Low Power, High Speed

 Operational Amplifier
features

- Gain-Bandwidth Product
- Unity-Gain Stable
- Slew Rate
- Output Current
- Low Supply Current
- High Open-Loop Gain
- Low Cost
- Single Supply 5V Operation
- Industry Standard Pinout
- Output Shutdown

APPLICATIONS

- Video Cable Drivers
- Video Signal Processing
- Video Signal Proces
- Fast Integrators
- Video Cable Drivers
- Pulse Amplifiers
- oustorial

50 MHz
165V/us
$\pm 20 \mathrm{~mA}$
12 mA
$7.5 \mathrm{~V} / \mathrm{mV}$

DESCRIPTION

The LTC1195 is a video operational amplifier optimized for operation on single 5 V and $\pm 5 \mathrm{~V}$ supply. Unlike many high speed amplifiers, the LT1195 features high open-loop gain, over 75dB, and the ability to drive heavy loads to a full power bandwidth of 8.5 MHz at $6 \mathrm{~V}_{\text {p.p. }}$. The LT1195 has a unity-gain stable bandwidth of 50 MHz , and a 60° phase margin, and consumes only 12 mA of supply current, making it extremely easy to use.
Because the LT1195 is a true operational amplifier, itis an ideal choice for wideband signal conditioning, fast integrators, peak detectors, active filters, and applications requiring speed, accuracy, and low cost.
The LT1195 is a low power version of the popular LT1190, and is available in 8 -pin miniDIPs and SO packages with standard pinouts. The normally unused pin 5 is used for a shutdown feature that shuts off the output and reduces power dissipation to a mere 15 mW .

TYPICAL APPLICATION

Fast Pulse Detector

Pulse Detector Response

absolute maximum ratings

Total Supply Voltage (V^{+}to V^{-}) 18 V
Differential Input Voltage .. $\pm 6 \mathrm{~V}$
Input Voltage ... $\pm \mathrm{V}_{S}$
Output Short-Circuit Duration (Note 1)Continuous
Operating Temperature Range
LT1195M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1195C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Junction Temperature (Note 2)

Plastic Package (CN8, CS8) $150^{\circ} \mathrm{C}$
Ceramic Package (CJ8, MJ8) $175^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
$-1 \mathrm{n} 2 \mathrm{~V}^{+}$	
	LT1195MJ8
$v^{-} 4 \square 5 \mathrm{~S} / \mathrm{D}$	LT1195CN8
$\begin{array}{cc}\text { J8 PACKAGE } & \text { N8 PACKAGE } \\ \text { 8-LEAD CERAMIC DIP } & \text { 8-LEAD PLASTIC DIP }\end{array}$	LT1195CS8
S8 PACKAGE 8-LEAD PLASTIC SOIC	S8 PART MARKING
$\mathrm{T}_{\mathrm{JMax}}=175^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{J} 8)$ $T_{\mathrm{J} M \mathrm{AX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{N} 8)$ $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{S} 8)$	1195

ORDER PART NUMBER

LT1195MJ8 LT1195CJ8 LT1195CN8 LT1195CS8

S8 PART MARKING
1195

$\pm 5 V$ €LeCTRICAL CHARACTGRISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{S}= \pm 5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, pin 5 open circuit, unless otherwise noted.

SYMBOL	PARAMETER		CONDITIONS	LT1195M/C			UNITS	
			MIN	TYP	MAX			
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			J8, N8 Package		3.0	8.0	mV
			S8 Package		3.0	10.0	mV	
Ios	Input Offset Current				0.2	1.0	$\mu \mathrm{A}$	
I_{B}	Input Bias Current				± 0.5	± 2.0	$\mu \mathrm{A}$	
e_{n}	Input Noise Voltage		$\mathrm{f}_{0}=10 \mathrm{kHz}$		70		$\mathrm{nV} \sqrt{\mathrm{Hz}}$	
i_{n}	Input Noise Current		$\mathrm{f}_{0}=10 \mathrm{kHz}$		2.0		$\mathrm{pA} \sqrt{\mathrm{Hz}}$	
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Mode			230		k Ω	
		Common Mode			20		$\mathrm{M} \Omega$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$A_{V}=1$		2.2		pF	
	Input Voltage Range		(Note 3)	-2.5		3.5	V	
CMRR	Common-Mode Rejection Ratio		$\mathrm{V}_{\text {CM }}=-2.5$ to 3.5 V	60	85		dB	
PSRR	Power Supply Rejection Ratio		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	60	85		dB	
AVOL	Large-Signal Voltage Gain		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V} \end{aligned}$	2.0 0.5	$\begin{array}{r} 7.5 \\ 1.5 \\ 11.0 \\ \hline \end{array}$		V / mV V / mV V / mV	
$V_{\text {OUT }}$	Output Voltage Swing		$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 3.8 \\ & \pm 6.7 \end{aligned}$	$\begin{aligned} & \pm 4.0 \\ & \pm 7.0 \end{aligned}$		V	
SR	Slew Rate		$\mathrm{A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k},($ Note 4, 9)	110	165		$\mathrm{V} / \mathrm{\mu s}$	
FPBW	Full Power Bandwidth		$\mathrm{V}_{\text {OUT }}=6 \mathrm{~V}_{\text {P-P }}$, (Note 5)		8.75		MHz	
GBW	Gain-Bandwidth Product				50		MHz	
$\mathrm{tr}_{\text {r1 }}, \mathrm{t}_{\mathrm{f} 1}$	Rise Time, Fall Time		$A_{V}=50, V_{\text {OUT }}= \pm 1.5 \mathrm{~V}, 20 \%$ to 80%, (Note 9)	125	170	250	ns	
$\mathrm{t}_{\mathrm{r} 2}, \mathrm{t}_{\mathrm{t} 2}$	Rise Time, Fall Time		$A_{V}=1, V_{\text {OUT }}= \pm 125 \mathrm{mV}, 10 \%$ to 90%		3.4		ns	
tpD	Propagation Delay		$A_{V}=1, V_{\text {OUT }}= \pm 125 \mathrm{mV}, 50 \%$ to 50%		2.5		ns	
	Overshoot		$\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\text {OUT }}= \pm 125 \mathrm{mV}$		22		\%	
ts	Settling Time		3V Step, 0.1\%, (Note 6)		220		ns	
Diff AV	Differential Gain		$\mathrm{R}_{L}=150 \Omega, A_{V}=2$, (Note 7)		1.25		\%	
Diff Ph	Differential Phase		$R_{L}=150 \Omega, A_{V}=2$, (Note 7)		0.86		DEGp-p	

$\pm 5 V$ ELECTRICAL CHARACTERISTICS
 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{S}= \pm 5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, pin 5 open circuit, unless otherwise noted.
\(\left.$$
\begin{array}{l|l|l|c|c}\hline \text { SYMBOL } & \text { PARAMETER } & \text { CONDITIONS } & \text { MIN } & \begin{array}{c}\text { LT1195M/C } \\
\text { TYP }\end{array}
$$

\hline I_{S} \& Mupply Current \& \& 12 \& 16\end{array}\right]\)| MAX |
| :---: |

5V ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$V_{S^{+}}=5 \mathrm{~V}, \mathrm{~V}_{S^{-}},=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, pin 5 open circuit, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1195M/C			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	J8, N8 Package S8 Package			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 9.0 \\ 11.0 \end{array}$	mV mV
IOS	Input Offset Current				0.2	1.0	$\mu \mathrm{A}$
I_{B}	Input Bias Current				± 0.5	± 2.0	$\mu \mathrm{A}$
	Input Voltage Range	(Note 3)		2.0		3.5	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=2 \mathrm{~V}$ to 3.5 V		60	85		dB
A ${ }_{\text {VOL }}$	Large-Signal Voltage Gain	$R_{L}=150 \Omega$ to Ground,	to 3V	0.5	3.0		V / mV
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$R_{L}=150 \Omega$ to Ground	$\mathrm{V}_{\text {OUT }}$ High	3.5	3.8		V
			VOUT Low		0.25	0.4	V
SR	Slew Rate	$A_{V}=-1, V_{\text {OUT }}=1 \mathrm{~V}$ to 3 V			140		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product				45		MHz
$\mathrm{I}_{\text {S }}$	Supply Current				11	15	mA
	Shutdown Supply Current	Pin 5 at V^{-}			0.8	1.5	mA
$\mathrm{I}_{\text {S/D }}$	Shutdown Pin Current	Pin 5 at V^{-}			5	25	$\mu \mathrm{A}$

$\pm 5 \mathrm{~V}$ ELECTRICAL CHARACTERISTICS
 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, (Note 10)

$V_{S}= \pm 5 \mathrm{~V}$, pin 5 open circuit, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1195M TYP		MAX	UNITS

$\pm 5 V$ ELECTRICAL CHARACTERISTICS $0^{\circ} \subset \leq \operatorname{ST} \leq 0^{\circ} C$

$V_{S}= \pm 5 \mathrm{~V}$, pin 5 open circuit, unless otherwise noted.
$\left.\begin{array}{l|l|l|r|r}\hline \text { SYMBOL } & \text { PARAMETER } & \text { CONDITIONS } & \begin{array}{c}\text { LT1195C } \\ \text { TYP }\end{array} & \text { MAX }\end{array}\right]$ UNITS

5V ЄLECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{S}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, pin 5 open circuit, unless otherwise noted.

| | | $\begin{array}{l}\text { LT1195C } \\ \text { SYMBOL }\end{array}$ | | MYR | MAX |
| :--- | :--- | :--- | ---: | ---: | ---: |$)$ UNITS

Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted continuously.
Note 2: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formats:

$$
\begin{array}{ll}
\text { LT1195MJ8, LT1195CJ8: } & T_{J}=T_{A}+\left(\mathrm{P}_{\mathrm{D}} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1195N: } & \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1195CS: } & \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 150^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{array}
$$

Note 3: Exceeding the input common-mode range may cause the output to invert.
Note 4: Slew rate is measured between $\pm 1 \mathrm{~V}$ on the output, with $\pm 3 \mathrm{~V}$ input step.
Note 5: Full power bandwidth is calculated from the slew rate measurement: $\mathrm{FPBW}=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{P}}$.

Note 6: Settling time measurement techniques are shown in "Take the Guesswork Out of Settling Time Measurements," EDN, September 19, 1985.
Note 7: NTSC (3.58MHz). For $R_{L}=1 k$, Diff $A_{V}=0.3 \%$, Diff $P h=0.35^{\circ}$.
Note 8: See Applications Information section for shutdown at elevated temperatures. Do not operate the shutdown above $\mathrm{T}_{\mathrm{J}}>125^{\circ} \mathrm{C}$.
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP packaged parts (J8 and N8 suffix) and are sample tested on every lot of the SO packaged parts (S8 suffix).
Note 10: Do not operate at $A_{V}<2$ for $T_{A}<0^{\circ} \mathrm{C}$.

TYPICAL PGRFORmANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

Unity-Gain Frequency and Phase Margin vs Temperature

Power Supply Rejection Ratio vs Frequency

Open-Loop Voltage Gain vs Load Resistance

1195 G11

Output Impedance vs Frequency

Output Short-Circuit Current vs Temperature

Gain-Bandwidth Product vs Supply Voltage

1195 G12

Common-Mode Rejection Ratio vs Frequency

1195 G15
$\mathrm{v}^{+} \pm$Output Swing vs Supply Voltage

1195 G18

TYPICAL PGRFORMANCE CHARACTERISTICS

Large-Signal Transient Response

$A_{V}=1, R_{L}=1 k$
1195 G22

Large-Signal Transient Response

$A_{V}=-1, R_{L}=1 k$

Overload Recovery

INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A $\pm 150 \mathrm{mV}$ RANGE WITH A 1 k to 10 k POTENTIOMETER.

$$
1195 \mathrm{G} 25
$$

APPLICATIONS InFORMATION

Power Supply Bypassing

The LT1195 is quite tolerant of power supply bypassing. In some applications a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor placed 0.5 inches from the ampifier is all that is required. In applications requiring good settling time, it is important to use multiple bypass capacitors. A $0.1 \mu \mathrm{~F}$ ceramic disc in parallel with a $4.7 \mu \mathrm{~F}$ tantalum is recommended.

Cable Terminations

The LT1195 operational amplifier has been optimized as a low cost video cable driver. The $\pm 20 \mathrm{~mA}$ guaranteed output current enables the LT1195 to easily deliver 6VP-p into 150Ω, while operating on $\pm 5 \mathrm{~V}$ supplies.

Double-Terminated Cable Driver

Cable Driver Voltage Gain vs Frequency

1195 A102
When driving a cable it is important to terminate the cable to avoid unwanted reflections. This can be done in one of two ways: single termination or double termination. With single termination, the cable must be terminated at the
receiving end (75Ω to ground) to absorb unwanted energy. The best performance can be obtained by double termination (75Ω in series with the output of the amplifier, and 75Ω to ground at the other end of the cable). This termination is preferred because reflected energy is absorbed at each end of the cable. When using the double termination technique it is important to note that the signal is attenuated by a factor of 2 , or 6 dB . This can be compensated for by taking a gain of 2 , or 6 dB in the amplifier.

Using the Shutdown Feature

The LT1195 has a unique feature that allows the amplifier to be shut down for conserving power, or for multiplexing several amplifiers onto a common cable. The amplifier will shutdown by taking pin 5 to V^{-}. In shutdown, the amplifier dissipates 15 mW while maintaining a true high impedance output state of 15 k in parallel with the feedback resistors. The amplifiers must be used in a noninverting configuration for MUX applications. In inverting configurations the input signal is fed to the output through the feedback components. The following scope photos show that with very high R_{L}, the output is truly high impedance; the output slowly decays toward ground. Additionally, when the output is loaded with as little as 1 k the amplifier shuts off in 700 ns . This shutoff can be under the control of HC CMOS operating between 0 V and -5 V .

Output Shutdown

1 MHz SINE WAVE GATED OFF WITH SHUTDOWN PIN $A_{V}=1, R_{L}=S C O P E$ PROBE

APPLICATIONS INFORMATION

Output Shutdown

1MHz SINE WAVE GATED OFF WITH SHUTDOWN PIN $A_{V}=1, R_{L}=1 k$

1195 A104

Detecting Pulses

The front page shows a circuit for detecting very fast pulses. In this open-loop design, the detector diode is D1 and a level shifting or compensating diode is D2. A load resistor R_{L} is connected to -5 V , and an identical bias resistor R_{B} is used to bias the compensating diode. Equal value resistors ensure that the diode drops are equal. A very fast pulse will exceed the amplifier slew rate and cause a long overload recovery time. Some amount of $\mathrm{dV} / \mathrm{dt}$ limiting on the input can help this overload condition, however too much will delay the response. Also shown is the response to a $4 V_{P-p}$ input that is 150 ns wide. The maximum output slew rate in the photo is $30 \mathrm{~V} / \mu \mathrm{s}$. This rate is set by the 30 mA current limit driving 1000pF.

Operation on Single 5V Supply

The LT1195 has been optimized for a single 5V supply. This circuit amplifies standard composite video (1V-P including sync) by 2 and drives a double-terminated 75Ω cable. Resistors R1 and R2 bias the amplifier at 2V, allowing the sync pulses to stay within the common-mode range of the amplifier. Large coupling capacitors are required to pass the low frequency sidebands of the composite signal. A multiburst response and vector plot standard color burst are shown.

Single 5V Video Amplifier

Video Multiburst at Pin 6 of Amplifier

Vector Plot of Standard Color Burst

aPPLICATIONS InFORmATION

Send Color Video Over Twisted-Pair

With an LT1195 it is possible to send and receive color composite video signals more than 1000 feet on a low cost twisted-pair. A bidirectional "video bus" consists of the LT1195 op amp and the LT1187 video difference amplifier. A pair of LT1195s at TRANSMIT 1, is used to generate differential signals to drive the line which is back-terminated in its characteristic impedance. The LT1187, twisted-pair receiver, converts signals from differential to single-ended. Topology of the LT1187 provides for cable compensation at the amplifier's feedback node as shown. In this case, 1000 feet of twisted-pair is compensated with 1000 pF and 50Ω to boost the 3 dB bandwidth of the system from 750 kHz to 4 MHz . This bandwidth is adequate to pass a 3.58 MHz chrome subcarrier, and the 4.5 MHz sound subcarrier. Attenuation in the cable can be compensated by lowering the gain set resistor R_{G}. At TRANSMIT 2, another pair of LT1195s serve the dual function to provide cable termination via low output impedance, and generate differential signals for TRANSMIT 2. Cable termination is made up of 15Ω and 33Ω attentuator to reduce the differential input signal to the LT1187. Maximum input signal for the LT1187 is $760 \mathrm{mV} \mathrm{P}_{\text {P-p }}$.
1.5MHz Square Wave Input and Unequalized Response Through 1000 Feet of Twisted-Pair

1.5MHz Square Wave Input and Equalized Response Through 1000 Feet of Twisted-Pair

Multiburst Pattern Passed Through 1000 Feet of Twisted-Pair

1195 A110

Vector Plot of Standard Color Burst Through 1000 Feet of Twisted-Pair

APPLICATIONS INFORMATION

Bidirectional Video Bus

SImPLIfIGD SCHEMATIC

* SUBSTRATE DIODE, DO NOT FORWARD BIAS

PACKAG \in DESCRIPTION Dimensions in incheses millimeters) uness sthemise noted.

S8 Package
8-Lead Plastic SOIC

5080392

