FEATURES

Enhanced system-level ESD performance per IEC 61000-4-x
High temperature operation: $125^{\circ} \mathrm{C}$
Default low output
Narrow body, RoHS-compliant, 8-lead SOIC
Low power operation
5 V operation
1.7 mA per channel maximum @ 0 Mbps to 2 Mbps
3.7 mA per channel maximum @ 10 Mbps
7.0 mA per channel maximum @ 25 Mbps

3 V operation
1.5 mA per channel maximum @ 0 Mbps to 2 Mbps
2.5 mA per channel maximum @ 10 Mbps
4.7 mA per channel maximum @ 25 Mbps

3 V/5 V level translation
High data rate: dc to $\mathbf{2 5}$ Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse-width distortion at 5 V operation
3 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE Certificate of Conformity DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak
Qualified for automotive applications

APPLICATIONS

Size-critical multichannel isolation
SPI interface/data converter isolation
RS-232/RS-422/RS-485 transceiver isolation
Digital field bus isolation

Gate drive interfaces

Hybrid electric vehicles, battery monitor, and motor drive

GENERAL DESCRIPTION

The ADuM3210/ADuM3211 are dual-channel, digital isolators based on Analog Devices, Inc., iCoupler technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, iCoupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple iCoupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these iCoupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM3210/ADuM3211 isolators provide two independent isolation channels in two channel configurations with data rates up to 25 Mbps (see the Ordering Guide). They operate with 3.3 V or 5 V supply voltages on either side, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM3210/ ADuM3211 isolators have a default output low characteristic in comparison to the ADuM3200/ ADuM3201 models that have a default output high characteristic. ADuM3210W and ADuM3211W are automotive grade versions qualified for $125^{\circ} \mathrm{C}$ operation.

In comparison to the ADuM120x isolator, the ADuM3210/
ADuM3211 isolators contain various circuit and layout changes providing increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM120x or ADuM3210/ADuM3211 products is strongly determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM3210 Functional Block Diagram

Figure 2. ADuM3211 Functional Block Diagram

Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,239.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
TABLE OF CONTENTS

Features 1
Applications
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V, 105° Operation. 3
Electrical Characteristics- $3 \mathrm{~V}, 105^{\circ} \mathrm{C}$ Operation 4
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}, 105^{\circ} \mathrm{C}$ Operation 5
Electrical Characteristics-Mixed $3 \mathrm{~V} / 5 \mathrm{~V}, 105^{\circ} \mathrm{C}$ Operation 6
Electrical Characteristics-5 V, $125^{\circ} \mathrm{C}$ Operation 7
Electrical Characteristics- $3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 8
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 9
Electrical Characteristics—Mixed 3 V/5 V, $125^{\circ} \mathrm{C}$ Operation10
Package Characteristics 11
Regulatory Information 11
Insulation and Safety-Related Specifications 11
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 12
REVISION HISTORY
11/11-Rev. D to Rev. E
Changes to Table 1, Pulse Width Parameter 3
Changes to Table 4, Pulse Width Parameter 4
Changes to Table 7, Pulse Width Parameter 5
Changes to Table 10, Pulse Width Parameter 6
6/11—Rev. C to Rev. D
Changes to Features Section, Application Section, and General Description Section 1
Changes to Propagation Delay Skew Parameter, Table 1; Opposing Direction Parameter, Table 1; and Quiescent OutputSupply Current Parameter, Table 33
Changes to Opposing-Direction Parameter, Table 4 4
Changes to Opposing-Direction Parameter, Table 7 and Logic Low Input Threshold Parameter, Table 9 5
Changes to Propagation Delay Skew Parameter, Table 10 and Changes to Table 12 6
Changes to Table 13, Table 14, and Quiescent Output Supply Current Parameter, Table 15 7
Changes to Table 16 and Table 17 8
Changes to Table 19, Table 20, and Logic Low Input ThresholdParameter, Table 219
Changes to Table 22, Table 23, and Table 24 10
Changes to Side 1 Current Parameter, Table 28; Side 2 CurrentParameter, Table 28; and Table 2912
Changes to Ambient Operating Temperature, Table 30 and Average Output Current per Pin, Table 30 13
Recommended Operating Conditions 12
Absolute Maximum Ratings 13
ESD Caution 13
Pin Configurations and Function Descriptions 14
Truth Tables. 14
Typical Performance Characteristics. 15
Applications Information 16
PC Board Layout 16
System-Level ESD Considerations and Enhancements 16
Propagation Delay-Related Parameters. 16
DC Correctness and Magnetic Field Immunity. 16
Power Consumption 17
Insulation Lifetime 18
Outline Dimensions 19
Ordering Guide 20
Automotive Products 20
Changes to Figure 9 Caption, Figure 10 Caption, and Figure 11
Caption 15
Changes to Ordering Guide 20
Added Automotive Products Section 20
9/09—Rev. B to Rev. C
Added ADuM3210A and ADuM3211A Throughout
Changes to General Description Section 1
Reformatted Electrical Characteristics Tables 3
Moved Truth Tables Section 14
Changes to Ordering Guide 20
7/09-Rev. A to Rev. B
Added ADuM3211 Throughout
Changes to Specifications Section 3
Added Table 16 19
Added Figure 5 and Table 18 20
Added Figure 11 21
Changes to Power Consumption Section 23
Changes to Ordering Guide 25
9/08-Rev. Sp0 to Rev. A
Changes to Features and General Description Sections1
Changes to Specifications Section3
Changes to Recommended Operating Conditions Section. 11
Changes to Ordering Guide 18

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V, 105° OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $C_{L}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 1.

Table 2.

Parameter	Symbol	1 Mbps-A Grade, B Grade			10 Mbps-B Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT									
ADuM3210	IDD1		1.3	1.7		3.5	4.6	mA	
	IDD2		1.0	1.6		1.7	2.8	mA	
ADuM3211	IDD1		1.1	1.5		2.6	3.4	mA	
	IDD2		1.3	1.8		3.1	4.0	mA	

Table 3. For All Models

${ }^{1}|\mathrm{CM}|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

ADuM3210/ADuM3211

ELECTRICAL CHARACTERISTICS-3 V, 105 ${ }^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: ADuM3210 supply voltages $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; ADuM3211 supply voltages $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}$, $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 4.

Parameter	Symbol	A Grade			B Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS	$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ PWD	20	6		20	5		Mbps ns	Within PWD limit 50\% input to 50\% output
Data Rate				1			10		
Propagation Delay				60			60		
Pulse Width Distortion									
ADuM3210				5			3	ns	\mid tPLH $^{\text {- }}$ tPHL ${ }^{\text {a }}$
ADuM3211				6			4	ns	$\mid \mathrm{tPLH}^{\text {- }}$ tPHL\|
Change vs. Temperature								$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$			2233				Within PWD limit
ADuM3210								ns	
ADuM3211								ns	
Propagation Delay Skew	$t_{\text {Psk }}$			29			22	ns	Between any two units
Channel Matching									
Codirectional	$\mathrm{t}_{\text {PSkc }}$			5			3	ns	
Opposing-Direction	tpskod			29			20	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0			3.0		ns	10\% to 90\%

Table 5.

Parameter	Symbol	1 Mbps-A Grade, B Grade			10 Mbps-B Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT									
ADuM3210	IDD1		0.8	1.3		2.0	3.2	mA	
	IDD2		0.7	1.0		1.1	1.7	mA	
ADuM3211	$\mathrm{I}_{\text {DD } 1}$		0.7	1.3		1.5	2.1	mA	
	IDD2		0.8	1.6		1.9	2.4	mA	

Table 6. For All Models

[^1]
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 105 ${ }^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: ADuM 3210 supply voltages $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; ADuM 3211 supply voltages $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, and CMOS signal levels, unless otherwise noted.

Table 7.

Table 8.

Parameter	Symbol	1 Mbps-A Grade, B Grade			10 Mbps-B Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT									
ADuM3210	IDD1		1.3	1.7		3.5	4.6	mA	
	$\mathrm{I}_{\mathrm{DD} 2}$		0.7	1.0		1.1	1.7	mA	
ADuM3211	IDD1		1.1	1.5		2.6	3.4	mA	
	$\mathrm{I}_{\text {D } 2}$		0.8	1.6		1.9	2.4	mA	

Table 9. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 V DDX		0.3 V ${ }_{\text {DDX }}$	V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$				V		
Logic High Output Voltages	Vor	$V_{\text {DDX }}-0.1$	$V_{\text {DDX }}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$	
		$V_{\text {DDX }}-0.5$	$V_{\text {DDX }}-0.2$		V	$l_{0 x}=-4 m A, V_{1 x}=V_{1 \times H}$	
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\text {IXL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxL }}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$\mathrm{OV} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\text {DDX }}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(Q)		0.4	0.8	mA		
Quiescent Output Supply Current	IDDo(0)		0.3	0.5	mA		
Dynamic Input Supply Current	IDDI(D)		0.19		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{IdDo}(\mathrm{D})$		0.03		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\text {IX }}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		

[^2]
ADuM3210/ADuM3211

ELECTRICAL CHARACTERISTICS—MIXED $\mathbf{3}$ V/5 V, 105 ${ }^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: ADuM 3210 supply voltages $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; ADuM3211 supply voltages $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 10.

Table 11.

Parameter	Symbol	1 Mbps-A Grade, B Grade			10 Mbps-B Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT									
ADuM3210	IDD1		0.8	1.3		2.0	3.2	mA	
	$\mathrm{I}_{\text {DD } 2}$		1.0	1.6		1.7	2.8	mA	
ADuM3211	$\mathrm{I}_{\text {DD } 1}$		0.7	1.3		1.5	2.1	mA	
	IDD2		1.3	1.8		3.1	4.0	mA	

Table 12. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 $\mathrm{V}_{\mathrm{DDX}}$			V		
Logic Low Input Threshold	VIL			0.3 V DDX	V		
Logic High Output Voltages	Vor	$V_{\text {dox }}-0.1$	$V_{\text {DDX }}$		V	$\mathrm{I}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
		$V_{\text {DDX }}-0.5$	$V_{\text {DDX }}-0.2$		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	VoL		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {lxL }}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {Ix }} \leq \mathrm{V}_{\text {DDX }}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDoI(0)		0.4	0.8	mA		
Quiescent Output Supply Current	lodo(e)		0.5	0.8	mA		
Dynamic Input Supply Current	IDDI(D)		0.10		mA/Mbps		
Dynamic Output Supply Current	lodo(0)		0.05		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		

[^3]
ELECTRICAL CHARACTERISTICS—5 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 13.

Parameter	Symbol	A Grade			B Grade and TGrade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }}$ t PLH	20		50	20		50	20		50	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			5			3			3	ns	\|t $\mathrm{tPLH}^{\text {- }}$ t ${ }_{\text {PHL }} \mid$
Change vs. Temperature			6			5			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	tpsk			20			18			18	ns	Between any two units
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			3	ns	
Opposing-Direction	tPSKod			20			18			18	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5			2.5			2.5		ns	10\% to 90\%

Table 14.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps-B Grade, C Grade, and T Grade			25 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3210	IDD1		1.3	1.7		3.5	4.6		6.6	9.0	mA	
	IDD2		1.0	1.6		1.7	2.8		3.7	4.5	mA	
ADuM3211	IDD1		1.1	1.5		2.6	3.4		5.3	7.5	mA	
	IDD2		1.3	1.8		3.1	4.0		5.9	8.0	mA	

Table 15. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 V DDX			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.3 V VDX	V		
Logic High Output Voltages	Vor	$V_{\text {DDX }}-0.1$	5.0		V	$\mathrm{I}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$	
		VDDX -0.5	4.8		V	$\mathrm{I}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IXH}}$	
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{l}_{\text {ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{X}} \leq \mathrm{V}_{\mathrm{DDX}}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(Q)		0.4	0.8	mA		
Quiescent Output Supply Current	IdDo(e)		0.4	0.8	mA		
Dynamic Input Supply Current	IDDI(D)		0.19		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{IdDo}(\mathrm{D})$		0.05		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		

[^4]
ADuM3210/ADuM3211

ELECTRICAL CHARACTERISTICS—3 V, $\mathbf{1 2 5}^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 16.

Parameter	Symbol	A Grade			B Grade and TGrade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		60	20		60	20		60	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			6			4			4	ns	$\mid \mathrm{t}_{\text {PLH }}$ - $\mathrm{t}_{\text {PHL }} \mid$
Change vs. Temperature			6			5			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	$t_{\text {PSK }}$			29			22			22	ns	Between any two units
Channel Matching												
Codirectional	tpskco			5			3			3	ns	
Opposing-Direction	tpskod			29			20			20	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0			3.0			3.0		ns	10\% to 90\%

Table 17.

Parameter	Symbol	1 Mbps—A Grade, B Grade, and C Grade			10 Mbps-B Grade, C Grade, and T Grade			25 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3210	IDD1		0.8	1.3		2.0	3.2		3.9	5.5	mA	
	IDD2		0.7	1.0		1.1	1.7		2.4	3.0	mA	
ADuM3211	$\mathrm{I}_{\text {DD } 1}$		0.7	1.3		1.5	2.1		3.1	4.5	mA	
	IDD2		0.8	1.6		1.9	2.4		3.5	5.0	mA	

Table 18. For All Models

[^5]
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 19.

Parameter	Symbol	A Grade			B Grade and T Grade			C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SWITCHING SPECIFICATIONS												
Data Rate				1			10			25	Mbps	Within PWD limit
Propagation Delay	$\mathrm{t}_{\text {PHL, }}$ tPLH	15		55	15		55	15		55	ns	50\% input to 50\% output
Pulse Width Distortion	PWD			5			3			3	ns	\|t $\mathrm{tPLH}^{\text {- }}$ tPHL ${ }^{\text {l }}$
Change vs. Temperature			6			5			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	
Pulse Width	PW	1000			100			40			ns	Within PWD limit
Propagation Delay Skew	tpsk			29			22			22	ns	Between any two units
Channel Matching												
Codirectional	$\mathrm{t}_{\text {PSKCD }}$			5			3			3	ns	
Opposing-Direction	teskod			29			20			20	ns	
Output Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0			3.0			3.0		ns	10\% to 90\%

Table 20.

Parameter	Symbol	1 Mbps-A Grade, B Grade, and C Grade			10 Mbps-B Grade, C Grade, and T Grade			25 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3210	IDD1		1.3	1.7		3.5	4.6		6.6	9.0	mA	
	IDD2		0.7	1.0		1.1	1.7		2.4	3.0	mA	
ADuM3211	IDD1		1.1	1.5		2.6	3.4		5.3	7.5	mA	
	IDD2		0.8	1.6		1.9	2.4		3.5	5.0	mA	

Table 21. For All Models

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	0.7 V DDX		0.3 V ${ }_{\text {DDX }}$	V	$\begin{aligned} & l_{o x}=-20 \mu A, V_{1 x}=V_{1 \times H} \\ & l_{o x}=-4 m A, V_{1 x}=V_{1 x H} \end{aligned}$	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$				V		
Logic High Output Voltages	Vor	$V_{\text {DDX }}-0.1$	$V_{\text {DDX }}$		V		
		$V_{\text {DDX }}-0.5$	$V_{\text {DDX }}-0.2$		V		
Logic Low Output Voltages	Vol		0.0	0.1	V	$\mathrm{logx}^{\text {a }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$	
Input Current per Channel	1	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IX }} \leq \mathrm{V}_{\text {DDX }}$	
Supply Current per Channel							
Quiescent Input Supply Current	IDDI(0)		0.4	0.8	mA		
Quiescent Output Supply Current	IDDo(e)		0.3	0.5	mA		
Dynamic Input Supply Current	IDDI(D)		0.19		mA/Mbps		
Dynamic Output Supply Current	$\mathrm{IDDO}(\mathrm{D})$		0.03		mA/Mbps		
AC SPECIFICATIONS							
Common-Mode Transient Immunity ${ }^{1}$	\|CM		25	35			$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DDX}}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		

[^6]
ADuM3210/ADuM3211

ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, $125^{\circ} \mathrm{C}$ OPERATION

All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted. Switching specifications are tested with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and CMOS signal levels, unless otherwise noted.

Table 22.

Table 23.

Parameter	Symbol	1 Mbps—A Grade, B Grade, and C Grade			10 Mbps-B Grade, C Grade, and T Grade			25 Mbps-C Grade			Unit	Test Conditions
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
SUPPLY CURRENT												
ADuM3210	IDD1		0.8	1.3		2.0	3.2		3.9	5.5	mA	
	IDD2		1.0	1.6		1.7	2.8		3.7	4.5	mA	
ADuM3211	$\mathrm{I}_{\text {DD } 1}$		0.7	1.3		1.5	2.1		3.1	4.5	mA	
	IDD2		1.3	1.8		3.1	4.0		5.9	8.0	mA	

Table 24. For All Models

[^7]
PACKAGE CHARACTERISTICS

Table 25.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	Cloo		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	Cl_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		46		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		41		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM3210/ADuM3211 are approved by the organizations listed in Table 26.
Table 26.

UL	CSA	VDE
Recognized under UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12²
Single/basic 2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, $400 \mathrm{~V} \mathrm{rms} \mathrm{(566} \mathrm{~V} \mathrm{peak)} \mathrm{maximum} \mathrm{working} \mathrm{voltage}$ Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 Vrms (1131 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577, each ADuM3210/ADuM3211 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM3210/ADuM3211 is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$). An asterisk (*) marking on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 27.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	2500	4.90 min	Vm rms
Minimum External Air Gap (Clearance)	L(I02)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Insulation distance through insulation
Minimum Internal Gap (Internal Clearance)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group				

ADuM3210/ADuM3211

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk (${ }^{*}$) marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.

Table 28.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			Ito IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1				
Maximum Working Insulation Voltage		Viorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Case Temperature		T_{s}	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		Is1	160	mA
Side 2 Current		I_{5}	170	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 29.

Parameter	Symbol	Rating
Operating Temperature	T_{A}	
ADuM3210A/ADuM3211A		$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
ADuM3210B/ADuM3211B		$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
ADuM3210T/ADuM3211T		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADuM3210WA/ADuM3211WA		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADuM3210WB/ADuM3211WB		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADuM3210WC/ADuM3211WC		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltages		
ADuM3210A/ADuM3211A		
ADuM3210B/ADuM3211B		2.7 V to 5.5 V
ADuM3210T/ADuM3211T		2.7 V to 5.5 V
ADuM3210WA/ADuM3211WA		3 V to 5.5 V
ADuM3210WB/ADuM3211WB		3 V to 5.5 V
ADuM3210WC/ADuM3211WC		3 V to 5.5 V
Maximum Input Signal Rise and		3 V to 5.5 V
Fall Times		1 ms

[^8]
ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 30.

ameter	Symbol	Rating
St	$\mathrm{T}_{\text {st }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature	TA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ}$
Supply Voltages ${ }^{1}$	$V_{D D 1}, V_{D}$	-0.5 V to +7.0 V
Input Voltage ${ }^{1,2}$	$V_{\text {IA }}, V_{\text {IB }}$	-0.5 V to $\mathrm{V}_{\text {DII }}+0.5 \mathrm{~V}$
Output Voltage ${ }^{1,2}$	$V_{\text {OA }}, \mathrm{V}_{\text {Ob }}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current per Pin 3	Io	-22 mA to +22 m
Common-Mode Transients ${ }^{4}$	CM	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$
${ }^{1}$ All voltages are relative to their respective ground. ${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. ${ }^{3}$ See Figure 3 for information on maximum allowable current for various temperatures. ${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Rating can cause latch-up or permanent damage.		
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.		

Table 31. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform AC Voltage, Unipolar Waveform Functional Insulation	565	V peak	50-year minimum lifetime
Basic Insulation	560	V peak	V peak
DC Voltage Functional Insulation	1131	Maximum approved working voltage per IEC 60950-1 Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10	
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10			

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime for more details.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADuM3210 Pin Configuration

Figure 5. ADuM3211 Pin Configuration

Table 32. ADuM3210 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VD1	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V .
2	$V_{\text {IA }}$	Logic Input A.
3	$V_{\text {IB }}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{V}_{\text {ов }}$	Logic Output B.
7	$V_{\text {OA }}$	Logic Output A.
8	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V .

Table 33. ADuM3211 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD1}}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A. Logic Input B.
3	$\mathrm{~V}_{\mathrm{IB}}$	Ground 1. Ground reference for 4 Isolator Side 1.
5	GND_{1}	Ground 2. Ground reference for Isolator Side 2.
6	VND_{2}	Logic Output B. 7
Logic Input A. Supply Voltage for Isolator Side 2, 2.7V to 5.5 V.		

TRUTH TABLES

Table 34. ADuM3210 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input ${ }^{1}$	$\mathrm{V}_{\text {IB }}$ Input ${ }^{1}$	$\mathrm{V}_{\mathrm{DD} 1}$ State	V ${ }_{\text {DD } 2}$ State	$\mathrm{V}_{\text {OA }}$ Output ${ }^{1}$	Vob Output ${ }^{1}$	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDI}}$ power restoration
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration

${ }^{1} \mathrm{H}$ refers to a high logic, and L refers to a low logic.

Table 35. ADuM3211 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input ${ }^{1}$	$\mathrm{V}_{\text {IB }}$ Input ${ }^{1}$	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\text {DD } 2}$ State	V_{OA} Output ${ }^{1}$	Vob Output ${ }^{1}$	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	Indeterminate	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDI}}$ power restoration
X	X	Powered	Unpowered	L	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDO}}$ power restoration

[^9]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. ADuM3210 Typical IDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. ADuM3210 Typical IDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 11. ADuM3211 Typical IDD1 or IDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM3210/ADuM3211 digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM3210/ADuM3211 incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include:

- ESD protection cells were added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices is minimized by use of a guarding and isolation technique between the PMOS and NMOS devices.
- Areas of high electric field concentration are eliminated using 45° corners on metal traces.
- Supply pin overvoltage is prevented with larger ESD clamps between each supply pin and its respective ground.
While the ADuM3210/ADuM3211 improve system-level ESD reliability, they are no substitute for a robust system-level design. For detailed recommendations on board layout and system-level design, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 12. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.

Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM3210/ADuM3211 component.
Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM3210/ ADuM3211 components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $2 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than approximately $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default state (see Table 34 and Table 35) by the watchdog timer circuit.
The ADuM3210/ADuM3211 are immune to external magnetic fields. The limitation on the ADuM3210/ADuM3211 magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM3210/ADuM3211 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-\mathrm{d} \beta / d t) \sum \pi r_{n}^{2}, n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the nth turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM3210/ ADuM3211 and an imposed requirement that the induced voltage is at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 13.

Figure 13. Maximum Allowable External Magnetic Flux Density

For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , which is still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM3210/ADuM3211 transformers. Figure 14 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM3210/ADuM3211 are immune and can be affected only by extremely large currents operated at a high frequency and very close to the component. For the 1 MHz example, a 0.5 kA current would have to be placed 5 mm away from the ADuM3210/ADuM3211 to affect the operation of the component.

Figure 14. Maximum Allowable Current for Various Current-to-ADuM3210/-ADuM3211 Spacings
Note that at combinations of strong magnetic fields and high frequencies, any loops formed by the printed circuit board (PCB) traces may induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM3210/ ADuM3211 isolator is a function of the supply voltage, channel data rate, and channel output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O}(Q) & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O \text { (D) }}$ are the input and output dynamic supply currents per channel (mA/Mbps).
$I_{D D I(Q)}, I_{D D O}(Q)$ are the specified input and output quiescent supply currents (mA).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled.

Figure 6 provides the input supply currents per channel as a function of data rate. Figure 7 and Figure 8 provide the output supply currents per channel as a function of data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 9 through Figure 11 provide total $\mathrm{I}_{\mathrm{DD1}}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current as a function of data rate for the ADuM3210 and ADuM3211 channel configurations.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM3210/ADuM3211.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage.

The values shown in Table 31 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.
The insulation lifetime of the ADuM3210/ADuM3211 depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these different isolation voltage waveforms.
A bipolar ac voltage environment is the most stringent. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 31 can be applied while maintaining the 50 -year minimum lifetime provided that the voltage conforms to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 16 or Figure 17 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50-year lifetime voltage value listed in Table 31.

Note that the voltage presented in Figure 16 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 15. Bipolar AC Waveform

Figure 16. Unipolar AC Waveform

Figure 17. DC Waveform

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 18. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ${ }^{1,2}$	Number of Inputs, $V_{D D 1}$ Side	Number of Inputs, $V_{D D 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Option ${ }^{3}$
ADuM3210ARZ	2	0	1	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210ARZ-RL7	2	0	1	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210BRZ	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210BRZ-RL7	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210TRZ	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210TRZ-RL7	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WARZ	2	0	1	50	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WARZ-RL7	2	0	1	50	5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WBRZ	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WBRZ-RL7	2	0	10	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WCRZ	2	0	25	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210WCRZ-RL7	2	0	25	50	3	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211ARZ	1	1	1	50	6	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3211ARZ-RL7	1	1	1	50	6	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3211BRZ	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3211BRZ-RL7	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3211TRZ	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211TRZ-RL7	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WARZ	1	1	1	50	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WARZ-RL7	1	1	1	50	6	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WBRZ	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WBRZ-RL7	1	1	10	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WCRZ	1	1	25	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3211WCRZ-RL7	1	1	25	50	4	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Application.
${ }^{3}$ R-8 $=8$-lead, narrow body SOIC_N.

AUTOMOTIVE PRODUCTS

The ADuM3210W/ADuM3211W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007-2011 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^2]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^3]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_{O}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^4]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^5]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^6]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD}}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^7]: ${ }^{1}|C M|$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}$ DD. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^8]: ${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

[^9]: ${ }^{1} \mathrm{H}$ refers to a high logic, L refers to a low logic, and X refers to high or low logic, don't care.

