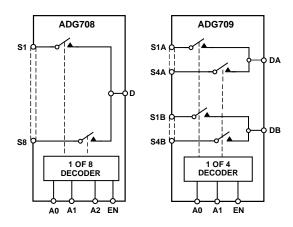


CMOS, 3 Ω Low Voltage 4-/8-Channel Multiplexers


ADG708/ADG709

FEATURES

1.8 V to 5.5 V Single Supply ± 3 V Dual Supply 3 Ω On-Resistance 0.75 Ω On-Resistance Flatness 100 pA Leakage Currents 14 ns Switching Times Single 8-to-1 Multiplexer ADG708 Differential 4-to-1 Multiplexer ADG709 16-Lead TSSOP Package Low Power Consumption TTL/CMOS-Compatible Inputs

APPLICATIONS
Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG708 and ADG709 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels respectively. The ADG708 switches one of eight inputs (S1–S8) to a common output, D, as determined by the 3-bit binary address lines A0, A1, and A2. The ADG709 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low power consumption and operating supply range of 1.8 V to 5.5 V make the ADG708 and ADG709 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.

These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on-resistance and leakage currents. On-resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or Demultiplexers, and have an input signal range that extends to the supplies.

The ADG708 and ADG709 are available in a 16-lead TSSOP package.

PRODUCT HIGHLIGHTS

- Single/Dual Supply Operation. The ADG708 and ADG709 are fully specified and guaranteed with 3 V and 5 V single supply and ±3 V dual supply rails.
- 2. Low R_{ON} (3 Ω Typical).
- 3. Low Power Consumption ($< 0.01 \mu W$).
- 4. Guaranteed Break-Before-Make Switching Action.
- 5. Small 16-Lead TSSOP Package.

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2000

$ADG708/ADG709 — SPECIFICATIONS \\ ^{1}(v_{DD} = 5 \text{ V} \pm 10\%, v_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V}, \text{ unless otherwise noted})$

	B Ve	rsion -40°C	C V	ersion -40°C		
Parameter	+25°C	to +85°C	+25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 V to V _{DD}		0 V to V _{DD}	V	
On-Resistance (R _{ON})	3	O V to VDD	3	O V to VDD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
Oil-Resistance (R _{ON})		_		-		
0.00	4.5	5	4.5	5	Ω max	Test Circuit 1
On-Resistance Match Between		0.4		0.4	Ω typ	
Channels (ΔR_{ON})		0.8		0.8	Ω max	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
On-Resistance Flatness (R _{FLAT(ON)})	0.75		0.75		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
		1.2		1.2	Ω max	
LEAKAGE CURRENTS						$V_{\rm DD} = 5.5 \mathrm{V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
, ,		±20	±0.1	±0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01	=20	± 0.01	_0.5	nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
Diam Off Leakage in (Off)	10.01	±20	± 0.01	±0.75	nA max	Test Circuit 3
	1001	120	1	±0.75		
Channel ON Leakage I_D , I_S (ON)	±0.01	±20	± 0.01	+0.75	nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V, Test Circuit}$
		±4U	±0.1	±0.75	nA max	
DIGITAL INPUTS		0.4		0.4	***	
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0.005		0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		2		pF typ	
DYNAMIC CHARACTERISTICS ²						
t _{TRANSITION}	14		14		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit
-TRANSITION		25		25	ns max	$V_{S1} = 3 \text{ V/O V}, V_{S8} = 0 \text{ V/3 V}$
Break-Before-Make Time Delay, t _D	8	29	8	23	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Break-Belore-Wake Time Belay, th		1		1	ns min	$V_S = 3 \text{ V}$, Test Circuit 6
4 (END	1.4	1	1.4	1		
$t_{ON}(EN)$	14	25	14	25	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	_	25	l_	25	ns max	$V_S = 3 \text{ V}$, Test Circuit 7
$t_{OFF}(EN)$	7		7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12		12	ns max	$V_S = 3 \text{ V}$, Test Circuit 7
Charge Injection	±3		±3		pC typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
						Test Circuit 8
Off Isolation	-60		-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-80		-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
						Test Circuit 9
Channel-to-Channel Crosstalk	-60		-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-80		-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			"			Test Circuit 10
-3 dB Bandwidth	55		55		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	13		13		pF typ	
$C_{\rm D}$ (OFF)					, -	
ADG708	85		85		nE trm	
ADG708 ADG709			1		pF typ	
	42		42		pF typ	
$C_D, C_S(ON)$					_	
ADG708	96		96		pF typ	
	48		48		pF typ	
ADG709						
						$V_{DD} = 5.5 \text{ V}$
ADG709 POWER REQUIREMENTS I_{DD}	0.001		0.001		μA typ	$V_{DD} = 5.5 \text{ V}$ Digital Inputs = 0 V or 5.5 V

NOTES

 $^{^{1}}Temperature$ range is as follows: B and C Versions: $-40\,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:continuous} \textbf{SPECIFICATIONS}^{1} \ \ (v_{\text{DD}} = 3 \ \text{V} \ \pm \ 10\%, \ v_{\text{SS}} = 0 \ \text{V}, \ \text{GND} = 0 \ \text{V}, \ \text{unless otherwise noted})$

	B Vei		C Version			
Parameter	+25°C	-40°C to +85°C	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH	123 0	10 105 0	123 0	10 103 0	Cint	Test conditions/comments
Analog Signal Range		0 V to V _{DD}		0 V to V _{DD}	$ _{V}$	
On-Resistance (R _{ON})	8	* · · · DD	8	· · · · · DD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
(01W	11	12	11	12	Ω max	Test Circuit 1
On-Resistance Match Between		0.4		0.4	Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
Channels (ΔR _{ON})		1.2		1.2	Ω max	
LEAKAGE CURRENTS						$V_{\rm DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
D : OFFI 1 I (OFF)	1001	±20	±0.1	± 0.3	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01	±20	± 0.01 ± 0.1	±0.75	nA typ nA max	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$ Test Circuit 3
Channel ON Leakage I _D , I _S (ON)	±0.01	±20	± 0.1	±0.75	nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V, Test Circuit } 4$
Chaimer Orv Leakage 15, 15 (Orv)	20.01	±20	± 0.01	±0.75	nA max	v _S = v _D = 1 v of 5 v ₃ Test chedit 4
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.0		2.0	V min	
Input Low Voltage, V _{INL}		0.4		0.4	V max	
Input Current						
${ m I}_{ m INL}$ or ${ m I}_{ m INH}$	0.005		0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
0 8::11		± 0.1		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2		2		pF typ	
DYNAMIC CHARACTERISTICS ²						
t _{TRANSITION}	18	20	18	20	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5
Break-Before-Make Time Delay, t _D	8	30	8	30	ns max ns typ	$V_{S1} = 2 \text{ V/0 V}, V_{S2} = 0 \text{ V/2 V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$
Break-Before-Wake Time Belay, tp		1		1	ns min	$V_S = 2 \text{ V}$, Test Circuit 6
$t_{ON}(EN)$	18	_	18	_	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		30		30	ns max	$V_S = 2 \text{ V}$, Test Circuit 7
$t_{OFF}(EN)$	8		8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		15		15	ns max	$V_S = 2 \text{ V}$, Test Circuit 7
Charge Injection	±3		±3		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 8
Off Isolation	-60		-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
On Isolation	-80		-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
						Test Circuit 9
Channel-to-Channel Crosstalk	-60		-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-80		-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
2 dD Dan dayidah			==		MII	Test Circuit 10
−3 dB Bandwidth C _S (OFF)	55 13		55 13		MHz typ pF typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
$C_{\rm D}$ (OFF)	13				prityp	
ADG708	85		85		pF typ	
ADG709	42		42		pF typ	
$C_D, C_S(ON)$						
ADG708	96		96		pF typ	
ADG709	48		48		pF typ	
POWER REQUIREMENTS						$V_{DD} = 3.3 \text{ V}$
I_{DD}	0.001	1.0	0.001	1.0	μA typ	Digital Inputs = 0 V or 3.3 V
		1.0		1.0	μA max	

REV. 0 -3-

¹Temperature ranges are as follows: B and C Versions: −40 °C to +85 °C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG708/ADG709—SPECIFICATIONS¹

DUAL SUPPLY (V_DD = +3 V \pm 10%, V_SS = -3 V \pm 10%, GND = 0 V)

	B Ve	rsion	C Version				
Parameter	+25°C	-40°C to +85°C	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH							
Analog Signal Range On-Resistance (R _{ON})	2.5 4.5	V_{SS} to V_{DD}	2.5 4.5	V_{SS} to V_{DD}	V Ω typ Ω max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA; Test Circuit 1	
On-Resistance Match Between Channels (ΔR_{ON})		0.4 0.8		0.4 0.8	Ω typ Ω max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
On-Resistance Flatness (R _{FLAT(ON)})	0.6	1.0	0.6	1.0	Ω typ Ω max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
LEAKAGE CURRENTS Source OFF Leakage I _S (OFF)	±0.01	±20	±0.01 ±0.1	±0.3	nA typ nA max	$V_{\rm DD}$ = +3.3 V, $V_{\rm SS}$ = -3.3 V $V_{\rm S}$ = +2.25 V/-1.25 V, $V_{\rm D}$ = -1.25 V/+2.25 V; Test Circuit 2	
Drain OFF Leakage I_D (OFF)	±0.01	±20	±0.01 ±0.1	±0.75	nA typ nA max	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V};$ Test Circuit 3	
Channel ON Leakage I_D , I_S (ON)	±0.01	±20	±0.01 ±0.1	±0.75	nA typ nA max	$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V}$, Test Circuit 4	
DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current		2.0 0.4		2.0 0.4	V min V max		
$ m I_{INL}$ or $ m I_{INH}$ $ m C_{IN}$, Digital Input Capacitance	0.005	±0.1	0.005	±0.1	μA typ μA max pF typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
	2				pr typ		
DYNAMIC CHARACTERISTICS ² t _{TRANSITION}	14	25	14	25	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5 $V_S = 1.5 \text{ V/O V}$, Test Circuit 5	
Break-Before-Make Time Delay, $t_{\rm D}$	8	1	8	1	ns typ ns min	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 1.5 V$, Test Circuit 6	
t _{ON} (EN)	14	25	14	25	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 1.5 V$, Test Circuit 7	
$t_{OFF}(EN)$	8	15	8	15	ns typ ns max	$R_L = 300 \Omega, C_L = 35 pF$ $V_S = 1.5 V, Test Circuit 7$	
Charge Injection	±3		±3		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 8	
Off Isolation	-60 -80		-60 -80		dB typ dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$ $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 9	
Channel-to-Channel Crosstalk	-60 -80		-60 -80		dB typ dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$ $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 10	
-3 dB Bandwidth C _S (OFF) C _D (OFF)	55 13		55 13		MHz typ pF typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9	
ADG708 ADG709 C _D , C _S (ON)	85 42		85 42		pF typ pF typ		
ADG708 ADG709	96 48		96 48	•	pF typ pF typ		
POWER REQUIREMENTS					_ JF	V _{DD} = 3.3 V	
I_{DD}	0.001	1.0	0.001	1.0	μΑ typ μΑ max	Digital Inputs = 0 V or 3.3 V	
I_{SS}	0.001	1.0	0.001	1.0	μΑ typ μΑ max	$V_{SS} = -3.3 \text{ V}$ Digital Inputs = 0 V or 3.3 V	

NOTES

Temperature range is as follows: B and C Versions: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ¹ (T _A = 25°C unless otherwise noted)
V _{DD} to V _{SS} 7 V
V_{DD} to GND0.3 V to +7 V
V_{SS} to GND +0.3 V to -3.5 V
Analog Inputs ² $V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$
30 mA, Whichever Occurs First
Digital Inputs ² -0.3 V to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D
Operating Temperature Range
Industrial (B, C Versions)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature

TSSOP Package, Power Dissipation	
θ_{JA} Thermal Impedance	.4°C/W
θ_{JC} Thermal Impedance	.6°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

NOTES

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

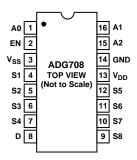
CAUTION

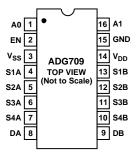
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG708/ADG709 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. ADG708 Truth Table

A 2	A1	A0	EN	Switch Condition
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

X = Don't Care


Table II. ADG709 Truth Table


A1	A0	EN	ON Switch Pair
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

X = Don't Care.

PIN CONFIGURATIONS

TSSOP

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG708BRU	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG709BRU	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG708CRU	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG709CRU	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16

REV. 0 _5_

TERMINOLOGY

$\overline{V_{DD}}$	Most positive power supply potential.	t _{ON} (EN)	Delay time between the 50% and 90% points of the EN digital input and the switch "ON" condition.	
V_{SS}	Most negative power supply in a dual supply application. In single supply applications, this			
	should be tied to ground at the device.	t _{OFF} (EN)	Delay time between the 50% and 90% points	
GND	Ground (0 V) Reference.		of the EN digital input and the switch "OFF" condition.	
S	Source Terminal. May be an input or output.	t _{OPEN}	"OFF" time measured between the 80% points	
D	Drain Terminal. May be an input or output.	TOPEN	of both switches when switching from one address	
IN	Logic Control Input.		state to another.	
R_{ON}	Ohmic resistance between D and S.	Off Isolation	A measure of unwanted signal coupling through	
$R_{FLAT\left(ON\right)}$	Flatness is defined as the difference between the		an "OFF" switch.	
	maximum and minimum value of on-resistance as measured over the specified analog signal range.	Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result	
I_{S} (OFF)	Source leakage current with the switch "OFF."		of parasitic capacitance.	
I_D (OFF)	Drain leakage current with the switch "OFF."	Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.	
I_D , I_S (ON)	Channel leakage current with the switch "ON."	Hijection		
$V_{D}(V_{S})$	Analog voltage on terminals D, S.	Bandwidth	The frequency at which the output is attenuated	
C_{S} (OFF)	"OFF" switch source capacitance. Measured		by 3 dBs.	
	with reference to ground.	On Response	The frequency response of the "ON" switch.	
C_D (OFF)	"OFF" switch drain capacitance. Measured	On Loss	The loss due to the ON resistance of the switch.	
0 0 (0)	with reference to ground.	V_{INL}	Maximum input voltage for Logic "0."	
$C_D, C_S(ON)$	"ON" switch capacitance. Measured with reference to ground.	V_{INH}	Minimum input voltage for Logic "1."	
C_{IN}	Digital Input Capacitance.	$I_{INL}\;(I_{INH})$	Input current of the digital input.	
t _{TRANSITION}	Delay time measured between the 50% and 90%	I_{DD}	Positive Supply Current.	
114110111011	points of the digital inputs and the switch "ON" condition when switching from one address state	I _{SS}	Negative Supply Current.	

-6- REV. 0

to another.

Typical Performance Characteristics—ADG708/ADG709

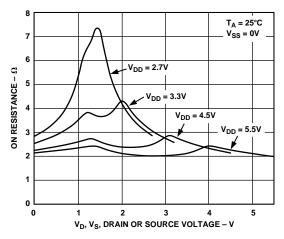


Figure 1. On Resistance as a Function of V_D (V_S) for Single Supply

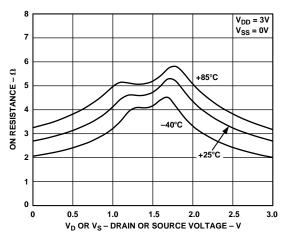


Figure 4. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

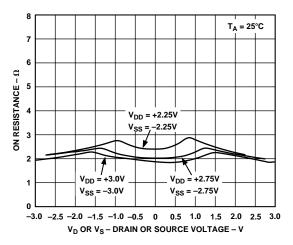


Figure 2. On Resistance as a Function of V_D (V_S) for Dual Supply

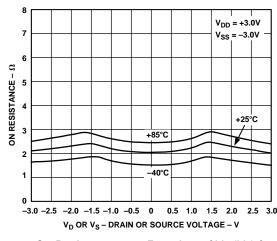


Figure 5. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

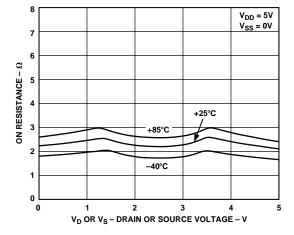


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

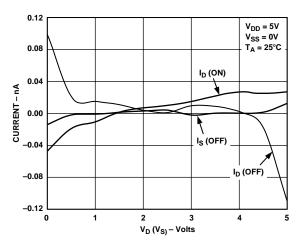


Figure 6. Leakage Currents as a Function of $V_D(V_S)$

REV. 0 -7-

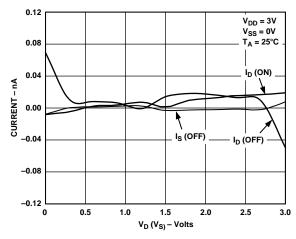


Figure 7. Leakage Currents as a Function of $V_D(V_S)$

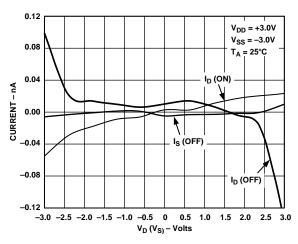


Figure 8. Leakage Currents as a Function of $V_D(V_S)$

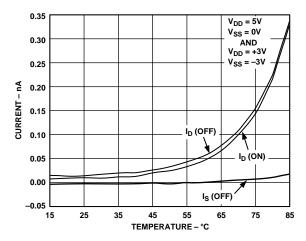


Figure 9. Leakage Currents as a Function of Temperature

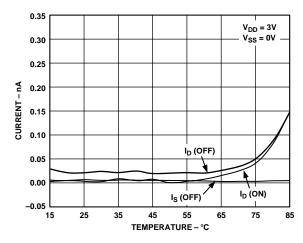


Figure 10. Leakage Currents as a Function of Temperature

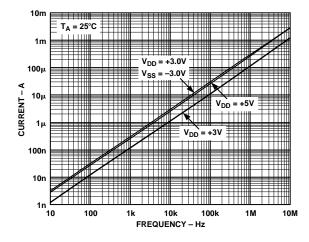


Figure 11. Supply Current vs. Input Switching Frequency

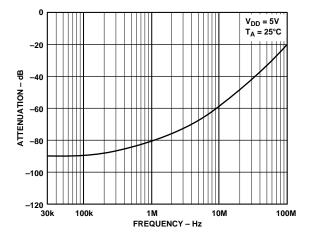
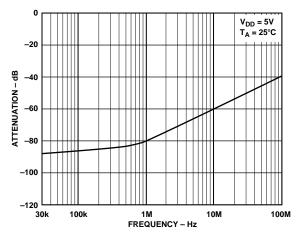



Figure 12. Off Isolation vs. Frequency

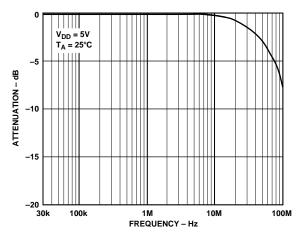
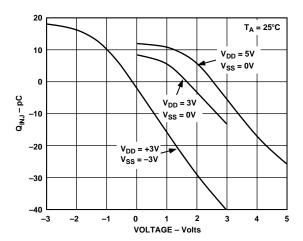
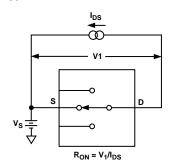
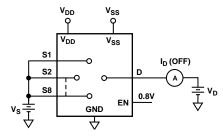


Figure 14. On Response vs. Frequency

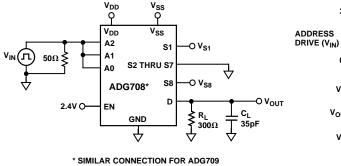



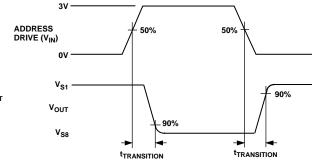

Figure 15. Charge Injection vs. Source Voltage

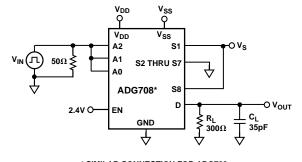
REV. 0 _9_

Test Circuits

Test Circuit 1. On Resistance


Test Circuit 3. I_D (OFF)


Test Circuit 2. I_S (OFF)

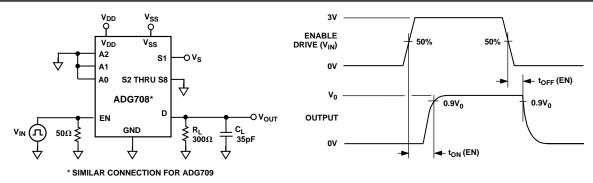


Test Circuit 4. I_D (ON)

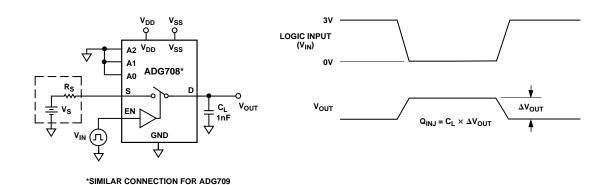
Test Circuit 5. Switching Time of Multiplexer, t_{TRANSITION}

* SIMILAR CONNECTION FOR ADG709

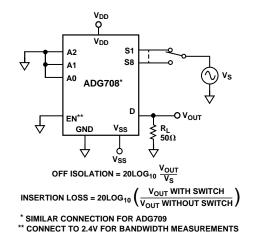
ADDRESS DRIVE (V_{IN})

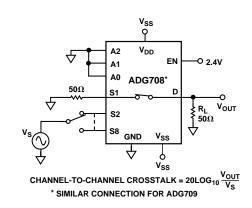

OV

80%


Topen

*


Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

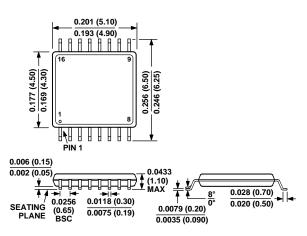

Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation and Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

Power-Supply Sequencing


When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in the data sheet. Digital and analog inputs should always be applied after power supplies and ground. For single supply operation, $V_{\rm SS}$ should be tied to GND as close to the device as possible.

REV. 0 -11-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead TSSOP (RU-16)

