VSSOP16-P-0030-0.50

VQON16-P-0303-0.50

VSSOP16-P-0030-0.50: 0.02 g (typ.)

VQON16-P-0303-0.50: 0.013 g (typ.)

TC7MP3125FK

TC7MP3125FTG

Weight

TOSHIBA Digital Integrated Circuit Silicon Monolithic

TC7MPH3125FK,TC7MPH3125FTG

Low Voltage/Low Power 2-Bit × 2 Dual Supply Bus Transceiver with Bushold

The TC7MPH3125FK/FTG is a dual supply, advanced high-speed CMOS 4-bit dual supply voltage interface bus transceiver fabricated with silicon gate CMOS technology.

Designed for use as an interface between a 1.2-V, 1.5-V, 1.8-V, or 2.5-V bus and a 1.8-V, 2.5-V or 3.6-V bus in mixed 1.2-V, 1.5-V, 1.8-V or 2.5-V/1.8-V, 2.5-V or 3.6-V supply systems.

The A-port interfaces with the 1.2-V, 1.5-V, 1.8-V or 2.5-V bus, the B-port with the 1.8-V, 2.5-V, 3.3-V bus.

The direction of data transmission is determined by the level of the DIR input. The enable input (\overline{OE}) can be used to disable the device so that the buses are effectively isolated. The bus of a B bus side at floating state is maintained in an appropriate logic level due to a bushold circuit to a B bus. Moreover, the bushold circuit which is added to a B bus is off when \overline{OE} is low.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- Bidirectional interface between 1.2-V and 1.8-V, 1.2-V and 2.5-V, 1.2-V and 3.3-V, 1.5-V and 2.5-V, 1.5-V and 3.3-V, 1.8-V and 2.5-V, 1.8-V and 3.3-V or 2.5-V and 3.3-V buses.
- High-speed operation: $t_{pd} = 6.8 \text{ ns} (\text{max}) (V_{CCA} = 2.5 \pm 0.2 \text{ V})$,

 $V_{CCB} = 3.3 \pm 0.3 \text{ V}$

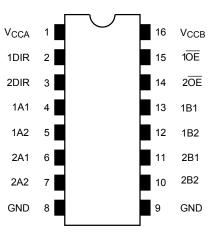
 $t_{pd} = 8.9 \text{ ns (max)} (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$ $t_{pd} = 10.3 \text{ ns (max)} (V_{CCA} = 1.5 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$

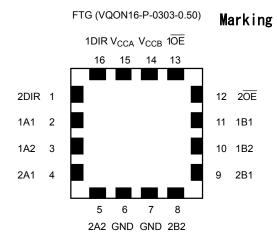
- $t_{pd} = 61 \text{ ns} (\text{max}) (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$
- $t_{pd} = 9.5 \text{ ns} (\text{max}) (\text{V}_{\text{CCA}} = 1.8 \pm 0.15 \text{ V}, \text{V}_{\text{CCB}} = 2.5 \pm 0.2 \text{ V})$ $t_{pd} = 10.8 \text{ ns} (\text{max}) (\text{V}_{\text{CCA}} = 1.5 \pm 0.15 \text{ V}, \text{V}_{\text{CCB}} = 2.5 \pm 0.2 \text{ V})$
- $t_{pd} = 10.8$ hs (max) (VCCA = 1.5 ± 0.15 V, VCCB = 2.5 ± 0.2 V) $t_{pd} = 60$ ns (max) (VCCA = 1.2 ± 0.15 V, VCCB = 2.5 ± 0.2 V)
- $t_{pd} = 58 \text{ ns} (max) (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$ $t_{pd} = 58 \text{ ns} (max) (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 1.8 \pm 0.15 \text{ V})$
- Output current: $IOH/IOL = \pm 12 \text{ mA} \text{ (min)} \text{ (VCC} = 3.0 \text{ V)}$ $IOH/IOL = \pm 9\text{mA} \text{ (min)} \text{ (VCC} = 2.3 \text{ V)}$ $IOH/IOL = \pm 3 \text{ mA} \text{ (min)} \text{ (VCC} = 1.65 \text{ V)}$ $IOH/IOL = \pm 1\text{mA} \text{ (min)} \text{ (VCC} = 1.4 \text{ V)}$
- Latch-up performance: ±300 mA
- ESD performance: Machine model $\geq \pm 200$ V

Human body model ≥ ±2000 V

- Ultra-small package: VSSOP (US16), VQON16
- Bushold circuit is build in only the B bus side. (Only in $\overline{OE} = "H"$, a former state is maintained.)
- Low current consumption: Using the new circuit significantly reduces current consumption when $\overline{OE} = "H"$. Suitable for battery-driven applications such as PDAs and cellular phones.
- Floating A-bus and B-bus are permitted. (when $\overline{OE} = "H"$)
- 3.6-V tolerant function provided on A-bus terminal, DIR and $\overline{\text{OE}}$ terminal.


Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.


Note: When mounting VQON package, the type of recommended flux is RA or RMA.



1


Pin Assignment (top view)

IEC Logic Symbol

FTG (VQON16-P-0303-0.50)

P 0 2

Product Name

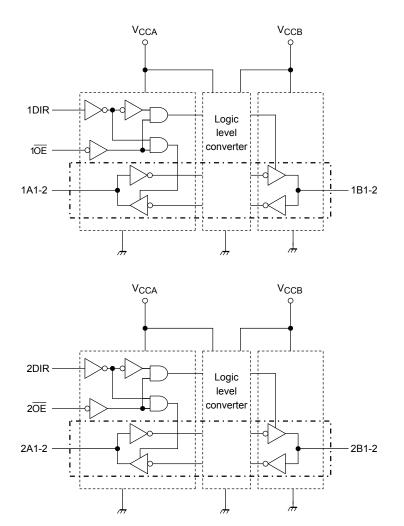
* * * *

Lot trace code

Truth Table

Inp	outs	Fund	Bus 1B1-1B2		Bushold Circuit
10E	1DIR	Bus 1A1-1A2			(B bus)
L	L	Output	Input	A = B	OFF
L	Н	Input	Output	B = A	OFF
Н	Х	Z		Z	ON*

Inp	outs	Fund	unction		Bushold Circuit
20E	2DIR	Bus 2A1-2A2	Bus 2B1-2B2	Outputs	(B bus)
L	L	Output Input		A = B	OFF
L	Н	Input	Output	B = A	OFF
н	Х	Z		Z	ON*


X: Don't care

Z: High impedance

*: Logic state just before becoming disable is maintained.

<u>TOSHIBA</u>

Block Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage (Note 2)	V _{CCA}	-0.5 to 4.6	V	
Tower supply voltage (Note 2)	V _{CCB}	-0.5 to 4.6	•	
DC input voltage (DIR, OE)	V _{IN}	–0.5 to 4.6	V	
	Vuo	-0.5 to 4.6 (Note 3)		
DC bus I/O voltage	V _{I/OA}	-0.5 to $V_{\mbox{CCA}}$ + 0.5 (Note 4)	V	
	V _{I/OB}	-0.5 to V_{CCB} + 0.5 (Note 4)		
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{I/OK}	±50 (Note 5)	mA	
DC output current	IOUTA	±25	mA	
	IOUTB	±25		
DC V _{CC} /ground current per supply pin	ICCA	±50	mA	
	ICCB	±50		
Power dissipation	PD	180	mW	
Storage temperature	T _{stg}	–65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: Don't supply a voltage to $V_{\mbox{CCB}}$ pin when $V_{\mbox{CCA}}$ is in the OFF state.
- Note 3: Output in OFF state
- Note 4: High or Low stats. IOUT absolute maximum rating must be observed.
- Note 5: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CCA}	1.1 to 2.7	V	
(Note 2)	V _{CCB}	1.65 to 3.6	v	
Input voltage (DIR, OE)	V _{IN}	0 to 3.6	V	
	Music	0 to 3.6 (Note 3)		
Bus I/O voltage	V _{I/OA}	0 to V _{CCA} (Note 4)	V	
	V _{I/OB}	0 to V _{CCB} (Note 4)		
		±9 (Note 5)		
	Ιουτα	±3 (Note 6)		
Output current		±1 (Note 7)	mA	
		±12 (Note 8)	mA	
	IOUTB	±9 (Note 9)		
		±3 (Note 10)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 11)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.

- Note 2: Don't use in $V_{CCA} > V_{CCB}$
- Note 3: Output in OFF state
- Note 4: High or low state
- Note 5: V_{CCB} = 2.3 to 2.7 V
- Note 6: $V_{CCB} = 1.65$ to 1.95 V
- Note 7: $V_{CCB} = 1.4$ to 1.6 V
- Note 8: $V_{CCA} = 3.0$ to 3.6 V
- Note 9: $V_{CCA} = 2.3$ to 2.7 V
- Note 10: $V_{CCA} = 1.65$ to 1.95 V
- Note 11: $V_{IN} = 0.8$ to 2.0 V, $V_{CCA} = 2.5$ V, $V_{CCB} = 3.0$ V

Electrical Characteristics

DC Characteristics (2.3 V \leq V_{CCA} \leq 2.7 V, 2.7 V < V_{CCB} \leq 3.6 V)

		1				-		
Characteristics	Symbol	Test C	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40) to 85°C	Unit
	- ,			- 00/ (-)	1008(1)	Min	Max	
H-level input voltage	VIHA	DIR, OE, An		2.3 to 2.7	2.7 to 3.6	1.6		v
Thevel input voltage	VIHB	Bn		2.3 to 2.7	2.7 to 3.6	2.0	_	v
L-level input voltage	VILA	DIR, $\overline{\text{OE}}$, An		2.3 to 2.7	2.7 to 3.6	_	0.7	V
L-level input voltage	V _{ILB}	Bn		2.3 to 2.7	2.7 to 3.6	_	0.8	v
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHA} = -9 \text{ mA}$	2.3	2.7 to 3.6	1.7		V
	V _{OHB}		$I_{OHB} = -100 \ \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCB} - 0.2		v
			$I_{OHB} = -12 \text{ mA}$	2.3 to 2.7	3.0	2.2		
	Vali		$I_{OLA} = 100 \ \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	
L-level output voltage	V _{OLA}	$I_{OLA} = 9 \text{ mA}$		2.3	2.7 to 3.6	_	0.6	V
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OLB}=100\ \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	V
	▲OLB	$I_{OLB} = 12 \text{ mA}$		2.3 to 2.7	3.0	_	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$	2		2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$	V	2.3 to 2.7	2.7 to 3.6	_	±2.0	μA
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±1.0	μA
Bushold input minimum drive hold		V _{IN} = 0.8 V		2.3 to 2.7	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		2.3 to 2.7	3.0	-75	_	μA
Bushold input over-drive current to			(Note 1)	2.3 to 2.7	3.6	_	550	
change state	IIOD		(Note 2)	2.3 to 2.7	3.6	_	-550	μA
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	2.3 to 2.7	0	_	2.0	μA
	I _{OFF3}			2.3 to 2.7	Open		2.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or Q_{INB}		2.3 to 2.7	2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or Q_{INB}		2.3 to 2.7	2.7 to 3.6	_	2.0	μA
	ICCA	$V_{CCA} \leq (V_{IN}, V_O$	UT) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±2.0	
	ICCB	$V_{CCB} \leq (V_{IN}, V_O)$	UT) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6		±2.0	μΑ
	ICCTB	$V_{INB} = V_{CCB} - 0$.6 V per input	2.3 to 2.7	2.7 to 3.6	_	750.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.7 V < V_{CCB} \leq 3.6 V)

						Ta = -40 to 85°C		
Characteristics	Symbol	Test C	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, OE, An		1.65 to 2.3	2.7 to 3.6	0.65 × V _{CCA}		V
	VIHB	Bn		1.65 to 2.3	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.65 to 2.3	2.7 to 3.6	_	$\begin{array}{c} 0.35 \times \\ V_{CCA} \end{array}$	V
	V _{ILB}	Bn		1.65 to 2.3	2.7 to 3.6		0.8	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -3 \text{ mA}$	1.65	2.7 to 3.6	1.25	—	V
n-level oulput voltage	V _{OHB}		$I_{OHB} = -100 \ \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCB} - 0.2	_	v
			$I_{OHB} = -12 \text{ mA}$	1.65 to 2.3	3.0	2.2	—	
	Vola		$I_{OLA} = 100 \ \mu A$	1.65 to 2.3	2.7 to 3.6		0.2	
L-level output voltage	VOLA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OLA} = 3 \text{ mA}$	1.65	2.7 to 3.6	—	0.3	V
	Vaia	VIN - VIH OL VIL	$I_{OLB}=100 \ \mu A$	1.65 to 2.3	2.7 to 3.6		0.2	v
	VOLB		$I_{OLB} = 12 \text{ mA}$	1.65 to 2.3	3.0	_	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	1.6		2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.65 to 2.3	2.7 to 3.6		±2.0	μA
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±1.0	μA
Bushold input minimum drive hold		$V_{IN} = 0.8 \ V$		1.65 to 2.3	3.0	75	_	
current	IIHOLD	$V_{IN} = 2.0 V$		1.65 to 2.3	3.0	-75	_	μA
Bushold input over-drive current			(Note 1)	1.65 to 2.3	3.6	_	550	
to change state	liod		(Note 2)	1.65 to 2.3	3.6	_	-550	μA
	I _{OFF1}			0	0		2.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0		2.0	μA
	I _{OFF3}			1.65 to 2.3	Open		2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.65 to 2.3	2.7 to 3.6		2.0	
Quiescent supply current	ICCB	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or	GND	1.65 to 2.3	2.7 to 3.6	_	2.0	μA
	I _{CCA}	$V_{CCA} \leq (V_{IN}, V_{CA})$	UT) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±2.0	ıιΔ
	I _{CCB}	$V_{CCB} \leq (V_{IN}, V_{C})$	UT) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±2.0	μΑ
	I _{CCTB}	$V_{INB} = V_{CCB} - C$.6 V per input	1.65 to 2.3	2.7 to 3.6	—	750.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Test C	andition		V 00	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test G	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	VIHA	DIR, OE, An		1.4 to 1.65	2.7 to 3.6	$0.65 \times V_{CCA}$	_	V
	VIHB	Bn		1.4 to 1.65	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.4 to 1.65	2.7 to 3.6	_	$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
	VILB	Bn		1.4 to 1.65	2.7 to 3.6	_	0.8	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -1 \text{ mA}$	1.4	2.7 to 3.6	1.05	—	V
Thevel output voltage	V _{OHB}		$I_{OHB} = -100 \ \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCB} - 0.2		v
			$I_{OHB} = -12 \text{ mA}$	1.4 to 1.65	3.0	2.2	—	
	V _{OLA}		$I_{OLA} = 100 \ \mu A$	1.4 to 1.65	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLA} = 1 \text{ mA}$	1.4	2.7 to 3.6	_	0.35	V
E level output voltage	V _{OLB}		$I_{OLB}=100~\mu A$	1.4 to 1.65	2.7 to 3.6	—	0.2	v
	VOLB		$I_{OLB} = 12 \text{ mA}$	1.4 to 1.65	3.0	—	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$ 1.		2.7 to 3.6	_	±2.0	•
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.4 to 1.65	2.7 to 3.6	_	±2.0	μA
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.4 to 1.65	2.7 to 3.6	—	±1.0	μA
Bushold input minimum drive hold		$V_{IN} = 0.8 V$		1.4 to 1.65	3.0	75	_	
current	IHOLD	$V_{IN} = 2.0 V$		1.4 to 1.65	3.0	-75	—	μA
Bushold input over-drive current			(Note 1)	1.4 to 1.65	3.6	_	550	
to change state	IIOD		(Note 2)	1.4 to 1.65	3.6	_	-550	μA
	IOFF			0	0		2.0	
Power-off leakage current	I _{OFF}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0		2.0	μA
	IOFF			1.4 to 1.65	Open	_	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.4 to 1.65	2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.4 to 1.65	2.7 to 3.6		2.0	μA
	ICCA	$V_{CCA} \leq (V_{IN}, V_O)$	uut) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	—	±2.0	
	I _{CCB}	$V_{CCB} \leq (V_{IN}, \ V_O$	uut) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	—	±2.0	μA
	Ісств	$V_{INB} = V_{CCB} - 0$.6 V per input	1.4 to 1.65	2.7 to 3.6	_	750.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.7 V < V_{CCB} \leq 3.6 V)

		T (0				Ta = -40) to 85°C	TT •.
Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, OE, An		1.1 to 1.4	2.7 to 3.6	$0.65 \times V_{CCA}$		v
	VIHB	Bn		1.1 to 1.4	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.1 to 1.4	2.7 to 3.6	_	$0.30 \times V_{CCA}$	v
	V_{ILB}	Bn		1.1 to 1.4	2.7 to 3.6	_	0.8	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.1 to 1.4	2.7 to 3.6	V _{CCA} - 0.2		v
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHB}=-100~\mu A$	1.1 to 1.4	2.7 to 3.6	V _{CCB} - 0.2		
			$I_{OHB} = -12 \text{ mA}$	1.1 to 1.4	3.0	2.2		
	V _{OLA}		$I_{OLA}=100~\mu A$	1.1 to 1.4	2.7 to 3.6	—	0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OLB} = 100 \ \mu\text{A}$ 1		2.7 to 3.6	—	0.2	V
	VOLB	I _{OLB} = 12 mA		1.1 to 1.4	3.0	—	0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V _{OUT} = 0 to 3.6 V		2.7 to 3.6	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$			2.7 to 3.6		±2.0	μA
Input leakage current	I _{IN}	V_{IN} (DIR, \overline{OE}) :	= 0 to 3.6 V	1.1 to 1.4	2.7 to 3.6		±1.0	μA
Bushold input minimum drive hold		$V_{IN} = 0.8 V$		1.1 to 1.4	3.0	75	_	
current	IIHOLD	$V_{IN} = 2.0 V$		1.1 to 1.4	3.0	-75		μA
Bushold input over-drive current	liod		(Note 1)	1.1 to 1.4	3.6	_	550	μA
to change state	UOD		(Note 2)	1.1 to 1.4	3.6	—	-550	μΛ
	I _{OFF1}			0	0	—	2.0	
Power-off leakage current	I _{OFF2}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	—	2.0	μA
	I _{OFF3}			1.1 to 1.4	Open	—	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	2.7 to 3.6	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$	GND	1.1 to 1.4	2.7 to 3.6		2.0	μA
	ICCA	$V_{CCA} \leq (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6		±2.0	
	ICCB	$V_{CCB} \leq (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6		±2.0	μΑ
	Ісств	$V_{INB} = V_{CCA} - 0$.6 V per input	1.1 to 1.4	2.7 to 3.6		750.0	

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Question	Test C	andition	N/ 00	V 00	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test G	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, OE, An		1.65 to 2.3	2.3 to 2.7	$0.65 \times V_{CCA}$	_	V
	VIHB	Bn		1.65 to 2.3	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.65 to 2.3	2.3 to 2.7	_	$\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$	V
	V _{ILB}	Bn		1.65 to 2.3	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.65 to 2.3	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -3 \text{ mA}$	1.65	2.3 to 2.7	1.25		V
n-level output voltage	V _{OHB}		$I_{OHB} = -100 \ \mu A$	1.65 to 2.3	2.3 to 2.7	V _{CCB} - 0.2		v
			$I_{OHB} = -9 \text{ mA}$	1.65 to 2.3	2.3	1.7		
	Vola		I _{OLA} = 100 μA 1.6		2.3 to 2.7	_	0.2	
L-level output voltage	Vola	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLA} = 3 \text{ mA}$	1.65	2.3 to 2.7	_	0.3	V
L-level output voltage	VOLB		$I_{OLB}=100~\mu A$	1.65 to 2.3	2.3 to 2.7		0.2	
	VOLB		$I_{OLB} = 9mA$	1.65 to 2.3	2.3	_	0.6	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	1		2.3 to 2.7	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.65 to 2.3	2.3 to 2.7	_	±2.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±1.0	μA
Bushold input minimum drive hold		V _{IN} = 0.7 V		1.65 to 2.3	2.3	45	_	٩
current	IIHOLD	V _{IN} = 1.6 V		1.65 to 2.3	2.3	-45	_	μA
Bushold input over-drive current	l		(Note 1)	1.65 to 2.3	2.7	—	450	
to change state	liod		(Note 2)	1.65 to 2.3	2.7	_	-450	μA
	I _{OFF}			0	0	_	2.0	
Power-off leakage current	I _{OFF}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	2.0	μA
	IOFF			1.65 to 2.3	Open		2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.65 to 2.3	2.3 to 2.7	_	2.0	
Quiescent supply current	ICCB	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.65 to 2.3	2.3 to 2.7	_	2.0	μΑ
	I _{CCA}	$V_{CCA} \leq (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±2.0	
	I _{CCB}	$V_{CCB} \leq (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	—	±2.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Question	Test C	andition	N 00	V 00	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test G	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, OE, An		1.4 to 1.65	2.3 to 2.7	$0.65 \times V_{CCA}$	_	V
	VIHB	Bn		1.4 to 1.65	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.4 to 1.65	2.3 to 2.7	_	$0.30 \times V_{CCA}$	V
	V _{ILB}	Bn 1		1.4 to 1.65	2.3 to 2.7		0.7	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage		VIN = VIH or VII	$I_{OHA} = -1 \text{ mA}$	1.4	2.3 to 2.7	1.05		V
The ver output voltage	V _{OHB}		$I_{OHB} = -100 \ \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCB} - 0.2		v
			$I_{OHB} = -9 \text{ mA}$	1.4 to 1.65	2.3	1.7		
	Vola	I _{OLA} = 100 μA 1.4		1.4 to 1.65	2.3 to 2.7	_	0.2	
L-level output voltage	VOLA	Vivi – Viui or Viu	$I_{OLA} = 1 \text{ mA}$	1.4	2.3 to 2.7	_	0.35	V
	VOLB	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OLB}=100~\mu A$	1.4 to 1.65	2.3 to 2.7	_	0.2	
	VOLB		$I_{OLB} = 9mA$	1.4 to 1.65	2.3	_	0.6	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$			2.3 to 2.7	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.4 to 1.65	2.3 to 2.7	_	±2.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±1.0	μA
Bushold input minimum drive hold	-	$V_{IN} = 0.7 V$		1.4 to 1.65	2.3	45	_	٩
current	IHOLD	V _{IN} = 1.6 V		1.4 to 1.65	2.3	-45	_	μA
Bushold input over-drive current	han		(Note 1)	1.4 to 1.65	2.7	_	450	
to change state	liod		(Note 2)	1.4 to 1.65	2.7	_	-450	μA
	I _{OFF1}			0	0	_	2.0	
Power-off leakage current	I _{OFF2}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	2.0	μA
	I _{OFF3}			1.4 to 1.65	Open		2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.4 to 1.65	2.3 to 2.7	_	2.0	
Quiescent supply current	ICCB	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.4 to 1.65	2.3 to 2.7	_	2.0	μA
	I _{CCA}	$V_{CCA} \leq (V_{IN}, \ V_O$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7		±2.0	μA
	I _{CCB}	$V_{CCB} \leq (V_{IN}, V_{O}$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±2.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Test C	andition			Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	V _{IHA}	DIR, OE, An		1.1 to 1.4	2.3 to 2.7	$0.65 \times V_{CCA}$	_	V
	VIHB	Bn		1.1 to 1.4	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, OE, An		1.1 to 1.4	2.3 to 2.7	_	$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
	V_{ILB}	Bn		1.1 to 1.4	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHB} = -100 \ \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCB} - 0.2	_	V
	0112		I _{OHB} = -9 mA	1.1 to 1.4	2.3	1.7	_	
	V _{OLA}	I _{OLA} = 100 μA 1		1.1 to 1.4	2.3 to 2.7	—	0.2	
L-level output voltage	VOLB	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL} \boxed{I_{OLB} = 100 \ \mu A} 1$ $I_{OLB} = 9 \ m A 1$		2.3 to 2.7	—	0.2	V
	VOLB				2.3	_	0.6	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$ 1		2.3 to 2.7	—	±2.0	•
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$	V	1.1 to 1.4	2.3 to 2.7		±2.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.1 to 1.4	2.3 to 2.7	—	±1.0	μA
Bushold input minimum drive hold		V _{IN} = 0.7 V		1.1 to 1.4	2.3	45	_	
current	IIHOLD	V _{IN} = 1.6 V		1.1 to 1.4	2.3	-45	_	μA
Bushold input over-drive current	liod		(Note 1)	1.1 to 1.4	2.7	_	450	μA
to change state	UOI		(Note 2)	1.1 to 1.4	2.7	_	-450	μA
	I _{OFF1}			0	0		2.0	
Power-off leakage current	I _{OFF2}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	—	2.0	μA
	I _{OFF3}			1.1 to 1.4	Open	_	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or C_{CCB}		1.1 to 1.4	2.3 to 2.7	—	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	2.3 to 2.7	_	2.0	μΑ
	I _{CCA}	$V_{CCA} \leq (V_{IN}, V_O)$	u _T) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±2.0	
	ICCB	$V_{CCB} \leq (V_{IN}, V_O)$	UT) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7		±2.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 1.65 V \leq V_{CCB} < 2.3 V)

Characteristics	Symbol	Tost C	ondition	Vaat (V)		Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test Co	JIIIIIIIIII	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
H-level input voltage	VIHA	DIR, OE, An		1.1 to 1.4	1.65 to 2.3	$\begin{array}{c} 0.65 \times \\ V_{CCAB} \end{array}$	_	V
nievei input voitage	VIHB	Bn		1.1 to 1.4	1.65 to 2.3	$0.65 \times V_{CC}$	_	v
L-level input voltage	V _{ILA}	DIR, OE, An		1.1 to 1.4	1.65 to 2.3	_	$\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$	V
L-level input voltage	V _{ILB}	Bn		1.1 to 1.4	1.65 to 2.3		$\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$	v
	V _{OHA}		$I_{OHA} = -100 \ \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCA} - 0.2	—	
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OHB} = -100 \ \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCB} - 0.2	—	V
			$I_{OHB} = -3 \text{ mA}$	1.1 to 1.4	1.65	1.25		
	V _{OLA}		$I_{OLA}=100~\mu A$	1.1 to 1.4	1.65 to 2.3	—	0.2	
L-level output voltage	VOLB	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OLB}=100~\mu A$	1.1 to 1.4	1.65 to 2.3	—	0.2	V
	VOLB		$I_{OLB} = 3 \text{ mA}$		1.65	_	0.3	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.1 to 1.4	1.65 to 2.3	_	±2.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	V	1.1 to 1.4	1.65 to 2.3		±2.0	μA
Input leakage current	I _{IN}	V _{IN} (DIR, OE)	= 0 to 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±1.0	μA
Bushold input minimum drive hold		V _{IN} = 0.58 V		1.1 to 1.4	1.65	20	_	
current	IHOLD	V _{IN} = 1.07 V		1.1 to 1.4	1.65	-20		
Bushold input over-drive current			(Note 1)	1.1 to 1.4	1.95	_	300	
to change state	liod		(Note 2)	1.1 to 1.4	1.95	—	-300	
	IOFF1			0	0		2.0	
Power-off leakage current	I _{OFF2}	$V_{IN}, V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0		2.0	μA
	I _{OFF3}			1.1 to 1.4	Open	_	2.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	1.65 to 2.3	_	2.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	1.65 to 2.3		2.0	μA
	ICCA	$V_{CCA} \leq (V_{IN}, V_O)$	UT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±2.0	^
	I _{CCB}	$V_{CCB} \leq (V_{IN}, V_O$	UT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	—	±2.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 2.0 \text{ ns}$)

$V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time $(Bn \rightarrow An)$	t _{pLH} t _{pHL}	Figure 1, Figure 2	1.0	5.4	
3-state output enable time ($\overline{OE} \rightarrow An$)	t _{pZL} t _{pZH}	Figure 1, Figure 3	1.0	8.4	ns
3-state output disable time ($\overline{OE} \rightarrow An$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	6.7	
Propagation delay time $(An \rightarrow Bn)$	t _{pLH} t _{pHL}	Figure 1, Figure 2	1.0	6.8	
3-state output enable time ($\overline{OE} \rightarrow Bn$)	t _{pZL} t _{pZH}	Figure 1, Figure 3	1.0	8.7	ns
3-state output disable time ($\overline{OE} \rightarrow Bn$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	3.9	
Output to output skew	t _{osLH} t _{osHL}	(Note)	_	0.5	ns

Note: Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

$V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time $(Bn \rightarrow An)$	t _{pLH} t _{pHL}	Figure 1, Figure 2	1.0	8.9	
3-state output enable time ($\overline{OE} \rightarrow An$)	t _{pZL}	Figure 1, Figure 3	1.0	13.4	ns
3-state output disable time ($\overline{OE} \rightarrow An$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	10.9	
Propagation delay time $(An \rightarrow Bn)$	^t pLH t _{pHL}	Figure 1, Figure 2	1.0	7.8	
3-state output enable time ($\overline{OE} \rightarrow Bn$)	t _{pZL}	Figure 1, Figure 3	1.0	10.7	ns
3-state output disable time ($\overline{OE} \rightarrow Bn$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	5.2	
Output to output skew	t _{osLH} t _{osHL}	(Note)	_	0.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

$V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.3	
$(Bn \rightarrow An)$	t _{pHL}		1.0	10.0	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	18.5	ns
$(\overline{OE} \rightarrow An)$	t _{pZH}		1.0	10.5	110
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	13.0	
$(\overline{OE} \rightarrow An)$	t _{pHZ}		1.0	13.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.6	
$(An \rightarrow Bn)$	t _{pHL}		1.0	0.0	
3-state output enable time	t _{pZL}		1.0	14.3	ns
$(\overline{OE} \rightarrow Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	14.5	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	6.6	
$(\overline{OE} \rightarrow Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	0.0	
	t _{osLH}	(Noto)		1.5	20
Output to output skew	t _{osHL}	(Note)	_	1.0	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

$V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Symbol	Test Condition	Min	Max	Unit
t _{pLH}	Figure 1, Figure 2	1.0	61	
t _{pZL}	Figure 1, Figure 3	1.0	95	ns
t _{pLZ}	Figure 1, Figure 3	1.0	44	
t _{pLH}	Figure 1, Figure 2	1.0	22	
t _{pZL}	Figure 1, Figure 3	1.0	52	ns
t _{pLZ}	Figure 1, Figure 3	1.0	18	
t _{pHZ} t _{osLH}	(Note)		1.5	ns
	t tpLH tpHL tpZL tpZH tpLZ tpHZ tpLH tpLH tpLL tpZL tpZH tpLZ tpLZ tpHZ	tpLH tpHL Figure 1, Figure 2 tpZL tpZH Figure 1, Figure 3 tpZH Figure 1, Figure 3 tpLZ tpHZ Figure 1, Figure 3 tpLH tpHL Figure 1, Figure 3 tpLH tpHL Figure 1, Figure 3 tpLZ tpHL Figure 1, Figure 3 tpLZ tpZH Figure 1, Figure 3 tpLZ tpLZ tpHZ Figure 1, Figure 3 tpLZ tpLZ Figure 1, Figure 3 tpLZ tpLZ Figure 1, Figure 3	tpLH tpHL Figure 1, Figure 2 1.0 tpZL tpZL Figure 1, Figure 3 1.0 tpZH Figure 1, Figure 3 1.0 tpLZ tpHZ Figure 1, Figure 3 1.0 tpLZ tpHZ Figure 1, Figure 3 1.0 tpLH tpHL Figure 1, Figure 3 1.0 tpLH tpHL Figure 1, Figure 3 1.0 tpZH Figure 1, Figure 3 1.0 tpLZ tpZH Figure 1, Figure 3 1.0 tpLZ tpLZ Figure 1, Figure 3 1.0 tosLH (Note) —	t_{pLH} t_{pHL} Figure 1, Figure 21.061 t_{pHL} Figure 1, Figure 31.095 t_{pZH} Figure 1, Figure 31.095 t_{pLZ} t_{pHZ} Figure 1, Figure 31.044 t_{pHZ} Figure 1, Figure 21.022 t_{pHL} Figure 1, Figure 31.052 t_{pZH} Figure 1, Figure 31.018 t_{pLZ} t_{pZH} Figure 1, Figure 31.018 t_{pLZ} t_{pLZ} t_{pLZ} Figure 1, Figure 31.018 t_{osLH} (Note)—1.5

Note: Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

$V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	9.1	
$(Bn \rightarrow An)$	t _{pHL}		1.0	0.1	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.5	ns
$(\overline{OE} \rightarrow An)$	t _{pZH}		1.0	15.5	115
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	11.8	
$(\overline{OE} \rightarrow An)$	t _{pHZ}		1.0	11.0	
Propagation delay time	t _{pLH}		1.0	9.5	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	9.5	
3-state output enable time	t _{pZL}		1.0	12.6	20
$(\overline{OE} \rightarrow Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	12.0	ns
3-state output disable time	t _{pLZ}		1.0	E 4	
$(\overline{OE} \rightarrow Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	5.1	
	t _{osLH}	(Noto)		0.5	20
Output to output skew	t _{osHL}	(Note)		0.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

$V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time $(Bn \rightarrow An)$	^t pLH tpHL	Figure 1, Figure 2	1.0	10.8	
3-state output enable time ($\overline{OE} \rightarrow An$)	t _{pZL}	Figure 1, Figure 3	1.0	18.3	ns
3-state output disable time ($\overline{OE} \rightarrow An$)	t _{pLZ}	Figure 1, Figure 3	1.0	14.2	
Propagation delay time $(An \rightarrow Bn)$	t _{pLH}	Figure 1, Figure 2	1.0	10.5	
3-state output enable time ($\overline{OE} \rightarrow Bn$)	t _{pZL} t _{pZH}	Figure 1, Figure 3	1.0	15.4	ns
3-state output disable time ($\overline{OE} \rightarrow Bn$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	6.4	
Output to output skew	t _{osLH} t _{osHL}	(Note)	_	1.5	ns

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

$V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	60	
$(Bn \rightarrow An)$	t _{pHL}		1.0	00	
3-state output enable time	t _{pZL}	Figure 1 Figure 2	1.0	95	ns
$(\overline{OE} \rightarrow An)$	t _{pZH}	Figure 1, Figure 3	1.0	95	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	45	
$(\overline{OE} \rightarrow An)$	t _{pHZ}	Figure 1, Figure 3	1.0	40	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	23	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	23	
3-state output enable time	t _{pZL}		1.0	E 4	20
$(\overline{OE} \rightarrow Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	54	ns
3-state output disable time	t _{pLZ}		1.0	17	
$(\overline{OE} \rightarrow Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	17	
	t _{osLH}	(Noto)		1.5	20
Output to output skew	t _{osHL}	(Note)		1.0	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

$V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time $(Bn \rightarrow An)$	t _{pLH} t _{pHL}	Figure 1, Figure 2	1.0	58	
3-state output enable time ($\overline{OE} \rightarrow An$)	t _{pZL} t _{pZH}	Figure 1, Figure 3	1.0	92	ns
3-state output disable time ($\overline{OE} \rightarrow An$)	t _{pLZ}	Figure 1, Figure 3	1.0	47	
Propagation delay time $(An \rightarrow Bn)$	t _{pLH}	Figure 1, Figure 2	1.0	30	
3-state output enable time ($\overline{OE} \rightarrow Bn$)	t _{pZL}	Figure 1, Figure 3	1.0	55	ns
3-state output disable time ($\overline{OE} \rightarrow Bn$)	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	1.0	17	
Output to output skew	t _{osLH} t _{osHL}	(Note)	_	1.5	ns

Note: Parameter guaranteed by design.

 $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

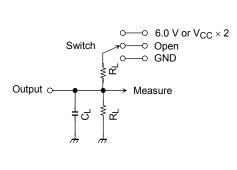
Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$)

Characteristics	Symbol Test Condition				Тур.	Unit								
		Cymbol				$V_{CCB}\left(V\right)$	i yp.	Onit						
					2.5	3.3	0.8							
	$A\toB$				1.8	3.3	0.8							
Quiet output maximum		VOLP	$V_{IH}=V_{CC},V_{IL}=0~V$		1.8	2.5	0.6	V						
dynamic V _{OL}		VOLP		(Note)	2.5	3.3	0.6	v						
	$B\toA$				1.8	3.3	0.25							
					1.8	2.5	0.25							
					2.5	3.3	-0.8							
	$A \to B$				1.8	3.3	-0.8							
Quiet output minimum				N/		Varia	Marris	\/-	$V_{IH} = V_{CC}, \ V_{IL} = 0 \ V$		1.8	2.5	-0.6	v
dynamic V _{OL}		VOLV		(Note)	2.5	3.3	-0.6							
	$B\toA$				1.8	3.3	-0.25							
					1.8	2.5	-0.25							
									2.5	3.3	4.6			
	$A \to B$				1.8	3.3	4.6							
Quiet output maximum		V _{OHP}	VOHP	V _{OHP}	V _{OHP}	V _{OHP}	V _{OHP}	V _{OHP}	$V_{IH} = V_{CC}, \ V_{IL} = 0 \ V$	/ (Note)	1.8	2.5	3.3	v
dynamic V _{OH}											2.5	3.3	3.3	
	$B\toA$				1.8	3.3	2.3	-						
					1.8	2.5	2.3							
					2.5	3.3	2.0							
Quiet output minimum dynamic V _{OH}	$A \to B$				1.8	3.3	2.0							
			$V_{IH} = V_{CC}, \ V_{IL} = 0 \ V$	(Note)	1.8	2.5	1.7	v						
		Vонv			2.5	3.3	1.7							
	$B\toA$				1.8	3.3	1.3							
					1.8	2.5	1.3							

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics		Symbol		Test Circuit			Тур.	Unit						
Characteristics		Symbol		Test Circuit		V _{CCB} (V)	тур.	Unit						
Input capacitance		C _{IN}	DIR, \overline{OE}		2.5	3.3	7	pF						
Bus I/O capacitance		C _{I/O}	An, Bn		2.5	3.3	8	pF						
		Cpda			$\overline{OE} = ``L"$	$A \rightarrow B (DIR = "H")$	2.5	3.3	3					
				$B \rightarrow A (DIR = "L")$	2.5	3.3	16							
			OPDA	OPDA	OPDA	OPDA	OPDA	OPDA	$\overline{OE} = "H"$	$A \rightarrow B (DIR = "H")$	2.5	3.3	0	
Power dissipation capacitance			OE= H	$B \rightarrow A (DIR = "L")$	2.5	3.3	0	pF						
	(Note)		$\overline{OE} = ``L"$	$A \rightarrow B (DIR = "H")$	2.5	3.3	16	μr						
		C ===	UE= L	$B \rightarrow A (DIR = "L")$	2.5	3.3	5							
		C _{PDB}	OE = "H		$A \rightarrow B (DIR = "H")$	2.5	3.3	0						
					$B \rightarrow A (DIR = "L")$	2.5	3.3	1						

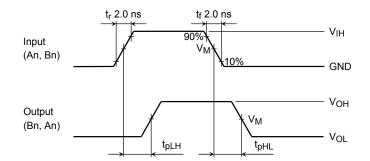

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4$ (per bit)

TOSHIBA

AC Test Circuit


Parameter	Switch				
t _{pLH} , t _{pHL}	Open				
	6.0 V	@ $V_{CC}=3.3\pm0.3$ V			
	$V_{CC} imes 2$	@ V_{CC} = 2.5 \pm 0.2 V			
t _{pLZ} , t _{pZL}		@ $V_{CC} = 1.8 \pm 0.15 \; V$			
		@ $V_{CC} = 1.5 \pm 0.1$ V			
		@ V_{CC} = 1.2 $\pm 0.1 \; V$			
t _{pHZ} , t _{pZH}		GND			

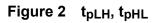
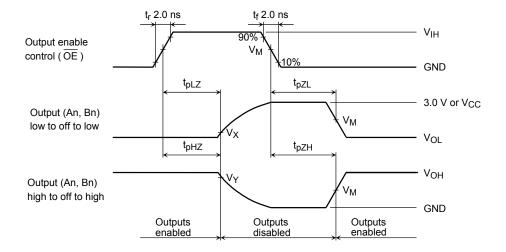
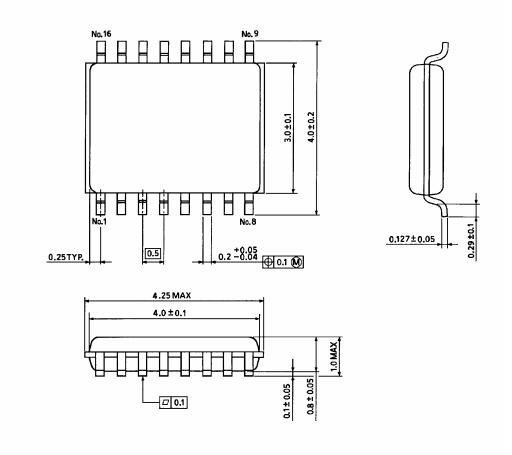

Symbol	V _{CC} (output)								
Symbol	$\begin{array}{c} 3.3 \pm 0.3 \ \text{V} \\ 2.5 \pm 0.2 \ \text{V} \end{array}$	18+016V $16+01V$ $12+01$							
RL	500 Ω	1 kΩ	2 kΩ	10 kΩ					
CL	30 pF	30 pF	15 pF	15 pF					

Figure 1

<u>TOSHIBA</u>

AC Waveform

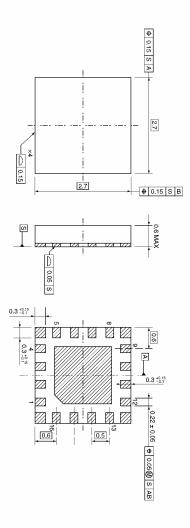



Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Symbol	V _{CC}		
	$3.3\pm0.3~\text{V}$	$\begin{array}{c} 2.5 \pm 0.2 \ \text{V} \\ 1.8 \pm 0.15 \ \text{V} \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \; V \\ 1.2 \pm 0.1 \; V \end{array}$
VIH	2.7 V	V _{CC}	V _{CC}
VM	1.5 V	V _{CC} /2	V _{CC} /2
V_{X}	V_{OL} + 0.3 V	V_{OL} + 0.15 V	V _{OL} + 0.1 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V

Package Dimensions

VSSOP16-P-0030-0.50


Unit : mm

Weight: 0.02 g (typ.)

Package Dimensions

VQON16-P-0303-0.50

Weight: 0.013 g (typ.)

Unit: mm

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.