ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

FEATURES

Isolated PWM controller
Integrated transformer driver
Regulated adjustable output: 3.3 V to 24 V
2 W output power
70\% efficiency at guaranteed load of $\mathbf{4 0 0} \mathrm{mA}$ at 5.0 V output
Quad dc-to-25 Mbps (NRZ) signal isolation channels
20-lead SSOP package
High temperature operation: $105^{\circ} \mathrm{C}$
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
200 kHz to $1 \mathbf{~ M H z}$ adjustable oscillator frequency
Soft start function at power-up
Pulse-by-pulse overcurrent protection
Thermal shutdown
2500 V rms isolation

APPLICATIONS

RS-232/RS-422/RS-485 transceivers
Industrial field bus isolation
Power supply startup bias and gate drives
Isolated sensor interfaces
Process controls

GENERAL DESCRIPTION

The ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 devices ${ }^{1}$ are quad-channel, digital isolators with an integrated PWM controller and transformer driver for an isolated dc-to-dc converter. Based on the Analog Devices, Inc., iCoupler technology, the dc-to-dc converter provides up to 2 W of regulated, isolated power at 3.3 V to 24 V from a 5.0 V input supply or from a 3.3 V supply. This eliminates the need for a separate, isolated dc-to-dc converter in 2 W isolated designs. The iCoupler chip-scale transformer technology is used to isolate the logic signals, and the integrated transformer driver with isolated secondary side control provides higher efficiency for the isolated dc-to-dc converter. The result is a small form factor, total isolation solution.

The ADuM347x isolators provide four independent isolation channels in a variety of channel configurations and data rates. (The x in ADuM347x throughout this data sheet stands for the ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474.)

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. Functional Block Diagram

ADuM3472

Figure 2. Block Diagrams of I/O Channels

[^0]
Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Primary Input Supply/5 VSecondary Isolated Supply3
Electrical Characteristics-3.3 V Primary Input Supply/3.3 V Secondary Isolated Supply 5
Electrical Characteristics-5 V Primary Input Supply/3.3 V
Secondary Isolated Supply 7
Electrical Characteristics-5 V Primary Input Supply/15 V Secondary Isolated Supply 9
Package Characteristics 11
Regulatory Approvals 11
Insulation and Safety-Related Specifications 11
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 12
Recommended Operating Conditions 12
Absolute Maximum Ratings 13
ESD Caution 13
Pin Configurations and Function Descriptions 14
Typical Performance Characteristics 19
Terminology 24
Applications Information 25
Theory of Operation 25
Application Schematics 25
Transformer Design 26
Transformer Turns Ratio 26
Transformer ET Constant 26
Transformer Primary Inductance and Resistance 26
Transformer Isolation Voltage 27
Switching Frequency 27
Transient Response 27
Component Selection 27
Printed Circuit Board (PCB) Layout 28
Thermal Analysis 28
Propagation Delay-Related Parameters 28
DC Correctness and Magnetic Field Immunity 29
Power Consumption 30
Power Considerations 30
Insulation Lifetime 31
Outline Dimensions 32
Ordering Guide 32

REVISION HISTORY

10/10-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY
$4.5 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}\right) \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 38. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC-TO-DC CONVERTER POWER SUPPLY							
Isolated Output Voltage	V Iso	4.5	5.0	5.5	V	$\mathrm{I}_{1 S O}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ISO }}=\mathrm{V}_{\text {FB }} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$	
Feedback Voltage Setpoint	$V_{\text {FB }}$	1.15	1.25	1.35	V	$\mathrm{I}_{150}=0 \mathrm{~mA}$	
Line Regulation	$\mathrm{V}_{\text {ISO (LINE) }}$		1	10	mV / V	$\mathrm{I}_{\text {SO }}=50 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=4.5 \mathrm{~V}$ to 5.5 V	
Load Regulation	VISO (LOAD)		1	2	\%	$\mathrm{l}_{\text {so }}=50 \mathrm{~mA}$ to 200 mA	
Output Ripple	$\mathrm{V}_{\text {ISO (RIP) }}$		50		mV p-p	20 MHz bandwidth, $C_{\text {out }}=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \mathrm{I}_{\text {ISO }}=100 \mathrm{~mA}$	
Output Noise	$V_{\text {ISO (}}$ ($)$		100		mV p-p	20 MHz bandwidth, $\text { Cout }=0.1 \mu \mathrm{~F} \\| 47 \mu \mathrm{~F}, \text { Iso }=100 \mathrm{~mA}$	
Switching Frequency	$\mathrm{f}_{\text {sw }}$		1000		kHz	$\mathrm{R}_{\mathrm{oc}}=50 \mathrm{k} \Omega$	
			200		kHz	$\mathrm{Roc}=270 \mathrm{k} \Omega$	
		192	318	515	kHz	$\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\text {DD2 }}$ (open loop)	
Switch On-Resistance	Ron		0.5		Ω		
Undervoltage Lockout, $\mathrm{V}_{C C}, \mathrm{~V}_{\mathrm{DD} 2}$ Supplies							
Positive Going Threshold	V ${ }_{\text {UV+ }}$		2.8		V		
Negative Going Threshold	Vuv-		2.6		V		
Hysteresis	V UVH		0.2		V		
iCoupler DATA CHANNELS							
DC to 2 Mbps Data Rate ${ }^{1}$							
Maximum Output Supply Current ${ }^{2}$	$\mathrm{I}_{\text {SO }}$ (MAX)	400			mA	$\mathrm{f} \leq 1 \mathrm{MHz}, \mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	
Efficiency at Maximum Output Supply Current ${ }^{3}$			70		\%	$\mathrm{l}_{\text {SOO }}=\mathrm{l}_{\text {ISO (max) }}, \mathrm{f} \leq 1 \mathrm{MHz}$	
Icc Supply Current, No Viso Load	$\mathrm{ICC}_{\text {(Q) }}$					$\mathrm{l}_{\text {SOO }}=0 \mathrm{~mA}, \mathrm{f} \leq 1 \mathrm{MHz}$	
ADuM3470			14	30	mA		
ADuM3471			15	30	mA		
ADuM3472			16	30	mA		
ADuM3473			17	30	$m A$		
ADuM3474			18	30	mA		
25 Mbps Data Rate (CRWZ Grade Only)							
Icc Supply Current, No Viso Load	$\mathrm{ICC}(\mathrm{D})$						
ADuM3470			44		mA	$\mathrm{I}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3471			46		mA	$\mathrm{l}_{\text {SOO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3472			48		$m A$	$\mathrm{l}_{\text {So }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3473			50		mA	$\mathrm{l}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3474			52		mA	$\mathrm{l}_{\text {ISO }}=0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Available Viso Supply Current ${ }^{4}$	IISO (LOAD)					$\mathrm{fsw}_{\text {sw }}=500 \mathrm{kHz}$	
ADuM3470			390		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3471			388		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3472			386		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3473			384		$m A$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
ADuM3474			382		mA	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=12.5 \mathrm{MHz}$	
Icc Supply Current, Full $\mathrm{V}_{\text {Iso }}$ Load	$I_{\text {CC (max) }}$		550		mA	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{f}=0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{I}_{50}=400 \mathrm{~mA} \end{aligned}$	
I/O Input Currents	$I_{1 A}, l_{\text {IB }}, l_{I_{C}}, l_{\text {ID }}$	-20	+0.01	+20	$\mu \mathrm{A}$		
Logic High Input Threshold	V_{IH}	2.0			V		
Logic Low Input Threshold	VIL			0.8	V		

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic High Output Voltages	$\mathrm{V}_{\text {оан, }} \mathrm{V}_{\text {овн, }}$ Voch, $\mathrm{V}_{\text {OdH }}$	$\mathrm{V}_{\text {cC }}-0.3, \mathrm{~V}_{\text {ISO }}-0.3$	5.0		V	$\mathrm{l}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\mathrm{V}_{\text {cc }}-0.5, \mathrm{~V}_{\text {ISO }}-0.3$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	$V_{\text {oal }} \mathrm{V}_{\text {ObL, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
			0.0	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
AC SPECIFICATIONS						
ADuM347xARWZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$t_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM347xCRWZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	30	45	60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	tpsk			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels	tpskod			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	\|CM ${ }_{\text {H }}$ \|	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{I x}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\text {SOO }}, \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\|CM ${ }^{\text {L }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V} \mathrm{Ix}=0 \mathrm{~V}, \mathrm{~V}=1000 \mathrm{~V},$ transient magnitude $=800 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps	

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
${ }^{2}$ The Viso supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels was not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the $\mathrm{V}_{\text {Iso }}$ output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$3.0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}\right) \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 38. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$.

Table 2.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }} \mathrm{V}_{\text {овн, }}$ $\mathrm{V}_{\mathrm{OCH}}, \mathrm{V}_{\mathrm{OdH}}$	$\mathrm{V}_{\text {cC }}-0.2, \mathrm{~V}_{\text {ISO }}-0.2$	5.0		V	$\mathrm{l}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
		$\mathrm{V}_{\text {cC }}-0.5, \mathrm{~V}_{150}-0.5$	4.8		V	$\mathrm{l}_{0 \mathrm{x}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$	
Logic Low Output Voltages	$\mathrm{V}_{\text {oal, }} \mathrm{V}_{\text {obl, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{l}_{0 \mathrm{x}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$	
			0.0	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$	
AC SPECIFICATIONS							
ADuM347xARWZ							
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$		60	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
ADuM347xCRWZ							
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	30	60	75	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew	$\mathrm{t}_{\text {PKK }}$			45	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing Directional Channels	tpskod			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output	\|CMH		25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{ISO}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	$\left\|C M_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}, \mathrm{~V}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.0		Mbps		

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates.
${ }^{2}$ The Viso supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the Viso power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels was not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the $\mathrm{V}_{\text {ISO }}$ output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}\right) \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=3.3 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 38. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$.

Table 3.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
Logic High Output Voltages	$\mathrm{V}_{\text {оaн, }} \mathrm{V}_{\text {овн, }}$ Voch, Vodi	$\mathrm{V}_{\text {cc }}-0.3, \mathrm{~V}_{\text {ISO }}-0.3$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
		$\mathrm{V}_{\text {cc }}-0.5, \mathrm{~V}_{\text {ISO }}-0.3$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	$V_{\text {oal, }} V_{\text {obl, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
			0.0	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$	
AC SPECIFICATIONS							
ADuM347xARWZ							
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate		1			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
ADuM347xCRWZ							
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate		25			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	30	50	70	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew	$t_{\text {PSK }}$			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing Directional Channels	tpskod			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output	\|CMH		25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\text {ISO, }}, \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output	\| $\mathrm{CM}_{\mathrm{L}} \mid$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{x}}=0 \mathrm{~V}, \mathrm{~V}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.0		Mbps		

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates
${ }^{2}$ The Viso supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels was not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the $\mathrm{V}_{\text {Iso }}$ output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY

$4.5 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}\right) \leq 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{ISO}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$; all voltages are relative to their respective grounds; see the application schematic in Figure 39. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DDA}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=\mathrm{V}_{\text {ISO }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$.

Table 4.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
Logic High Output Voltages	Voah, $\mathrm{V}_{\text {obh, }}$ Voch, $\mathrm{V}_{\text {одн }}$	$\mathrm{V}_{\text {cC }}-0.3, \mathrm{~V}_{\text {ISO }}-0.3$	5.0		V	$\mathrm{I}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{IxH}}$
		$\mathrm{V}_{\text {cc }}-0.5, \mathrm{~V}_{\text {ISO }}-0.3$	4.8		V	$\mathrm{l}_{0 \mathrm{x}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxH}}$
Logic Low Output Voltages	$V_{\text {oal, }} V_{\text {obl, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
			0.0	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
AC SPECIFICATIONS						
ADuM347xARWZ						
Minimum Pulse Width	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$		55	100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	$t_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching	$\mathrm{t}_{\text {PSKCD }} / \mathrm{t}_{\text {PSKOD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM347xCRWZ						
Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate		25			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	30	45	60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHL }}\right\|$	PWD			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew	tPSK			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels	$\mathrm{t}_{\text {PSKCD }}$			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels	tpskod			15	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output	\|CM ${ }_{\text {H }}$ \|	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V}_{I X}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {ISO }}, \mathrm{V}_{C M}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output	\|CM ${ }^{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$V_{1 x}=0 \mathrm{~V}, \mathrm{~V}=1000 \mathrm{~V}$ transient magnitude $=800 \mathrm{~V}$
Refresh Rate	fr_{r}		1.0		Mbps	

${ }^{1}$ The contributions of supply current values for all four channels are combined at identical data rates
${ }^{2}$ The $\mathrm{V}_{\text {Iso }}$ supply current is available for external use when all data rates are below 2 Mbps . At data rates above 2 Mbps , the data I/O channels draw additional current proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the $\mathrm{V}_{\text {Iso }}$ power budget.
${ }^{3}$ The power demands of the quiescent operation of the data channels was not separated from the power supply section. Efficiency includes the quiescent power consumed by the I/O channels as part of the internal power consumption.
${ }^{4}$ This current is available for driving external loads at the $\mathrm{V}_{\text {IsO }}$ output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of available current at less than the maximum data rate.

PACKAGE CHARACTERISTICS

Table 5.

Parameter	Symbol	Min	Typ \quad Max	Unit	Test Conditions/Comments
Resistance (Input to Output) 1	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$		10^{12}	Ω	
Capacitance (Input to Output) 1	$\mathrm{C}_{1-\mathrm{O}}$		2.2	pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance 2	C_{I}		4.0	pF	
IC Junction to Ambient Thermal Resistance	θ_{JA}		50.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside,
					test conducted on 4-layer board with thin traces ${ }^{3}$

${ }^{1}$ The device is considered a 2-terminal device: Pin 1 to $\operatorname{Pin} 8$ is shorted together; and Pin 9 to $\operatorname{Pin} 16$ is shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.
${ }^{3}$ See the Thermal Analysis section for thermal model definitions.

REGULATORY APPROVALS (PENDING)

Table 6.

UL	CSA	VDE
Recognized under the UL 1577 component	Approved under CSA Component	Certified according to DIN V VDE V 0884-10
recognition program ${ }^{1}$	Acceptance Notice \#5A	(VDE V 0884-10):2006-12
Single protection, 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and	Reinforced insulation, 560 V peak
	IEC 60950-1, 600 V rms (848 V peak)	
File E214100	maximum working voltage	

${ }^{1}$ In accordance with UL 1577, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of $\geq 3000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each of the ADuM347x is proof tested by applying an insulation test voltage of $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The asterisk ${ }^{(*)}$) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(IO1)	2500	>5.1	V rms
Minimum External Air Gap (Clearance)	L(I02)	>5.1	mm	1-minute duration Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)	0.017 min	mm	Distance through insulation DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)	
Minimum Internal Gap (Internal Clearance)				
Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	II	V	

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.

Table 8.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A		$V_{\text {PR }}$		
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{\text {IORM }} \times 1.2=V_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$V_{\text {TR }}$	4000	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{5}	1.25	A
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 9.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$				
$V_{\text {cc }}$ at $V_{\text {ISO }}=3.3 \mathrm{~V}$	$\mathrm{V}_{\text {cc }}$	3.0	3.6	V
$\mathrm{V}_{\text {cc }}$ at $\mathrm{V}_{\text {ISO }}=5.0 \mathrm{~V}$	$V_{\text {cc }}$	3.0	3.6	V
$\mathrm{V}_{\text {cc }}$ at $\mathrm{V}_{\text {Iso }}=5.0 \mathrm{~V}$	Vcc	4.5	5.5	V
Minimum Load	1 ISO (MIN)	10		mA

[^1]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 10.

Parameter	Rating
Storage Temperature Range ($\mathrm{T}_{\text {st }}$)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages	
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD} 2}{ }^{1}$	-0.5 V to +7.0 V
$\mathrm{V}_{\text {Reg, }}, \mathrm{X} 1, \mathrm{X} 2^{1}$	-0.5 V to +20.0 V
Input Voltage ($\left.\mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{1 C}, \mathrm{~V}_{\text {ID }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DII }}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}, \mathrm{V}_{\text {OC, }}, \mathrm{V}_{\text {OD }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin^{3}	-10 mA to +10 mA
Common-Mode Transients ${ }^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} \mathrm{~V}_{D D I}$ and $\mathrm{V}_{\text {DDO }}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the Printed Circuit Board (PCB) Layout section.
${ }^{3}$ See Figure 3 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 11. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime ${ }^{1}$

Parameter	Max	Unit	Applicable Certification
AC Voltage, Bipolar Waveform	565	V peak	All certifications
AC Voltage, Unipolar Waveform Basic Insulation	848	V peak	Working voltage per IEC 60950-1
DC Voltage Basic Insulation	848	V peak	Working voltage per IEC 60950-1

${ }^{1}$ Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADuM3470 Pin Configuration

Table 12. ADuM3470 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground 1. Ground reference for isolator primary.
3	VD1	Transformer Driver Supply Voltage 3.0 V to 5.5 V. Connect to VDDA pin. Connect a $10 \mu \mathrm{~F}$ bypass capacitor from VDD1 to GND 1 .
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	VIC	Logic Input C.
8	$V_{\text {ID }}$	Logic Input D.
9	VDDA	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\text {DD1 }}$ pin. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from VDDA to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $O C=$ logic high $=V_{D D 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	Vod	Logic Output D.
14	Voc	Logic Output C.
15	Vob	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from $\mathrm{V}_{\text {Iso }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	The Internal Supply Voltage Pin for the Secondary Side Controller and Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG, }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	The Input of the Internal Regulator to Power the Secondary Side Controller and Side 2 Data Channels. $V_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

X1 1	ADuM3471TOP VIEw(Not to Scale)	20 V REG
$*^{*} \mathrm{GND}_{1} 2$		$19 \mathrm{GND}_{2}{ }^{*}$
$\mathrm{V}_{\mathrm{DD} 1} 3$		18 V DD 2
X2 4		17 FB
$V_{1 A} 5$		$16 \mathrm{~V}_{\text {OA }}$
$V_{1 B} 6$		15 V OB
$\mathrm{V}_{\text {IC }} 7$		14 V Oc
$\mathrm{V}_{\mathrm{OD}} 8$		13 V ID
$\mathrm{V}_{\text {DDA }} 9$		12 OC
GND 10		$11 \mathrm{GND}_{2}{ }^{}$

*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,
AND CONNECTING BOTH TO GND 1 IS
RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 5. ADuM3471 Pin Configuration

Table 13. ADuM3471 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground 1. Ground reference for isolator primary.
3	VDD1	Transformer Driver Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DDA}}$ pin. Connect a $10 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD1}}$ to GND_{1}.
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{1 B}$	Logic Input B.
7	V IC	Logic Input C.
8	Vod	Logic Output D.
9	VDDA	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\text {DD1 }}$ pin. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When OC = logic high = V ${ }_{\text {DD2 }}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	Voc	Logic Output C.
15	$\mathrm{V}_{\text {ов }}$	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from $\mathrm{V}_{\text {Iso }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	The Internal Supply Voltage Pin for the Secondary Side Controller and Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	The Input of the Internal Regulator to Power the Secondary Side Controller and Side 2 Data Channels. VREG should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,
AND CONNECTING BOTH TO GND ${ }_{1}$ IS
RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 6. ADuM3472 Pin Configuration

Table 14. ADuM3472 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground 1. Ground reference for isolator primary.
3	VDD1	Transformer Driver Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DDA}}$ pin. Connect a $10 \mu \mathrm{~F}$ bypass capacitor from V_{DD} to GND 1 .
4	X2	Transformer Driver Output 2.
5	$V_{\text {IA }}$	Logic Input A.
6	$V_{\text {IB }}$	Logic Input B.
7	Voc	Logic Output C.
8	Vod	Logic Output D.
9	VDDA	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\text {DDI }}$ pin. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control pin. When $\mathrm{OC}=$ logic high $=\mathrm{V}_{\mathrm{DD} 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	VIC	Logic Input C.
15	$\mathrm{V}_{\text {ов }}$	Logic Output B.
16	VoA	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage $V_{\text {Iso }}$. Use a resistor divider from $V_{\text {Iso }}$ to the $F B$ pin to make the $V_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	The Internal Supply Voltage Pin for the Secondary Side Controller and Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG, }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$\mathrm{V}_{\text {REG }}$	The Input of an Internal Regulator to Power the Secondary Side Controller and Side 2 Data Channels. $V_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

x1 1		$20 \mathrm{v}_{\text {REG }}$
${ }^{*} \mathrm{GND}_{1} 2$		$19 \mathrm{GND}{ }^{*}$
$\mathrm{V}_{\mathrm{DD1}} 3$		$18 \mathrm{~V} \mathrm{VD2}$
x2 4	ADuM3473 TOP VIEW (Not to Scale)	17 FB
$\mathrm{V}_{14} 5$		${ }^{16} \mathrm{~V}_{\text {OA }}$
$\mathrm{V}_{\text {OB }} 6$		15 V IB
$\mathrm{V}_{\text {oc }} 7$		14 vic
$\mathrm{V}_{\text {OD }} 8$		${ }^{13} \mathrm{~V}_{\text {ID }}$
$\mathrm{V}_{\text {DDA }} 9$		12 oc
$*^{*} \mathrm{SND}_{1} 10$		11) $\mathrm{CND}_{2}{ }^{*}$

*PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED,
AND CONNECTING BOTH TO GND 1 IS
RECOMMENDED. PIN 11 AND PIN 19 ARE
INTERNALLY CONNECTED, AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 7. ADuM3473 Pin Configuration

Table 15. ADuM3473 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground 1. Ground reference for isolator primary.
3	VDD1	Transformer Driver Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DDA}}$ pin. Connect a $10 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD1}}$ to GND_{1}.
4	X2	Transformer Driver Output 2.
5	$\mathrm{V}_{\text {IA }}$	Logic Input A.
6	$\mathrm{V}_{\text {о }}$	Logic Output B.
7	Voc	Logic Output C.
8	Vod	Logic Output D.
9	$V_{\text {DDA }}$	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\text {DDI }}$ pin. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $O C=$ logic high $=V_{\text {DD2 }}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	$V_{\text {ID }}$	Logic Input D.
14	VIC	Logic Input C.
15	$V_{\text {IB }}$	Logic Input B.
16	V ${ }_{\text {OA }}$	Logic Output A.
17	FB	Feedback Input from the Secondary Output Voltage $\mathrm{V}_{\text {Iso }}$. Use a resistor divider from $\mathrm{V}_{\text {Iso }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$\mathrm{V}_{\mathrm{DD} 2}$	The Internal Supply Voltage Pin for the Secondary Side Controller and Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {ReG }}$	The Input of an Internal Regulator to Power the Secondary Side Controller and Side 2 Data Channels. VREG should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Figure 8. ADuM3474 Pin Configuration

Table 16. ADuM3474 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	Transformer Driver Output 1.
2,10	GND_{1}	Ground 1. Ground reference for isolator primary.
3	VDD1	Transformer Driver Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\mathrm{DDA}}$ pin. Connect a $10 \mu \mathrm{~F}$ bypass capacitor from V_{DD} to GND_{1}.
4	X2	Transformer Driver Output 2.
5	VoA	Logic Output A.
6	$\mathrm{V}_{\text {OB }}$	Logic Output B.
7	Voc	Logic Output C.
8	Vod	Logic Output D.
9	VDDA	Primary Supply Voltage 3.0 V to 5.5 V . Connect to $\mathrm{V}_{\text {DDI }}$ pin. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\text {DDA }}$ to GND_{1}.
11, 19	GND_{2}	Ground Reference for Isolator Side 2.
12	OC	Oscillator Control Pin. When $O C=$ logic high $=V_{D D 2}$, the secondary controller runs open-loop. To regulate the output voltage, connect a resistor between the OC pin and GND_{2}, and the secondary controller runs at a frequency of 200 kHz to 1 MHz , as programmed by the resistor value.
13	VID	Logic Input D.
14	VIC	Logic Input C.
15	$V_{\text {IB }}$	Logic Input B.
16	$V_{\text {IA }}$	Logic Input A.
17	FB	Feedback Input from the Secondary Output Voltage $V_{\text {ISo }}$. Use a resistor divider from $V_{\text {Iso }}$ to the FB pin to make the $\mathrm{V}_{\text {FB }}$ voltage equal to the 1.25 V internal reference level using the $\mathrm{V}_{I S O}=\mathrm{V}_{F B} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$ formula. The resistor divider is required even in open-loop mode to provide soft start.
18	$V_{\text {DD2 }}$	The Internal Supply Voltage Pin for the Secondary Side Controller and Side 2 Data Channels. When a sufficient external voltage is supplied to $\mathrm{V}_{\text {REG }}$, the internal regulator regulates the $\mathrm{V}_{\mathrm{DD} 2}$ pin to 5.0 V . Otherwise, $\mathrm{V}_{\mathrm{DD} 2}$ should be in the 3.0 V to 5.5 V range. Connect a $0.1 \mu \mathrm{~F}$ bypass capacitor from $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}.
20	$V_{\text {ReG }}$	The input of an internal regulator used to power the secondary side controller and Side 2 data channels. $V_{\text {REG }}$ should be in the 5.5 V to 15 V range to regulate the $\mathrm{V}_{\mathrm{DD} 2}$ output to 5.0 V .

Table 17. Truth Table (Positive Logic)

$\mathbf{V}_{\mathbf{I x}}$ Input 1	\mathbf{V}_{CC} State	$\mathbf{V}_{\text {DD2 }}$ State	$\mathbf{V}_{\mathbf{o x}}$ Output 1	Notes
High	Powered	Powered	High	Normal operation, data is high
Low	Powered	Powered	Low	Normal operation, data is low

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. Switching Frequency ($f_{s w}$) vs. Roc Resistance

Figure 10. Typical Efficiency at 5 V In to 5 V Out at Various Switching Frequencies with Coilcraft Transformer

Figure 11. Typical Efficiency at 5 V In to 5 V Out at Various Switching Frequencies with Halo Transformer

Figure 12.5 V In to 5 V Out Efficiency over Temperature with Coilcraft Transformer at $500 \mathrm{kHz} \mathrm{f}_{\mathrm{sw}}$

Figure 13. Single-Supply Efficiency with Coilcraft Transformer at $500 \mathrm{kHz} \mathrm{f}_{s w}$

Figure 14. 5 V In to 15 V Out Efficiency at Various Switching Frequencies with Coilcraft Transformer

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Figure 15.5 V In to 15 V Out Efficiency at Various Switching Frequencies with Halo Transformer

Figure 16. 5 V In to 15 V Out Efficiency over Temperature with Coilcraft Transformer at $500 \mathrm{kHz} f_{s w}$

Figure 17. Double-Supply Efficiency with Coilcraft Transformer at $500 \mathrm{kHz} f_{s w}$

Figure 18. Typical Single-Supply ICH Supply Current per Forward Data Channel (15 pF Output Load)

Figure 19. Typical Single-Supply ICH Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 20. Typical Single-Supply IISO(D) Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 21. Typical Single Supply IISO(D) $^{\text {D }}$ Dynamic Supply Current per Input Channel

Figure 22. Typical Double Supply ICH Supply Current per Forward Data Channel (15 pF Output Load)

Figure 23. Typical Double Supply Ich Supply Current per Reverse Data Channel (15 pF Output Load)

Figure 24. Typical Double Supply IISO(D) Dynamic Supply Current per Output Channel (15 pF Output Load)

Figure 25. Typical Double Supply $I_{\text {ISO (D) }}$ Dynamic Supply Current per Input Channel

Figure 26. Typical Viso Startup 5 V In to 5 V Out with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Figure 27. Typical Viso Startup 5 V In to 3.3 V Out with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 400 mA Output Load

Figure 28. Typical VISO Startup 3.3 VIn to 3.3 V Out with $10 \mathrm{~mA}, 50 \mathrm{~mA}$, and 250 mA Output Load

Figure 29. Typical Viso Startup 5 V In to 15 V Out with $10 \mathrm{~mA}, 20 \mathrm{~mA}$, and 100 mA Output Load

Figure 30. Typical VIso Load Transient Response 5 V In to 5 V Out at 10\% to 90% of 400 mA Load at 500 kHz fsw

Figure 31. Typical Viso Load Transient Load Response 5 V In to 3.3 V Out at 10% to 90% Load of 400 mA Load at $500 \mathrm{kHz} f_{\text {sw }}$

Figure 32. Typical $V_{\text {Iso }}$ Load Transient Response 3.3 V In to 3.3 V Out at 10\% to 90% of 250 mA Load at 500 kHz fsw

Figure 33. Typical Viso Load Transient Response 5 V In to 15 V Out at 10% to 90% of 100 mA Load at 500 kHz fsw

Figure 34. Typical Viso Output Ripple 5 V In to 5 V Out at 400 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\mathrm{sw}}$

Figure 35. Typical $\mathrm{V}_{\text {Iso }}$ Output Ripple 5 V In to 3.3 V Out at 400 mA Load at 500 kHz fsw

Figure 36. Typical VIso Output Ripple 3.3 V In to 3.3 V Out at 250 mA Load at 500 kHz fsw

Figure 37. Typical Viso Output Ripple 5 V In to 15 V Out at 100 mA Load at $500 \mathrm{kHz} \mathrm{f}_{\mathrm{sw}}$

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

TERMINOLOGY

$\mathbf{I C C}_{\mathrm{CC}}$

$\mathrm{I}_{\mathrm{CC}(\odot)}$ is the minimum operating current drawn at the V_{CC} power input when there is no external load at $\mathrm{V}_{\text {Iso }}$ and the I/O pins are operating below 2 Mbps , requiring no additional dynamic supply current.

$\mathbf{I C C}_{\text {(} \mathrm{D})}$

$\mathrm{I}_{\mathrm{CC}(\mathrm{D})}$ is the typical input supply current with all channels simultaneously driven at a maximum data rate of 25 Mbps with the full capacitive load representing the maximum dynamic load conditions. Treat resistive loads on the outputs separately from the dynamic load.

Icc (max) $^{\text {(}}$
$I_{\text {CC (max) }}$ is the input current under full dynamic and $V_{\text {Iso }}$ load conditions.

$t_{\text {PHL }}$ Propagation Delay

$t_{\text {phe }}$ propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal.

$t_{\text {tli }}$ Propagation Delay

$t_{\text {pLL }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{\text {Ix }}$ signal to the 50% level of the rising edge of the Vox signal.
Propagation Delay Skew ($\mathbf{t}_{\text {PSK }}$)
$t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.

Channel-to-Channel Matching
Channel-to-channel matching is the absolute value of the difference in propagation delays between the two channels when operated with identical loads.

Minimum Pulse Width

The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.

Maximum Data Rate

The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

APPLICATIONS INFORMATION

THEORY OF OPERATION

The dc-to-dc converter section of the ADuM347x uses a secondary side controller architecture with isolated pulse-width modulation (PWM) feedback. VCC power is supplied to an oscillating circuit that switches current to the primary of an external power transformer using internal push-pull switches at the X1 and X2 pins. Power transferred to the secondary side of the transformer is full-wave rectified with external Schottky diodes (D1 and D2), filtered with the L1 inductor and Cout capacitor, and regulated to the isolated power supply voltage from 3.3 V to 15 V . The secondary ($\mathrm{V}_{\text {Iso }}$) side controller regulates the output by using a feedback voltage V_{FB} from a resistor divider on the output and creating a PWM control signal that is sent to the primary (V_{CC}) side by a dedicated iCoupler data channel labeled $V_{\text {Fb. }}$. The primary side PWM converter varies the duty cycle of the X1 and X2 switches to modulate the oscillator circuit and control the power being sent to the secondary side. This feedback allows for significantly higher power and efficiency.

The ADuM347x implement undervoltage lockout (UVLO) with hysteresis on the $\mathrm{V}_{\text {CC }}$ power input. This feature ensures that the converter does not go into oscillation due to noisy input power or slow power-on ramp rates.
A minimum load current of 10 mA is recommended to ensure optimum load regulation. Smaller loads can generate excess noise on the output due to short or erratic PWM pulses. Excess noise generated this way can cause regulation problems, in some circumstances.

APPLICATION SCHEMATICS

The ADuM347x has three main application schematics, as shown in Figure 38 to Figure 40. Figure 38 has a center-tapped secondary and two Schottky diodes providing full wave rectification for a single output, typically for power supplies of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V . For single supplies when $\mathrm{V}_{\text {ISO }}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\text {ISO }}=5 \mathrm{~V}$, see the note in Figure 38 about connecting together $\mathrm{V}_{\text {REG }}, \mathrm{V}_{\mathrm{DD} 2}$, and $\mathrm{V}_{\text {ISo }}$. Figure 39 is a voltage doubling circuit that can be used for a single supply whose output exceeds 15 V , which is the largest supply that can be connected to the regulator input $\mathrm{V}_{\text {REG }}$ (Pin 20) of the part. With Figure 39, the output voltage can be as high as 24 V and the $V_{\text {reg }}$ pin only about 12 V . Figure 40 , which also uses a voltage doubling secondary circuit, is shown as an example of a coarsely regulated, positive power supply and an unregulated, negative power supply, for outputs of approximately $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$. For any circuit in Figure 38, Figure 39, or Figure 40, the isolated output voltage ($\mathrm{V}_{\text {IsO }}$) can be set using the voltage dividers, R1 and R2 (values $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), in the application schematics using the following equation:

$$
V_{I S O}=V_{F B} \times \frac{R 1+R 2}{R 2}
$$

where $V_{F B}$ is the internal feedback voltage, which is approximately 1.25 V .

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

TRANSFORMER DESIGN

Transformers have been designed for use in the circuits shown in Figure 38, Figure 39, and Figure 40 and are listed in Table 18. The design of a transformer for the ADuM347x can differ from some isolated dc-to-dc converter designs that do not regulate the output voltage. The output voltage is regulated by a PWM controller in the ADuM347x that varies the duty cycle of the primary side switches in response to a secondary side feedback voltage, V_{FB}, received through an isolated digital channel. The internal controller has a limit of 40% maximum duty cycle.

TRANSFORMER TURNS RATIO

To determine the transformer turns ratio, and taking into account the losses for the primary switches and the losses for the secondary diodes and inductors, the external transformer turns ratio for the ADuM347x can be calculated by

$$
\frac{N_{S}}{N_{P}}=\frac{V_{I S O}+V_{D}}{V_{C C(M I N)} \times D \times 2}
$$

where:
N_{S} / N_{P} is the primary to secondary turns ratio.
$\mathrm{V}_{\text {ISO }}$ is the isolated output supply voltage.
V_{D} is the Schottky diode voltage drop (0.5 V maximum).
$V_{C C(M I N)}$ is the minimum input supply voltage.
D is the duty cycle $=0.30$ for a 30% typical duty cycle, 40% is maximum, and a multiplier factor of 2 is used for the push-pull switching cycle.
For Figure 38 , the 5 V to 5 V reference design in Table 18, with $\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}=4.5 \mathrm{~V}$, the turns ratio is $\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{P}}=2$.

For a similar 3.3 V to 3.3 V single power supply and with $\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}=$ 3.0 V, the turns ratio is also $\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}}=2$. Therefore, the same transformer turns ratio $\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}}=2$ can be used for the three single power applications (5 V to $5 \mathrm{~V}, 5 \mathrm{~V}$ to 3.3 V , and 3.3 V to 3.3 V).
For Figure 39, the circuit uses double windings and diode pairs to create a doubler circuit; therefore, half the output voltage, $\mathrm{V}_{\mathrm{IS}} / 2$, is used in the equation.

$$
\frac{N_{S}}{N_{P}}=\frac{\frac{V_{I S O}}{2}+V_{D}}{V_{C C(M I N)} \times D \times 2}
$$

N_{S} / N_{P} is the primary to secondary turns ratio.
$V_{I S O} / 2$ is used in the equation because the circuit uses two pairs of diodes creating a doubler circuit.
V_{D} is the Schottky diode voltage drop (0.5 V maximum).
$V_{C C(M I N)}$ is the minimum input supply voltage.
D is duty cycle which equals 0.30 for a 30% typical duty cycle, 40% is maximum, and a multiplier factor of 2 is used for the push-pull switching cycle.
For Figure 39, the 5 V to 15 V reference design in Table 18, with $\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}=4.5 \mathrm{~V}$, the turns ratio is $\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{P}}=3$.

For Figure 40, the circuit also uses double windings and diode pairs to create a doubler circuit; however, because a positive and negative output voltage is created, $V_{I S O}$ is used in the equation.

$$
\frac{N_{S}}{N_{P}}=\frac{V_{I S O}+V_{D}}{V_{C C(M I N)} \times D \times 2}
$$

where:
N is the primary to secondary turns ratio.
$V_{I S O}$ is the isolated output supply voltage and is used in the equation because the circuit uses two pairs of diodes creating a doubler circuit with a positive and negative output.
V_{D} is the Schottky diode voltage drop (0.5 V maximum).
$V_{C C(M I N)}$ is the minimum input supply voltage, and a multiplier factor of 2 is used for the push-pull switching cycle. A higher duty cycle of $D=0.35$ for a 35% typical duty cycle (40% is maximum) was used in the Figure 40 circuit to reduce the maximum voltages seen by the diodes for a $\pm 15 \mathrm{~V}$ supply.
For Figure 40 , the +5 V to $\pm 15 \mathrm{~V}$ reference design in Table 18, with $\mathrm{V}_{\mathrm{CC}(\operatorname{MIN})}=4.5 \mathrm{~V}$, the turns ratio is $\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{P}}=5$.

TRANSFORMER ET CONSTANT

The next transformer design factor to consider is the ET constant. This constant determines the minimum $V \times \mu \mathrm{s}$ constant of the transformer over the operating temperature. ET values of $14 \mathrm{~V} \times \mu \mathrm{s}$ and $18 \mathrm{~V} \times \mu$ s were selected for the ADuM347x designs listed in Table 18 using the following equation:

$$
E T(\text { Min })=\frac{V_{C C(M A X)}}{f_{S W(M I N)} \times 2}
$$

where:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{MAX})$ is the maximum input supply voltage.
$f_{S W_{(M I N)}}$ is the minimum primary switching frequency $=300 \mathrm{kHz}$ in startup, and a multiplier factor of 2 is used for the push-pull switching cycle.

TRANSFORMER PRIMARY INDUCTANCE AND RESISTANCE

Another important characteristic of the transformer for designs with the ADuM347x is the primary inductance. Transformers for the ADuM347x are recommended to have between $60 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ of inductance per primary winding. Values of primary inductance in this range are needed for smooth operation of the ADuM347x pulse-by-pulse current-limit circuit, which can help protect against build up of saturation currents in the transformer. If the inductance is specified for the total of both primary windings, for example, as $400 \mu \mathrm{H}$, the inductance of one winding is $1 / 4 / 4$ of two equal windings, or $100 \mu \mathrm{H}$.
Another important characteristic of the transformer for designs with the ADuM347x is primary resistance. Primary resistance as low as is practical (less than 1Ω) helps reduce losses and improves efficiency. The dc primary resistance can be measured and specified, and is shown for the transformers in Table 18.

Table 18. Transformer Reference Designs

Part No.	Manufacturer	Turns Ratio, PRI:SEC	ET Constant $\mathbf{(V \times \boldsymbol { \mu s } \mathbf { ~ M i n })}$	Total Primary Inductance $(\boldsymbol{\mu} \mathbf{H})$	Total Primary Resistance $(\boldsymbol{\Omega})$	Isolation Voltage $(\mathbf{r m s})$	Isolation Iype	Reference

TRANSFORMER ISOLATION VOLTAGE

Isolation voltage and isolation type should be determined for the requirements of the application and then specified. The transformers in Table 18 have been specified for 2500 V rms for supplemental or basic isolation and for 1500 V rms functional isolation. Other isolation levels and isolation voltages can be specified and requested from the manufacturers in Table 18 or from other manufacturers.

SWITCHING FREQUENCY

The ADuM347x switching frequency can be adjusted from 200 kHz to 1 MHz by changing the value of the Roc resistor shown in Figure 38, Figure 39, and Figure 40. The value of the Roc resistor needed for the desired switching frequency can be determined from the switching frequency vs. Roc resistance curve shown in Figure 9. The output filter inductor value and output capacitor value for the ADuM 347 x application schematics have been designed to be stable over the switching frequency range from 500 kHz to 1 MHz , when loaded from 10% to 90% of the maximum load.

The ADuM347x also has an open-loop mode where the output voltage is not regulated and is dependent on the transformer turns ratio, $\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}}$, and the conditions of the output including output load current and the losses in the dc-to-dc converter circuit. This open-loop mode is selected when the OC pin is connected high to the $V_{\text {DD2 }}$ pin. In open-loop mode, the switching frequency is 318 kHz .

TRANSIENT RESPONSE

The load transient response of the output voltage of the ADuM347x for 10% to 90% of the full load is shown in Figure 30 to Figure 33 for the application schematics in Figure 38 and Figure 39. The response shown is slow but stable and can have more output change than desired for some applications. The output voltage change with load transient has been reduced, and the output has been shown to remain stable by adding more inductance to the output circuits, as shown in the second $\mathrm{V}_{\text {ISO }}$ output waveform in Figure 30 to Figure 33.

COMPONENT SELECTION

The ADuM347x digital isolators with 2 W dc-to-dc converters require no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins. Note that a low ESR ceramic bypass capacitor of $0.1 \mu \mathrm{~F}$ is required on Side 1 between Pin 9 and Pin 10, and on Side 2 between Pin 18 and Pin 19, as close to the chip pads as possible.
The power supply section of the ADuM347x uses a high oscillator frequency to efficiently pass power through the external power transformer. In addition, normal operation of the data section of the iCoupler introduces switching transients on the power supply pins. Bypass capacitors are required for several operating frequencies. Noise suppression requires a low inductance, high frequency capacitor; ripple suppression and proper regulation require a large value capacitor. To suppress noise and reduce ripple, large-valued ceramic capacitors of X5R or X7R dielectric type are recommended. The recommended capacitor value is $10 \mu \mathrm{~F}$ for $\mathrm{V}_{\mathrm{DDI}}$ and $47 \mu \mathrm{~F}$ for $\mathrm{V}_{\text {ISO. }}$. These capacitors have a low ESR and are available in moderate 1206 or 1210 sizes for voltages up to 10 V . For output voltages larger than 10 V , two $22 \mu \mathrm{~F}$ ceramic capacitors can be used in parallel. See Table 19 for recommended components.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

Inductors must be selected based on the value and supply current needed. Most applications with switching frequencies between 500 kHz and 1 MHz and load transients between 10% and 90% of full load are stable with the $47 \mu \mathrm{H}$ inductor value listed in Table 19. Values as large as $200 \mu \mathrm{H}$ can be used for power supply applications with a switching frequency as low as 200 kHz to help stabilize the output voltage or for improved load transient response (see Figure 30 to Figure 33). Inductors in a small 1212 or 1210 size are listed in Table 19 with a $47 \mu \mathrm{H}$ value and a 0.41 A current rating to handle the majority of applications below a 400 mA load, and with a $100 \mu \mathrm{H}$ value and a 0.34 A current rating to handle a load to 300 mA .

Schottky diodes are recommended for their low forward voltage to reduce losses and their high reverse voltage of up to 40 V to withstand the peak voltages available in the doubling circuit shown in Figure 39 and Figure 40.
Table 19. Recommended Components

Part Number	Manufacturer	Value
GRM32ER71A476KE15L	Murata	$47 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X7R}$,
		1210
GRM32ER71C226KEA8L	Murata	$22 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}$,
		1210
GRM31CR71A106KA01L	Murata	$10 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X7R}$,
		1206
MBR0540T1-D	ON Semiconductor	$0.5 \mathrm{~A}, 40 \mathrm{~V}$,
		Schottky, SOD-123
LQH3NPN470MM0	Murata	$47 \mu \mathrm{H}, 0.41 \mathrm{~A}$,
		1212
ME3220-104KL	Coilcraft	$100 \mu \mathrm{H}, 0.34 \mathrm{~A}$,
		1210

PRINTED CIRCUIT BOARD (PCB) LAYOUT

Note that the total lead length between the ends of the low ESR capacitor and the $V_{D D x}$ and $G N D_{x}$ pins must not exceed 2 mm . Installing the bypass capacitor with traces more than 2 mm in length can result in data corruption. See Figure 41 for the recommended PCB layout.

Figure 41. Recommended PCB Layout
In applications involving high common-mode transients, take care to ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins, exceeding the absolute maximum ratings specified in Table 10, thereby leading to latch-up and/or permanent damage.

The ADuM347x are power devices that dissipate about 1 W of power when fully loaded and running at maximum speed. Because it is not possible to apply a heat sink to an isolation device, the devices primarily depend on heat dissipation into the PCB through the GND pins. If the devices are used at high ambient temperatures, care must be taken to provide a thermal path from the GNDx pins to the PCB ground plane. The board layout shows enlarged pads for the GNDx pins (Pin 2 and Pin 10) on Side 1 and (Pin 11 and Pin 19) on Side 2. Large diameter vias should be implemented from the pad to the ground planes and power planes to increase thermal conductivity and to reduce inductance. Multiple vias in the thermal pads can significantly reduce temperatures inside the chip. The dimensions of the expanded pads are left to the discretion of the designer and the available board space.

THERMAL ANALYSIS

The ADuM347x parts consist of two internal die attached to a split lead frame with two die attach paddles. For the purposes of thermal analysis, the die are treated as a thermal unit, with the highest junction temperature reflected in the θ_{JA} from Table 5 . The value of θ_{JA} is based on measurements taken with the parts mounted on a JEDEC standard, 4-layer board with fine width traces and still air. Under normal operating conditions, the ADuM347x devices operate at full load across the full temperature range without derating the output current. However, following the recommendations in the Printed Circuit Board (PCB) Layout section decreases thermal resistance to the PCB, allowing increased thermal margins in high ambient temperatures. The ADuM347x has an thermal shutdown circuit that shuts down the dc-to-dc converter and the outputs of the ADuM347x when a die temperature of about $160^{\circ} \mathrm{C}$ is reached. When the die cools below about $140^{\circ} \mathrm{C}$, the ADuM347x dc-to-dc converter and outputs turn on again.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component (see Figure 42). The propagation delay to a logic low output may differ from the propagation delay to a logic high output.

Figure 42. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.
Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM347x component.
Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM347x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $1 \mu \mathrm{~s}$, periodic sets of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than approximately 5μ s, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 17) by the watchdog timer circuit. This situation should occur in the ADuM347x devices only during power-up and power-down operations.
The limitation on the ADuM347x magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur.

The 3.3 V operating condition of the ADuM347x is examined because it represents the most susceptible mode of operation.
The pulses at the transformer output have an amplitude of $>1.0 \mathrm{~V}$. The decoder has a sensing threshold of about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM347x and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 43.

Figure 43. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , which is still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM347x transformers. Figure 44 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 44, the ADuM347x are extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example, a 0.5 kA current needs to be placed 5 mm away from the ADuM347x to affect component operation.

In combinations of strong magnetic field and high frequency, any loops formed by PCB traces can induce error voltages sufficiently large to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

POWER CONSUMPTION

The V_{CC} power supply input provides power to the iCoupler data channels, as well as to the power converter. For this reason, the quiescent currents drawn by the data converter and the primary and secondary I/O channels cannot be determined separately. All of these quiescent power demands have been combined into the Icc(Q) current, as shown in Figure 45. The total Icc supply current is equal to the sum of the quiescent operating current; the dynamic current, $\mathrm{I}_{\mathrm{CC}(\mathrm{D})}$, demanded by the I/O channels; and any external IIso load.

Figure 45. Power Consumption Within the ADuM347x
Dynamic I/O current is consumed only when operating a channel at speeds higher than the refresh rate of f_{r}. The dynamic current of each channel is determined by its data rate. Figure 18 and Figure 22 show the current for a channel in the forward direction, meaning that the input is on the $V_{C C}$ side of the part. Figure 19 and Figure 23 show the current for a channel in the reverse direction, meaning that the input is on the $\mathrm{V}_{\text {Iso }}$ side of the part. Figure 18, Figure 19, Figure 22, and Figure 23 assume a typical 15 pF output load.
The following relationship allows the total $\mathrm{I}_{\mathrm{DD} 1}$ current to be

$$
\begin{equation*}
I_{C C}=\left(I_{I S O} \times V_{I S O}\right) /\left(E \times V_{C C}\right)+\sum I_{C H n} ; n=1 \text { to } 4 \tag{1}
\end{equation*}
$$

where:
$I_{C C}$ is the total supply input current.
$I_{I S O}$ is the current drawn by the secondary side external load. E is the power supply efficiency at the given output load from Figure 13 or Figure 17 at the $V_{I S O}$ and $V_{C C}$ condition of interest. $I_{\text {CHn }}$ is the current drawn by a single channel determined from Figure 18, Figure 19, Figure 22, or Figure 23, depending on channel direction.

The maximum external load can be calculated by subtracting the dynamic output load from the maximum allowable load.

$$
\begin{equation*}
I_{I S O(L O A D)}=I_{I S O(M A X)}-\Sigma I_{I S O(D) n} ; n=1 \text { to } 4 \tag{2}
\end{equation*}
$$

where:
$I_{\text {ISO (LOAD) }}$ is the current available to supply an external secondary side load.
$I_{I S O \text { (MAX) }}$ is the maximum external secondary side load current available at $\mathrm{V}_{\text {ISo }}$.
$I_{I S O(D) n}$ is the dynamic load current drawn from $V_{\text {ISO }}$ by an output or input channel, as shown for a single supply in Figure 20 or Figure 21 or for a double supply in Figure 24 or Figure 25.

The preceding analysis assumes a 15 pF capacitive load on each data output. If the capacitive load is larger than 15 pF , the additional current must be included in the analysis of IDDI and IISO (LOAD).

POWER CONSIDERATIONS

Soft Start Mode and Current-Limit Protection

When the ADuM347x first receives power from $V_{C C}$, it is in soft start mode, and the output voltage $\mathrm{V}_{\text {ISo }}$ is increased gradually while it is below the startup threshold. In soft start mode, the width of the PWM signal is increased gradually by the primary converter to limit the peak current during $\mathrm{V}_{\text {Iso }}$ power-up. When the output voltage is larger than the startup threshold, the PWM signal can be transferred from the secondary controller to the primary converter, and the dc-to-dc converter switches from soft start mode to the normal PWM control mode. If a short circuit occurs, the push-pull converter shuts down for about 2 ms and then enters soft start mode. If, at the end of soft start, a short circuit still exists, the process is repeated, which is called hiccup mode. If the short circuit is cleared, the ADuM347x enters normal operation.
The ADuM347x also has a pulse-by-pulse current limit, which is active in startup and normal operation, and protects the primary switches, X1 and X2, from exceeding approximately 1.2 A peak and also protects the transformer windings.

Data Channel Power Cycle

The ADuM347x data input channels on the primary side and the data input channels on the secondary side are protected from premature operation by UVLO circuitry. Below the minimum operating voltage, the power converter holds its oscillator inactive, and all input channel drivers and refresh circuits are idle. Outputs are held in a low state. This is to prevent transmission of undefined states during power-up and power-down operations.
During application of power to V_{CC}, the primary side circuitry is held idle until the UVLO preset voltage is reached. At that time, the data channels are initialized to their default low output state until they receive data pulses from the secondary side.
The primary side input channels sample the input and send a pulse to the inactive secondary output. The secondary side converter begins to accept power from the primary, and the VIso voltage starts to rise. When the secondary side UVLO is reached, the secondary side outputs are initialized to their default low state until data, either a transition or a dc refresh pulse, is received from the corresponding primary side input. It can take up to $1 \mu \mathrm{~s}$ after the secondary side is initialized for the state of the output to correlate with the primary side input.
Secondary side inputs sample their state and transmit it to the primary side. Outputs are valid one propagation delay after the secondary side becomes active.
Because the rate of charge of the secondary side is dependent on the soft start cycle, loading conditions, input voltage, and output voltage level selected, care should be taken in the design to allow the converter to stabilize before valid data is required.

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

When power is removed from V_{cc}, the primary side converter and coupler shut down when the UVLO level is reached. The secondary side stops receiving power and starts to discharge. The outputs on the secondary side hold the last state that they received from the primary until either the UVLO level is reached, and the outputs are placed in their default low state, or the outputs detect a lack of activity from the inputs, and the outputs are set to their default value before the secondary power reaches UVLO.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. Analog Devices conducts an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM347x. Accelerated life testing is performed using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined, allowing calculation of the time to failure at the working voltage of interest. The values shown in Table 11 summarize the peak voltages for 50 years of service life in several operating conditions. In many cases, the working voltage approved by agency testing is higher than the 50 -year service life voltage. Operation at working voltages higher than the service life voltage listed leads to premature insulation failure.
The insulation lifetime of the ADuM 347 x depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates, depending on whether the waveform is bipolar ac, dc, or unipolar ac. Figure 46, Figure 47, and Figure 48 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. A 50-year operating lifetime under the bipolar ac condition determines the Analog Devices recommended maximum working voltage.
In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 11 can be applied while maintaining the 50 -year minimum lifetime, provided that the voltage conforms to either the unipolar ac or dc voltage cases. Treat any crossinsulation voltage waveform that does not conform to Figure 47 or Figure 48 as a bipolar ac waveform, and limit its peak voltage to the 50-year lifetime voltage value listed in Table 11.

Figure 46. Bipolar AC Waveform
rated peak voltage
ov Figure 47.DC Waveform

RATED PEAK VOLTAGE

NOTES:

1. THE VOLTAGE IS SHOWN SINUSOIDAL FOR ILLUSTRATION PURPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLRTAGE WAVEFORM VARYING BETWEEN O AND SOME POSTIVE OR NEGATIVE, BUT THE VOLTAGE CANNOT CROSS OV.

Figure 48. Unipolar AC Waveform

ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-150-AE
Figure 49. 20-Lead Shrink Small Outline Package [SSOP]
(RS-20)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1,2}$	Number of Inputs, Vcc Side	Number of Inputs, Viso Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range (${ }^{\circ} \mathrm{C}$)	Package Description	Package Option
ADuM3470ARSZ	4	0	1	100	40	-40 to +105	20-Lead SSOP	RS-20
ADuM3470CRSZ	4	0	25	60	6	-40 to +105	20-Lead SSOP	RS-20
ADuM3471ARSZ	3	1	1	100	40	-40 to +105	20-Lead SSOP	RS-20
ADuM3471CRSZ	3	1	25	60	6	-40 to +105	20-Lead SSOP	RS-20
ADuM3472ARSZ	2	2	1	100	40	-40 to +105	20-Lead SSOP	RS-20
ADuM3472CRSZ	2	2	25	60	6	-40 to +105	20-Lead SSOP	RS-20
ADuM3473ARSZ	1	3	1	100	40	-40 to +105	20-Lead SSOP	RS-20
ADuM3473CRSZ	1	3	25	60	6	-40 to +105	20-Lead SSOP	RS-20
ADuM3474ARSZ	0	4	1	100	40	-40 to +105	20-Lead SSOP	RS-20
ADuM3474CRSZ	0	4	25	60	6	-40 to +105	20-Lead SSOP	RS-20

[^3]${ }^{2}$ Z = RoHS Compliant Part.
\qquad

[^0]: ${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; and 7075329 B2. Other patents pending.

[^1]: ${ }^{1}$ All voltages are relative to their respective grounds.

[^2]: ${ }^{1} V_{1 x}$ and $V_{0 x}$ refer to the input and output signals of a given channel ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D).

[^3]: ${ }^{1}$ Tape and reel are available. The addition of an RL7 suffix designates a 7" (500 units) tape and reel option.

