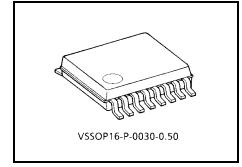
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH138FK

3-to-8 Line Decoder

The TC7MH138FK is an advanced high speed CMOS 3-to-8 decoder fabricated with silicon gate C^2 MOS technology.


It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

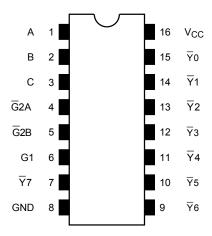
When the device is enabled, 3 binary select inputs (A, B and C) determine which one of the outputs $(\overline{Y}0 \cdot \overline{Y}7)$ will go low.

When enable input G1 is held low or either $\overline{G}2A$ or $\overline{G}2B$ is held high, decoding function is inhibited and all outputs go high.

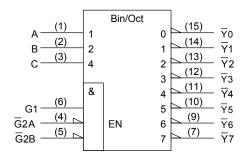
G1, G2A, and G2B inputs are provided to ease cascade connection and for use as an address decoder for memory systems.

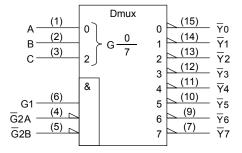
An input protection circuit ensures that 0 to 5.5 V can be applied to the input pins without regard to the supply voltage.

Weight: 0.02 g (typ.)


This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

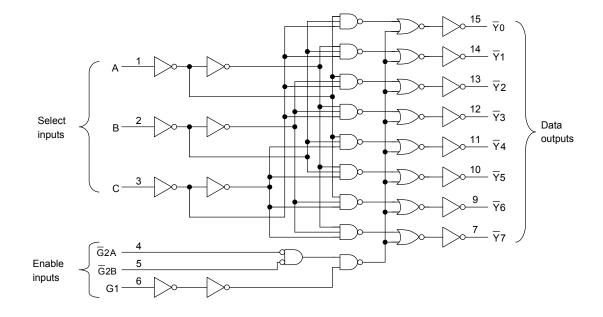

- High speed: $t_{pd} = 5.7 \text{ ns (typ.) (VCC} = 5 \text{ V)}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max) (Ta} = 25 ^{\circ}\text{C)}$
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: $t_{pLH} \approx t_{pHL}$
- Wide operating voltage range: $V_{CC \text{ (opr)}} = 2 \sim 5.5 \text{ V}$
- Pin and function compatible with 74ALS138


2007-10-19

Pin Assignment (top view)

IEC Logic Symbol

2 2007-10-19


Truth Table

TOSHIBA

Inputs					Outputs										
	Enable		Select			_ Y0	<u></u>		_ Y3	_ Y4	_ Y5	<u>-</u> Y6	_ Y7	Selected Output	
G1	G ₂ A	G ₂ B	С	В	Α	10	10 11	12	13	14	13	10	Υ /		
L	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None	
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None	
Х	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	None	
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	\ \{\foat}0	
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	₹1	
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	₹2	
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	\overline{Y} 3	
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Y 4	
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Y 5	
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Y 6	
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Y 7	

X: Don't care

Logic Diagram

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	Vcc	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	Vout	-0.5~V _{CC} + 0.5	V
Input diode current	lικ	-20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	P _D	180	mW
Storage temperature	T _{stg}	-65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~5.5	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	V _{OUT}	0~V _{CC}	V	
Operating temperature	T _{opr}	− 40~85	°C	
Input rise and fall time	dt/dv	$0\sim100~(V_{CC}=3.3\pm0.3~V)$	ns/V	
input rise and fail tille	didv	0~20 (V _{CC} = 5 ± 0.5 V)		

Note: The operating ranges must be maintained to ensure the normal operation of the device.

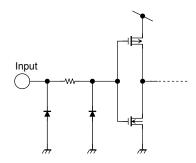
Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

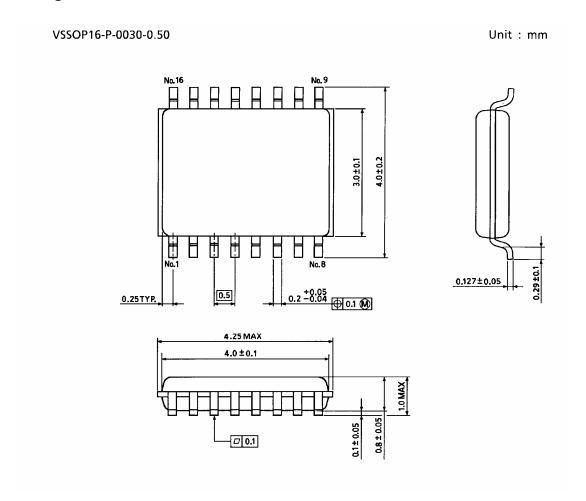
DC Characteristics

Characteristics		Symbol	Test Condition				Га = 25°C)	Ta = -40~85°C		Unit	
Characte	51151105	Syllibol	rest Condition		V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic	
			_		2.0	1.50	_	_	1.50	_		
Input voltage	High level	V _{IH}			3.0~5.5	V _{CC} × 0.7	_	_	V _{CC} × 0.7	Unit		
input voitage					2.0	I	_	0.50	_	0.50	V	
	Low level	V _{IL}	_		3.0~5.5			V _{CC} × 0.3	_	$\begin{array}{c} V_{CC} \\ \times \ 0.3 \end{array}$		
		V _{OH}	V _{IN} = V _{IH}	I _{OH} = -50 μA	2.0	1.9	2.0	_	1.9		-	
					3.0	2.9	3.0	_	2.9			
	High level				4.5	4.4	4.5	_	4.4			
$ \text{Input voltage} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_	2.48										
Output voltage				$I_{OH} = -8 \text{ mA}$	4.5	3.94		_	3.80		V	
Output Voltage					2.0		0	0.1		0.1	v	
		$V_{OH} = V_{IH} = V$	0.1									
	Low level		or V _{IL}		4.5	_	0	0.1	_	0.1]	
				$I_{OL} = 4 \text{ mA}$	3.0		_	0.36	_	0.44		
				I _{OL} = 8 mA	4.5	_	_	0.36	_	0.44		
Input leakage current		I _{IN}	V _{IN} = 5.5 V or GND		0~5.5			±0.1	_	±1.0	μA	
Quiescent supply current		Icc	$V_{IN} = V_{CC}$	V _{IN} = V _{CC} or GND		_	_	4.0	_	40.0	μΑ	

AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)


Characteristics	Symbol	Test Condition			-	Ta = 25°C)	Ta = −40~		Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
			3.3 ± 0.3	15	_	8.2	11.4	1.0	13.5	ns
Propagation delay time	t _{pLH}		J.J ± 0.3	50	_	10.0	15.8	1.0	18.0	
(A, B, C- \overline{Y})	t _{pHL}	_	50+05	15	_	5.7	8.1	1.0	9.5	115
			5.0 ± 0.5	50		7.2	10.1	1.0	11.5	
	t _{pLH}	_	3.3 ± 0.3	15		8.1	12.8	1.0	15.0	ns
Propagation delay time			3.3 ± 0.3	50		10.6	16.3	1.0	18.5	
(G1- \overline{Y})	t _{pHL}		5.0 ± 0.5	15		5.6	8.1	1.0	9.5	
			5.0 ± 0.5	50		7.1	10.1	1.0	11.5	
	^t pLH ^t pHL	_	3.3 ± 0.3	15		8.2	11.4	1.0	13.5	ns
Propagation delay time				50		10.7	14.9	1.0	17.0	
(G2 - Y)			5.0 ± 0.5	15		5.8	8.1	1.0	9.5	
				50	_	7.3	10.1	1.0	11.5	
Input capacitance	C _{IN}	-	_		_	4	10	_	10	pF
Power dissipation capacitance	C _{PD}			(Note)		34	_	_	_	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Input Equivalent Circuit

Package Dimensions

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

7 2007-10-19