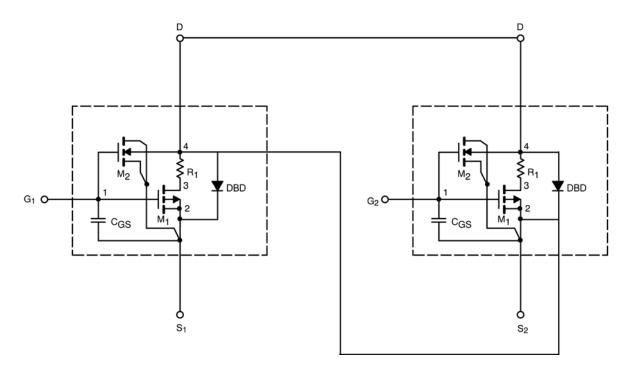


SPICE Device Model Si6901DQ Vishay Siliconix

Bi-Directional P-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

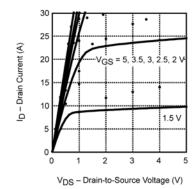
Document Number: 72915 www.vishay.com 23-May-04 1

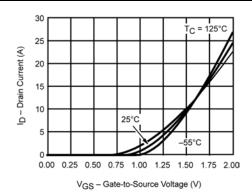
SPICE Device Model Si6901DQ

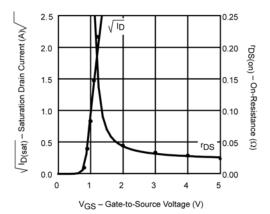
Vishay Siliconix

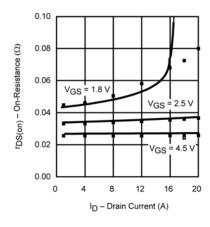
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.66		V
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	133		Α
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -5.4 \text{ A}$	0.027	0.026	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -4.8 \text{ A}$	0.034	0.034	
		$V_{GS} = -1.8 \text{ V}, I_D = -3.5 \text{ A}$	0.045	0.046	
Forward Transconductance ^b	g fs	$V_{DS} = -10 \text{ V}, I_{D} = -5.4 \text{ A}$	21	30	S
Dynamic ^a	·				
Total Gate Charge	Qg	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5.4 \text{ A}$	64	80	nC
Gate-Source Charge	Q_{gs}		10.5	10.5	
Gate-Drain Charge	Q_{gd}		34	34	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = -6 \text{ V}, R_L = 6 \Omega$ $I_D \cong -1 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_G = 6 \Omega$	91	110	ns
Rise Time	t _r		230	310	
Turn-Off Delay Time	$t_{d(off)}$		354	210	
Fall Time	t _f		46	270	

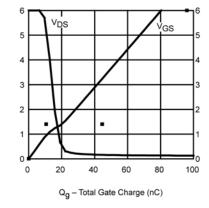
Notes

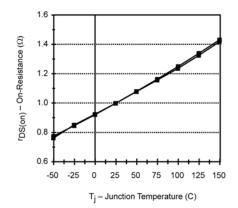

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.


www.vishay.com Document Number: 72915 23-May-04




SPICE Device Model Si6901DQ Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.