DATA SHEET

LND2931

100mA Low Dropout Voltage Regulator

GENERAL DESCRIPTION

This series of fixed-voltage and adjustable monolithic micropower voltage regulators is designed for a wide range of applications. This device is an excellent choice for use in batterypowered application. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life. This series of fixed-voltage (Typ. 60mV at light load and 300mV at 100mV) includes a tight initial tolerance of 0.5% typ., extremely good load and line regulation of 0.05% typ., and very low output temperature coefficient. This series of fixedvoltage and adjustable regulators is offered in 3pin TO-92 package (TO-220-5, SO-8 for LND2931) compatible with other fixed-voltage regulators.

PIN CONFIGURATION

FEATURES

- 3- terminal regulators (To-220-5, SO-8 for LND2931)
- 100mA output within 2% over temperature
- Very low quiescent current
- Low dropout voltage (300mV Typ)
- Extremely tight load and line regulation
- Very low temperature coefficient
- Current and thermal limiting
- Unregulated DC input can withstand –20V reverse battery and +60V positive transients
- Direct replacement for National LM2931 fixed series, but has lower ground current, higher accuracy of output voltage and extremely tight load and line regulation. For adjust model LND2931 see typical applications on figure 2.

APPLICATIONS

- High-efficiency linear regulators
- Battery powered systems
- Portable/Palm top/ Notebook
 Computers
- Portable consumer equipment
- Portable instrumentation
- Automotive Electronics
- SMPS Post Regulator

• Linear Dimensions, Inc. • 445 East Ohio Street, Chicago IL 60611 USA • tel 312.321.1810 • fax 312.321.1830 • www.lineardimensions.com •

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally Limited
Lead Temperature(Soldering, 5 seconds)	260°C
Storage Temperature Range	-65°C to +150°C
Operating Junction Temperature Range	-55°C to +150°C
Input Supply Voltage	-20V to +35V

DEVICE SELECTION GUIDE

Vout , VOLTS	Device
3.3V*	LND2931-3.3
5.0V	LND2931-5.0
8.0V	LND2931-8.0
8.5V	LND2931-8.5
9.0V	LND2931-9.0
10.0V	LND2931-10
12.0V	LND2931-12
15.0V	LND2931-15
3.0v to 24V	LND2931

* Other fixed versions are also available, V_{OUT} =2.0V to 5.0V. Please consult for more information.

ELECTRICAL CHARACTERISTICS

(T_J=25°C, I_O=100 μ A, V_{IN}=14V (for 2931-15, V_{IN}=16V), C_O=100 μ F; unless otherwise noted)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS		
Output Voltage	-25° C≤Tյ≤ 85°C	0.985 V ₀	V.	1.015 V ₀	v		
(Fixed Model)	Full Operating Temperature	0.98 Vo	۷O	1.02 V ₀			
Output Voltage (Fixed Model)	100µA≤I _L ≤ 100mA, T _J ≤Tjmax	0.975 V ₀	Vo	1.025 V ₀			
Input Supply Voltage				26			
Output Voltage Temperature Coefficient	(Note 1)		50	150	ppm/ºC		
Line Regulation (Note 2)	$13V \le Vin \le 26V$ (Note 3)		0.1	0.4	%		
Load Regulation(Note 2)	$1mA \le I_L \le 100mA$		0.1	0.3	%		
Dropout Voltage(Note 4)	I _L =10mA		60	200	mV		
	I _L =100mA		300	600			
Ground Current (Note 5)	$I_{L} = 100 \mu A$		100	150	μA		
	$I_L = 100 \text{mA}$		0.9	1.5	mA mA		
Dropout Ground Curront			0	12	IIIA		
(Note 5)	$V_{in}\text{=}V_{out}\text{ -}0.5V$, $I_L\text{=}100\mu\text{A}$		110	170	μA		
Current Limit	V _{out} =0		160	200	mA		
Thermal Regulation(Note6)			0.05	0.2	% / W		
Output Noise, 10Hz to	C _L =2.2µF		500		μV RMS		
	C∟=3.3µF		350				
	C _L =33µF		120				
Ripple Rejection Ratio	$\label{eq:loss} \begin{array}{l} I_{O} = 10 m A, f = 120 H z, C_{o} = 100 \mu F, \\ Vin = V_{o} + 3V + 2V pp \end{array}$	60			dB		
TO-220-5, SO-8 Versions Only							
Reference Voltage		1.21	1.235	1.26	V		
Reference Voltage	Over Temperature (note 7)	1.185		1.285			
Feedback Pin Bias Current			20	40	nA		
Reference Voltage Temperature Coefficient	(Note 1)		50		ppm/ºC		
Feedback Pin Bias Current Temperature Coefficient			0.1		nA/⁰C		
Shutdown Input							
Input Logic Voltage	Low(Regulator ON) High (Regulator OFF)	2	1.3	0.7	V		
Shutdown Pin Input	$V_{\rm S} = 2.4 V$	_	30	50			
Current	$V_{\rm S} = 26V$		450	600	μA		
Regulator Output Current in Shutdown	(Note 8)						
	5.0V ≤V _{out} <15.0V			10			
	3.3V ≤V _{out} <5.0 V			20			
	2.0V ≤V _{out} <3.3V			30			

Linear Dimensions, Inc. • 445 East Ohio Street, Chicago IL 60611 USA • tel 312.321.1810 • fax 312.321.1830 • www.lineardimensions.com •

Note 1: Output or reference voltage temperature coefficients defined as the worst case voltage change divided by the total temperature range.

Note 2: Regulations are measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Line regulation is tested at 150°C for $I_L = 1$ mA, for $I_L = 100\mu$ A and $T_{J=}125$ °C, line regulation is guaranteed by design to 0.2%. For LND2931-15 16V<= Vin <=26V.

Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Note 5: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current and output load current.

Note 6: Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 50mA load pulse (1.25W pulse) for T=10ms.

Note7: Vref $\leq V_{out} \leq$ (Vin-1V), 2.3V \leq Vin \leq 26V, 100 $\mu A \leq I_L \leq$ 100mA, $T_J \leq T_{jmax.}$ Note 8: Vshutdown \geq 2V, $V_{IN} \leq$ 26V, Vout =0V.

BLOCK DIAGRAM AND TYPICAL APPLICATIONS

LinearDimensions

LND2931

TYPICAL APPLICATIONS

*Minimum input-output voltage ranges from 40mV to 400mV, depending on load current. Current limit is typically 160mA.

*Minimum input-output voltage ranges from 40mV to 400mV, depending on load current. Current limit is typically 160mA.

5V Current Limiter

Latch Off When Error Flag Occurs

Low Drift Current Source