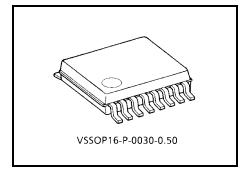
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH161FK,TC7MH163FK


Synchronous Presettable 4-Bit Binary Counter TC7MH161FK Asynchronous Clear TC7MH163FK Synchronous Clear

The TC7MH161FK and 163FK are advanced high speed CMOS synchronous presettable 4-bit binary counters fabricated with silicon gate $\rm C^2MOS$ technology.

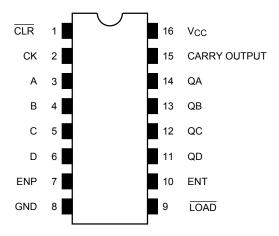
They achieve the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

The CK input is active on the rising edge. Both $\overline{\text{LOAD}}$ and $\overline{\text{CLR}}$ inputs are active on low logic level.

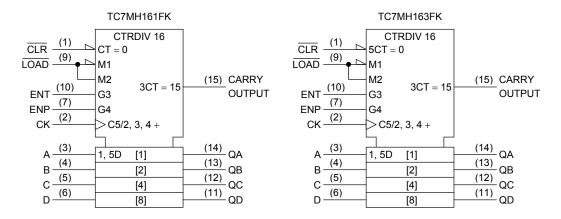
Presetting of each IC's is synchronous to the rising edge of CK. The clear function of the TC7MH163FK is synchronous to CK, while the TC7MH161FK are cleared asynchronously.

Weight: 0.02 g (typ.)

Two enable inputs (ENP and ENT) and CARRY OUTPUT are provided to enable easy cascading of counters, which facilitates easy implementation of n-bit counters without using external gates.


An input protection circuit ensures that 0 to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

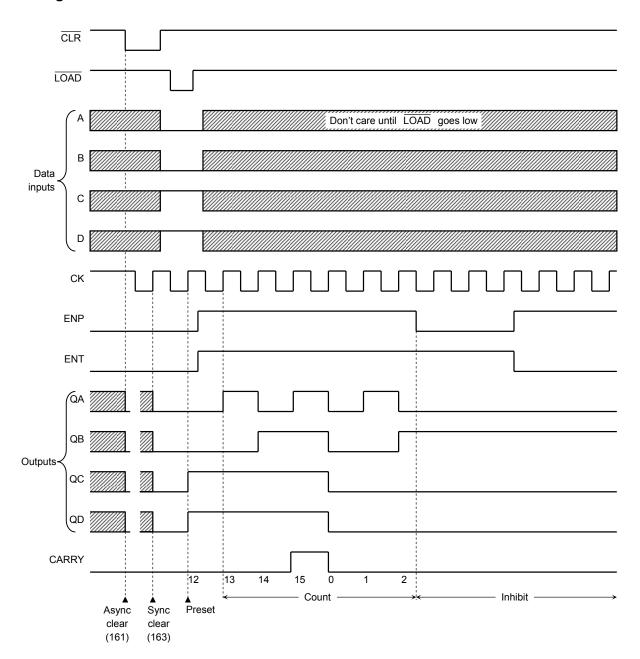

- High speed: $f_{max} = 185 \text{ MHz}$ (typ.) (V_{CC} = 5 V)
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max) (Ta} = 25 ^{\circ}\text{C)}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- · Power down protection is equipped with all inputs.
- $\bullet \quad \text{Balanced propagation delays: } t_{pLH} \approx t_{pHL}$
- Wide operating voltage range: $V_{CC \text{ (opr)}} = 2 \sim 5.5 \text{ V}$
- Low noise: VOLP = 0.8 V (max)
- Pin and function compatible with 74ALS161/163

1 2007-10-19

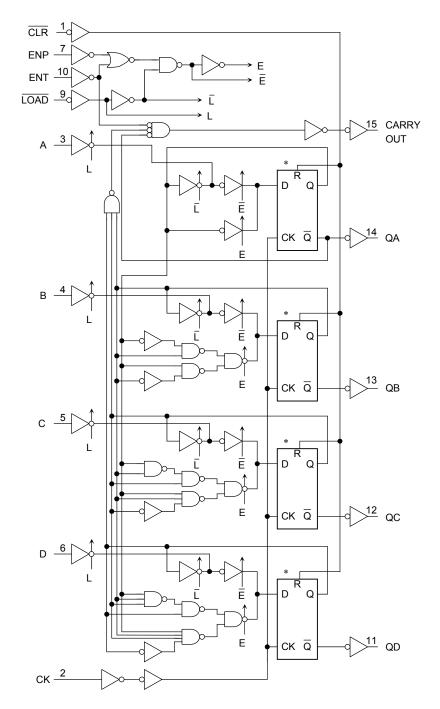
Pin Assignment (top view)

IEC Logic Symbol

Truth Table


TC7MH161FK				TC7MH163FK				Outputs								
		Inputs					Inputs			Outputs				Function		
CLR	LD	ENP	ENT	CK	CLR	LD	ENP	ENT	CK	QA	QB	QC	QD			
L	Х	Х	Х	Х	L	Х	Х	Х		L L L L			L	Reset to "0"		
Н	L	Х	Х	\Box	Н	L	Х	Х	\Box	Α	В	С	D	Reset data。		
Н	Н	Х	L		Н	Н	Х	L		No change				No count		
Н	Н	L	Х		Н	Н	L	Х		No change				No count		
Н	Н	Н	Н		Н	Н	Н	Н		Count up			•	Count		
Н	Х	Х	Х	\neg	Х	Х	Х	Х	\neg	No change				No count		

X: Don't care


A, B, C, D: Logic level of data inputs

Carry: $CARRY = ENT \cdot QA \cdot QB \cdot QC \cdot QD$

Timing Chart

System Diagram

*:Truth table of internal F/F

1		TC	7MH16	151/		TC7MH163FK						
		10	IVIT IO	IFN			10	IVITIO	OFK			
	D	CK	R	Q	Q	D	CK	R	Q	Q		
	Х	Х	Н	L	Н	Х		Н	L	Н		
	L		L	L	Н	L		L	L	Н		
	Н	Ļ	L	Ι	L	Ι	Ļ	L	Ι	L		
	X	\neg	L	No ch	nange	Х	\neg	Х	No ch	nange		

X: Don't care

4 2007-10-19

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	VIN	-0.5~7.0	V
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5	V
Input diode current	lıĸ	-20	mA
Output diode current	Іок	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~5.5	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	Vout	0~V _{CC}	V	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	$0\sim100~(V_{CC}=3.3\pm0.3~V)$	ns/V	
input rise and fail time	dilav	$0\sim20 \ (V_{CC}=5\pm0.5 \ V)$		

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics		Symbol	Test Condition				Га = 25°C		Ta = -4	0~85°C	Linit											
Cilarat	Clensucs	Syllibol			V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic											
						1.50	_	_	1.50	_												
Input voltage	High level	V _{IH}		_	3.0~5.5	V _{CC} × 0.7	_	_	V _{CC} × 0.7		V () () () () () () () () () (
input voltage					2.0	_		0.50	_	Max	v											
	Low level	VIL		_	3.0~5.5	_		V _{CC} × 0.3		V _{CC} × 0.3												
							., .,		2.0	1.9	2.0	-	1.9	-								
			V _{IN} = V _{IH} or V _{IL}	., .,	., .,	., .,		., .,	., .,	., .,	., .,	., .,	., .,	., .,	., .,	$I_{OH} = -50 \mu A$	3.0	2.9	3.0	_	2.9	1.50 — VCC × 0.7 — 0.50 — VCC × 0.3 1.9 — 2.9 — 4.4 — 2.48 — 3.80 — V — 0.1 — 0.1 — 0.1 — 0.1 — 0.44 — 0.44 — 1.0 μΑ
	High level	VoH			4.5	4.4	4.5	_	4.4	Min Max .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .50 — .4.4 — .4.4 — .4.4 — .4.4 — .4.4 — .4.4 — .5.5 — .6.1 — .7	İ											
			- 12	$I_{OH} = -4 \text{ mA}$	3.0	2.58		_	2.48													
Output				$I_{OH} = -8 \text{ mA}$	4.5	3.94	ı	-	3.80	-	\/											
voltage					2.0	_	0	0.1	_		ľ											
				$I_{OL} = 50 \mu A$	3.0	_	0	0.1	_	0.1												
	Low level	V_{OL}	$V_{IN} = V_{IH}$ or V_{IL}		4.5	_	0	0.1	_	0.1												
			- 12	$I_{OL} = 4 \text{ mA}$	3.0	_		0.36		0.44												
				I _{OL} = 8 mA	4.5	_		0.36	_	0.44												
Input leakage	current	I _{IN}	$V_{IN} = 5.5$	v or GND	0~5.5	_		±0.1	_	±1.0	μА											
Quiescent sup	ply current	I _{CC}	$V_{IN} = V_{CC}$	or GND	5.5	_		4.0		40.0	μΑ											

Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	mbol Test Condition			Ta = 25°C	Ta = -40~85°C	Unit	
Characteristics	Official Contract		OII	V _{CC} (V)	Limit	Limit	Offic	
Minimum pulse width	t _{w (H)}	Figure 1		3.3 ± 0.3	5.0	5.0	ns	
(CK)	t _{w (L)}	i iguie i	1		5.0	5.0	115	
Minimum pulse width	+ 41	Figure 4	(Note 1)	3.3 ± 0.3	5.0	5.0		
(CLR)	t _{w (L)}	rigule 4	(Note 1)		5.0	5.0	ns	
Minimum set-up time		Figure 2		3.3 ± 0.3	5.5	6.5	ns	
(A, B, C, D)	ts	rigure 2		5.0 ± 0.5	4.5	4.5	115	
Minimum set-up time	1			3.3 ± 0.3	8.0	9.5	ns	
(LOAD)	ts	Figure 2			5.0	6.0	115	
Minimum set-up time	1	Figure 2		3.3 ± 0.3	7.5	9.0	ns	
(ENT, ENP)	ts	Figure 3		5.0 ± 0.5	5.0	6.0	115	
Minimum set-up time		Figure F	(Note 2)	3.3 ± 0.3	4.0	4.0	no	
(CLR)	ts	Figure 5	(Note 2)	5.0 ± 0.5	3.5	3.5	ns	
Minimum hold time	4.	Figure 2 Figure 2		3.3 ± 0.3	1.0	1.0	no	
Willimum noid time	t _h	rigule 2, rigule 3	Figure 2, Figure 3			1.0	ns	
Minimum hold time	1	Figure F	(Note 2)	3.3 ± 0.3	1.0	1.0		
(CLR)	t _h	Figure 5	(Note 2)		1.5	1.5	ns	
Minimum removal time		Figure 4	(Note 4)	3.3 ± 0.3	2.5	2.5		
(CLR)	t _{rem}	Figure 4	(Note 1)	5.0 ± 0.5	1.5	1.5	ns	

Note 1: for TC7MH161FK only Note 2: for TC7MH163FK only

AC Characteristics (Input: $t_r = t_f = 3$ ns)

		T 10 III			-	Га = 25°C		Ta = -4	0~85°C		
Characteristics	Symbol	Test Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit	
			3.3 ± 0.3	15	_	8.3	12.8	1.0	15.0		
Propagation delay time	t _{pLH}	Figure 4 Figure 2	3.3 ± 0.3	50	_	10.8	16.3	1.0	18.5		
(CK-Q)	tpHL	Figure 1, Figure 2	50.05	15	_	4.9	8.1	1.0	9.5	ns	
			5.0 ± 0.5	50	_	6.4	10.1	1.0	11.5		
Dan and date there			3.3 ± 0.3	15	_	8.7	13.6	1.0	16.0		
Propagation delay time	t _{pLH}	Figure 1	3.3 ± 0.3	50	_	11.2	17.1	1.0	19.5	no	
(CK-CARRY) [Count mode]	tpHL	rigure i	50.05	15	_	4.9	8.1	1.0	9.5	115	
[Count mode]			5.0 ± 0.5	50	_	6.4	10.1	1.0	11.5		
Dranagation dalay time			3.3 ± 0.3	15	_	11.0	17.2	1.0	20.0		
Propagation delay time (CK-CARRY)	t _{pLH}	Figure 2	3.3 ± 0.3	50	_	13.5	20.7	1.0	23.5	ne	
[Preset mode]	t _{pHL}	rigure 2	5.0 ± 0.5	15	_	6.2	10.3	1.0	12.0	115	
[i reset mode]			3.0 ± 0.3	50	_	7.7	12.3	1.0	14.0		
	t _{pLH}	Figure 6	3.3 ± 0.3	15	_	7.5	12.3	1.0	14.5	ns	
Propagation delay time				50	_	10.5	15.8	1.0	18.0		
(ENT-CARRY)	tpHL	i iguic o	5.0 ± 0.5	15	_	4.9	8.1	2.8	113		
				3.0 ± 0.5	50	_	6.4	10.1	1.0	11.5	
			3.3 ± 0.3	15	_	8.9	13.6	1.0	16.0		
Propagation delay time	taru	Figure 4 (Note 2)		50	_	11.2	17.1	1.0	19.5	ns	
(CLR -Q)	t _{pHL}	riguic + (Note 2)		15	_	5.5	9.0	1.0	10.5	ns	
			5.0 ± 0.5	50	_	7.0	11.0	1.0	12.5		
			3.3 ± 0.3	15	_	8.4	13.2	1.0	15.5		
Propagation delay time	t _{pHL}	Figure 4 (Note 2)		50	_	10.9	16.7	1.0	19.0	ns	
(CLR -CARRY)	фпь		5.0 ± 0.5	15	_	5.0	8.6	1.0	10.0	110	
			0.0 ± 0.0	50	_	6.5	10.6	1.0	12.0		
			3.3 ± 0.3	15	80	130	_	70	_		
Maximum clock frequency	fmax	_	3.0 ± 0.0	50	55	85	_	50	_	MHz	
Maximum clock frequency	f _{max}		5.0 ± 0.5	15	135	185	_	115	_	IVIMZ	
			3.0 ± 0.0	50	95	125	_	85	_		
Input capacitance	C _{IN}	-	_		_	4	10	_	10	pF	
Power dissipation capacitance	C _{PD}			(Note 1)	_	23		_	_	pF	

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$

When the outputs drive a capacitive load, total current consumption is the sum of C_{PD} , and ΔI_{CC} which is obtained from the following formula:

$$\Delta I_{CC} = f_{CK} \cdot V_{CC} \left(\frac{C_{QA}}{2} + \frac{C_{QB}}{4} + \frac{C_{QC}}{8} + \frac{C_{QD}}{16} + \frac{C_{CO}}{16} \right)$$

 $C_{QA}\sim C_{QD}$ and C_{CO} are the capacitance QA \sim QD and CARRY OUT, respectively. f_{CK} is the input frequency of the CK.

Note 2: for TC7MH161FK only

AC Test Waveform

Count Mode

Figure 1

Preset Mode

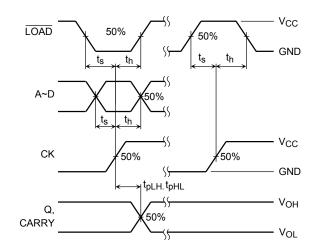


Figure 2

Count Enable Mode

Clear Mode (TC7MH161FK)

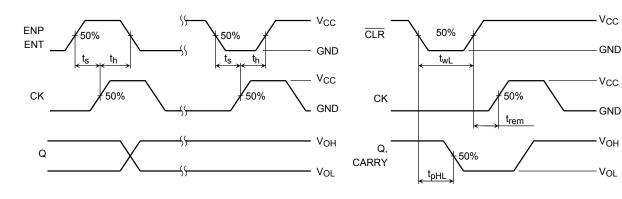


Figure 3 Figure 4

Clear Mode (TC7MH163FK)

Figure 5

Cascade Mode (fix maximum count)

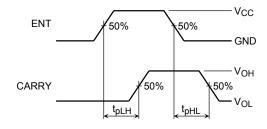
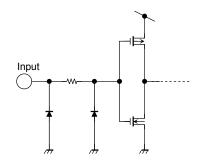
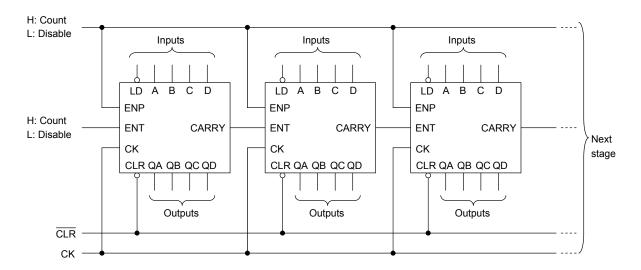
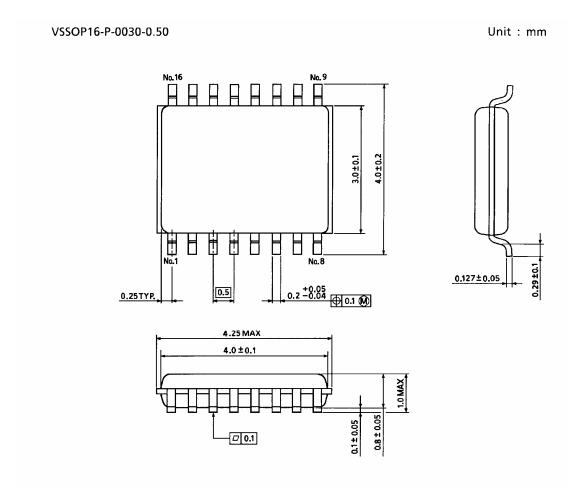



Figure 6

Noise Characteristics (Input: $t_r = t_f = 3$ ns)


Characteristics	Symbol	Test Condition		Ta =	Unit	
Characteristics	Symbol	rest condition	V _{CC} (V)	Тур.	Limit	Offic
Quiet output maximum dynamic V _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.4	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	C _L = 50 pF	5.0	-0.4	-0.8	V
Minimum high level dynamic input voltage V_{IH}	V _{IHD}	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage V_{IL}	V _{ILD}	$C_L = 50 \text{ pF}$	5.0		1.5	٧

Input Equivalent Circuit



Typical Application

Parallel Carry N-Bit Counter

Package Dimensions

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.