrm{D}}$   $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}, \overline{\mathrm{WR}})$   $\mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})$   Charge Injection   Off Isolation   Channel to Channel Crosstalk   -3 dB Bandwidth   $\mathrm{C}_{\mathrm{S}}$ (OFF)   $\mathrm{C}_{\mathrm{D}}$ (OFF)   ADG726   ADG732   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$   ADG726   ADG732	40 15   32   16   $\pm 8$   $-60$   $-60$   10   13   180   360   200   400	60 1 50 26	ns typ   ns max   ns typ   ns min   ns typ   ns max   ns typ   ns max   pC typ   dB typ   dB typ   MHz typ   pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S} 1}=1.5 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 32}=0 \mathrm{~V} / 1.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{Test} \mathrm{Circuit} 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{Test} \mathrm{Circuit} 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 8 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Test } 9 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { Test Circuit } 10 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { Test Circuit } 11 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 10 \\ & \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS   $\mathrm{I}_{\mathrm{DD}}$   $\mathrm{I}_{\mathrm{SS}}$	10 10	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$   $\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+2.75 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+2.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+2.75 \mathrm{~V} \end{aligned}$

[^2]
## TIMING CHARACTERISTICS ${ }^{1,2,3}$

Parameter	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$	Units	Conditions/Comments
$\mathrm{t}_{1}$	0	$\mathrm{~ns} \min$	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup Time
$\mathrm{t}_{2}$	0	$\mathrm{~ns} \min$	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold Time
$\mathrm{t}_{3}$	20	ns min	$\overline{\mathrm{WR}}$ pulse width
$\mathrm{t}_{4}$	10	ns min	Time between $\overline{\mathrm{WR}}$ cycles
$\mathrm{t}_{5}$	5	ns min	Address, Enable Setup Time
$\mathrm{t}_{6}$	2	ns min	Address, Enable Hold Time

NOTES
${ }^{1}$ See Figure 1.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to $90 \%$ of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
${ }^{3}$ Guaranteed by design and characterisation, not production tested.
Specifications subject to change without notice.


Figure 1. Timing Diagram

Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of $\overline{\mathrm{WR}}$. The ADG726 has two $\overline{\mathrm{CS}}$ inputs. This enables the part to be used either as a dual 16-1 channel multiplexer or a differential 16 channel multiplexer. If a differential output is required, tie $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ together.

## ADG726/ADG732

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}} \quad+7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DD}}$ to GND
$\mathrm{V}_{\mathrm{SS}}$ to GND
Analog Inputs ${ }^{2}$
Digital Inputs ${ }^{2}$
Peak Current, S or D
60 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max) Continuous Current, S or D 30 mA
Operating Temperature Range Industrial (B Version)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature
48 lead CSP $\theta_{\mathrm{JA}}$ Thermal Impedance
48 lead TQFP $\theta_{\mathrm{JA}}$ Thermal Impedance
Lead Temperature, Soldering (10seconds)
IR Reflow, Peak Temperature $+220^{\circ} \mathrm{C}$
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at $\mathrm{A}, \overline{\mathrm{WR}}, \overline{\mathrm{RS}}, \mathrm{S}$ or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG726/ADG732 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG726BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-48$
ADG726BSU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Quad Flatpack	SU-48
ADG732BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	$\mathrm{CP}-48$
ADG732BSU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Quad Flatpack	SU-48

## PIN CONFIGURATIONS CSP \& TQFP



Table 1. ADG726 Truth Table

A3	A2	A1	A0	$\overline{\mathrm{E}} \overline{\mathrm{N}}$	$\overline{\mathrm{C}} \overline{\mathrm{S}} \overline{\mathrm{A}}$	$\overline{\mathrm{C}} \overline{\mathrm{S} \overline{\mathrm{B}}}$	$\overline{\mathrm{W}} \overline{\mathrm{R}}$	ON Switch
X	X	X	X	X	1	1	L->H	Retains previous switch condition
X	X	X	X	X	1	1	X	No Change in Switch condition
X	X	X	X	1	0	0	0	NONE
0	0	0	0	0	0	0	0	S1A - DA, S1B - DB
0	0	0	1	0	0	0	0	S2A - DA, S2B - DB
0	0	1	0	0	0	0	0	S3A - DA, S3B - DB
0	0	1	1	0	0	0	0	S4A - DA, S4B - DB
0	1	0	0	0	0	0	0	S5A - DA, S5B - DB
0	1	0	1	0	0	0	0	S6A - DA, S6B - DB
0	1	1	0	0	0	0	0	S7A - DA, S7B - DB
0	1	1	1	0	0	0	0	S8A - DA, S8B - DB
1	0	0	0	0	0	0	0	S9A - DA, S9B - DB
1	0	0	1	0	0	0	0	S10A - DA, S10B - DB
1	0	1	0	0	0	0	0	S11A - DA, S11B - DB
1	0	1	1	0	0	0	0	S12A - DA, S12B - DB
1	1	0	0	0	0	0	0	S13A - DA, S13B - DB
1	1	0	1	0	0	0	0	S14A - DA, S14B - DB
1	1	1	0	0	0	0	0	S15A - DA, S15B - DB
1	1	1	1	0	0	0	0	S16A - DA, S16B - DB

Table 2. ADG732 Truth Table

$\mathbf{A 4}$	$\mathbf{A 3}$	$\mathbf{A} 2$	$\mathbf{A 1}$	$\mathbf{A} 0$	$\overline{\mathrm{E}} \overline{\mathrm{N}}$	$\overline{\mathrm{C}} \overline{\mathrm{S}}$	$\overline{\mathrm{W}} \overline{\mathrm{R}}$	Switch Condition
X	X	X	X	X	X	1	$\mathrm{~L}->\mathrm{H}$	Retains previous switch condition
X	X	X	X	X	X	1	X	No Change in Switch Condition
X	X	X	X	X	1	0	0	NONE
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	2
0	0	0	1	0	0	0	0	3
0	0	0	1	1	0	0	0	4
0	0	1	0	0	0	0	0	5
0	0	1	0	1	0	0	0	6
0	0	1	1	0	0	0	0	7
0	0	1	1	1	0	0	0	8
0	1	0	0	0	0	0	0	9
0	1	0	0	1	0	0	0	10
0	1	0	1	0	0	0	0	11
0	1	0	1	1	0	0	0	12
0	1	1	0	0	0	0	0	13
0	1	1	0	1	0	0	0	14
0	1	1	1	0	0	0	0	15
0	1	1	1	1	0	0	0	16
1	0	0	0	0	0	0	0	17
1	0	0	0	1	0	0	0	18
1	0	0	1	0	0	0	0	19
1	0	0	1	1	0	0	0	20
1	0	1	0	0	0	0	0	21
1	0	1	0	1	0	0	0	22
1	0	1	1	0	0	0	0	23
1	0	1	1	1	0	0	0	24
1	1	0	0	0	0	0	0	25
1	1	0	0	1	0	0	0	26
1	1	0	1	0	0	0	0	27
1	1	0	1	1	0	0	0	28
1	1	1	0	0	0	0	0	29
1	1	1	0	1	0	0	0	30
1	1	1	1	0	0	0	0	31
1	1	1	1	1	0	0	0	32

## ADG726/ADG732

## TERMINOLOGY

$\mathrm{V}_{\text {DD }}$	Most positive power supply potential.
$\mathrm{V}_{\text {ss }}$	Most Negative power supply in a dual supply application. In single supply applications, connect to GND.
$\mathrm{I}_{\mathrm{DD}}$	Positive supply current.
$\mathrm{I}_{\text {S }}$	Negative supply current.
GND	Ground ( 0 V ) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
$\Delta \mathrm{R}_{\text {ON }}$	On resistance match between any two channels, i.e. $\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}} \mathrm{min}$
$\mathrm{R}_{\text {FLat(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}$ (OFF)	Drain leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for logic " 0 ".
$\mathrm{V}_{\text {INH }}$	Minimum input voltage for logic " 1 ".
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
$\mathrm{C}_{\text {S }}$ (OFF)	"OFF" switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (OFF)	"OFF" switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	"ON" switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
$\mathrm{t}_{\text {TRANSITION }}$	Delay time measured between the $50 \%$ and $90 \%$ points of the digital inputs and the switch "ON" condi tion when switching from one address state to another.
$\mathrm{t}_{\text {ON }}(\overline{\mathrm{EN}})$	Delay time between the $50 \%$ and $90 \%$ points of the $\overline{\mathrm{EN}}$ digital input and the switch "ON" condition.
$\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	Delay time between the $50 \%$ and $90 \%$ points of the $\overline{\mathrm{EN}}$ digital input and the switch "OFF" condition.
$\mathrm{t}_{\text {open }}$	"OFF" time measured between the $80 \%$ points of both switches when switching from one address state to another.
Charge   Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal is coupled through from one channel to another as a result of parasitic capacitance.
On Response	The Frequency response of the "ON" switch.
Insertion Loss	The loss due to the ON resistance of the switch.

## TYPICAL PERFORMANCE CHARACTERISTICS



TPC 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for for Single Supply


TPC 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


TPC 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


TPC 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply


TPC 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


TPC 6. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$


TPC 7. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$


TPC 8. Leakage Currents as a function of $V_{D}\left(V_{S}\right)$


TPC 9. Leakage Currents as a function of Temperature

## ADG726/ADG732



TPC 10. Leakage Currents as a Function of Temperature


TPC 11. Supply Currents vs. Input Switching Frequency


TPC 12. Charge Injection vs. Source Voltage


TPC 13. $T_{\text {ON }} / T_{\text {OFF }}$ Times vs. Temperature


TPC 14. Off Isolation vs. Frequency

TPC 15. Crosstalk vs. Frequency



TPC 16. On Response vs. Frequency

## ADG726/ADG732

## Test Circuits



Test Circuit 1. On Resistance.


Test Circuit 2. $I_{S}$ (OFF).



Test Circuit 3. $I_{D}$ (OFF)


Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$.


$\mathbf{V}_{\mathbf{S}}$
$v_{\text {OUT }}$


Test Circuit 6. Break Before Make Delay, $t_{\text {OPEN }}$.

## ADG726/ADG732



Test Circuit 7. Write Turn-On and $\bar{T} \bar{u} \bar{n} \bar{O} \overline{\text { ff }} \bar{T} \bar{i} \overline{m e} \bar{e}, \bar{t}_{O N}, \bar{t}_{\text {OFF }}$
(WR).

*SIMILAR CONNECTION FOR ADG726
Test Circuit 8. Enable Delay, $t_{\text {ON }}(E N), t_{\text {OFF }}(E N)$


Test Circuit 9. Charge Injection.


## ADG726/ADG732

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
48-Lead CSP
(CP-48)


48-Lead TQFP
(SU-48)



[^0]:    NOTES
    ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

[^1]:    NOTES
    ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

[^2]:    NOTES
    ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

