FAIRCHILD

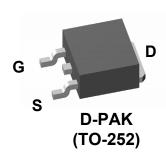
SEMICONDUCTOR®

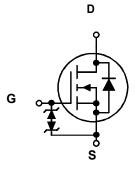
FDD86102LZ

N-Channel PowerTrench[®] MOSFET 100 V, 35 A, 22.5 m Ω

Features

- Max $r_{DS(on)}$ = 22.5 m Ω at V_{GS} = 10 V, I_D = 8 A
- Max r_{DS(on)} = 31 mΩ at V_{GS} = 4.5 V, I_D = 7 A
- HBM ESD protection level > 6 kV typical (Note 4)
- Very low Qg and Qgd compared to competing trench technologies
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

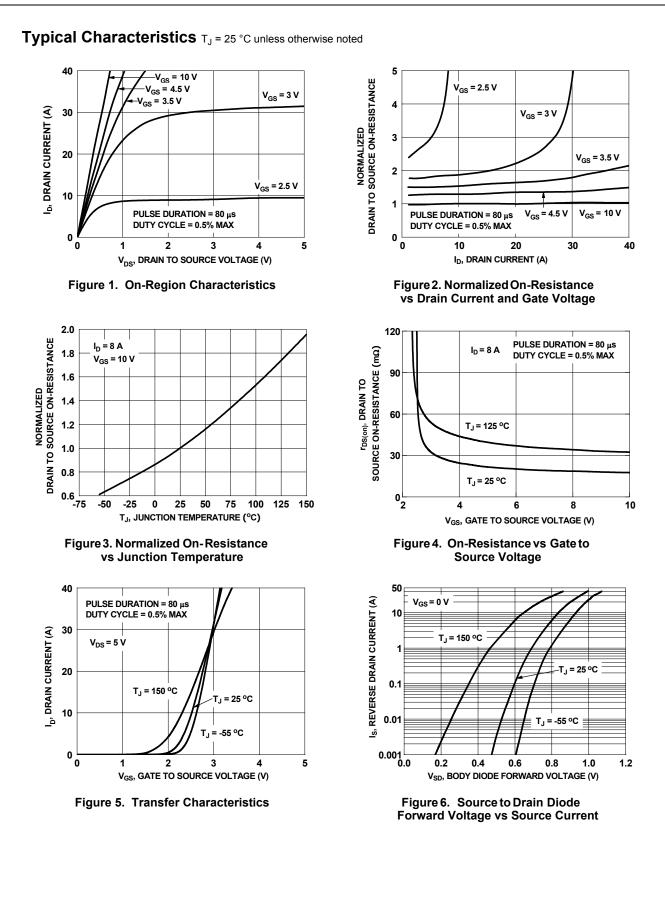
Applications

- DC DC Conversion
- Inverter
- Synchronous Rectifier

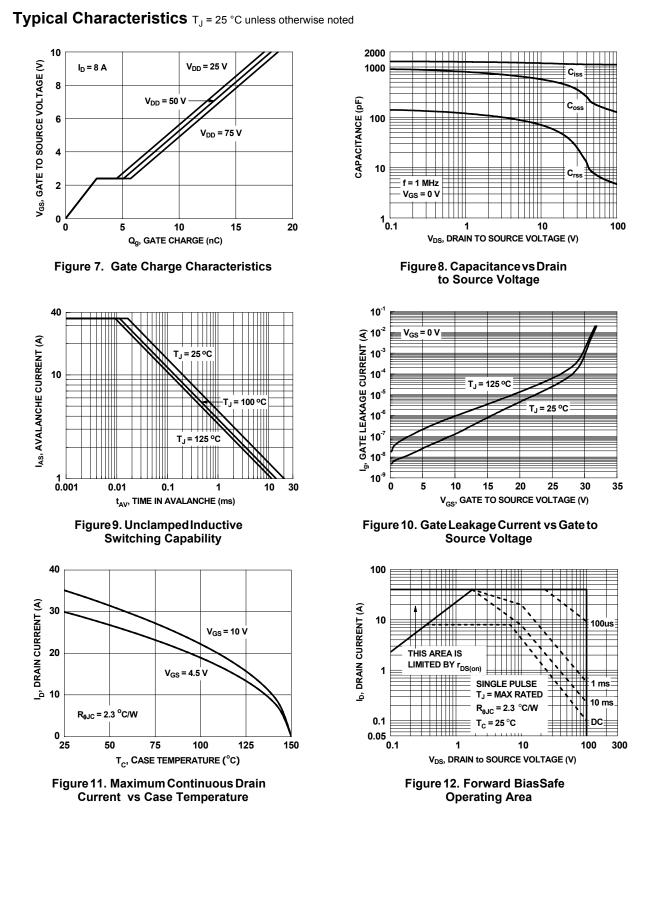
MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

	Parameter				Ratings		Units	
Drain to	Drain to Source Voltage				100		V	
Gate to	Gate to Source Voltage				±20		V	
Drain Current -Continuous (Package limited) T _C = 25 °C					42		A	
-Continuous (Silicon limited) T _C = 25 °C					35			
-Continuous $T_A = 25 \degree C$ (Note 1a)				8				
-Pulsed					40			
Single F	Single Pulse Avalanche Energy (Note 3)				84		mJ	
Power Dissipation $T_{C} = 25 \text{ °C}$					54 3.1		W	
Power Dissipation $T_A = 25 \text{ °C}$ (Note 1a)								
Operating and Storage Junction Temperature Range				-55 to +150		°C		
		-			-		1	
Thermal Resistance, Junction to Case					2.3		°C/W	
Thermal Resistance, Junction to Ambient (Note 1a)				40		3,11		
arking a	nd Ordering Inform	ation						
arking	Device	Package	Re	eel Size	Tape Width	Qua	antity	
02LZ	FDD86102LZ	D-PAK(TO-252)	D-PAK(TO-252) 13 " 12 mm 25		2500	2500 units		
	Gate to Drain Cl Single F Power I Power I Operatin naracteri Therma arking a arking	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Pack -Continuous (Silico -Continuous -Continuous Single Pulse Avalanche Energy Power Dissipation Poperating and Storage Junction T naracteristics Thermal Resistance, Junction to A arking and Ordering Inform	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package limited) T _C = -Continuous (Silicon limited) T _C = -Continuous T _A = -Pulsed Single Pulse Avalanche Energy Power Dissipation T _C = Power Dissipation T _C = Operating and Storage Junction Temperature Range naracteristics Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient arking and Ordering Information arking Device	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package limited) $T_C = 25 \ ^{\circ}C$ -Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ -Continuous $T_A = 25 \ ^{\circ}C$ -Pulsed Single Pulse Avalanche Energy Power Dissipation $T_C = 25 \ ^{\circ}C$ Power Dissipation $T_C = 25 \ ^{\circ}C$ Operating and Storage Junction Temperature Range naracteristics Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient arking and Ordering Information arking Device	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package limited) $T_C = 25 \ ^{\circ}C$ -Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ -Continuous $T_A = 25 \ ^{\circ}C$ -Continuous $T_A = 25 \ ^{\circ}C$ -Continuous $T_C = 25 \ ^{\circ}C$ Pulsed (Note 3) Power Dissipation $T_C = 25 \ ^{\circ}C$ Power Dissipation $T_A = 25 \ ^{\circ}C$ Operating and Storage Junction Temperature Range haracteristics Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient (Note 1a) arking and Ordering Information arking Device	Drain to Source Voltage100Gate to Source Voltage ± 20 Drain Current -Continuous (Package limited) $T_C = 25 \ ^{\circ}C$ 42 -Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ 35 -Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ 35 -Continuous $T_A = 25 \ ^{\circ}C$ 40 Single Pulse Avalanche Energy(Note 3) 84 Power Dissipation $T_C = 25 \ ^{\circ}C$ 54 Power Dissipation $T_C = 25 \ ^{\circ}C$ 54 Power Dissipation $T_A = 25 \ ^{\circ}C$ 40	Drain to Source Voltage100Gate to Source Voltage ± 20 Drain Current -Continuous (Package limited) $T_C = 25 \ ^{\circ}C$ 42-Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ 35-Continuous (Silicon limited) $T_C = 25 \ ^{\circ}C$ 35-Continuous $T_A = 25 \ ^{\circ}C$ (Note 1a)Single Pulse Avalanche Energy(Note 3)84Power Dissipation $T_C = 25 \ ^{\circ}C$ 54Power Dissipation $T_A = 25 \ ^{\circ}C$ 54Power Dissipation $T_A = 25 \ ^{\circ}C$ 54Power Dissipation $T_A = 25 \ ^{\circ}C$ 54Power DissipationT_A = 25 \ ^{\circ}C54Power DissipationT_A = 25 \ ^{\circ}C54Power DissipationT_A = 25 \ ^{\circ}C54Power DissipationT_A = 25 \ ^{\circ}C100Maracteristics2.3100Thermal Resistance, Junction to Case2.3Thermal Resistance, Junction to Ambient(Note 1a)Arking and Ordering Information40arkingDevicePackageReel SizeTape WidthQuartering Case	

©2012 Fairchild Semiconductor Corporation FDD86102LZ Rev.C1 August 2012

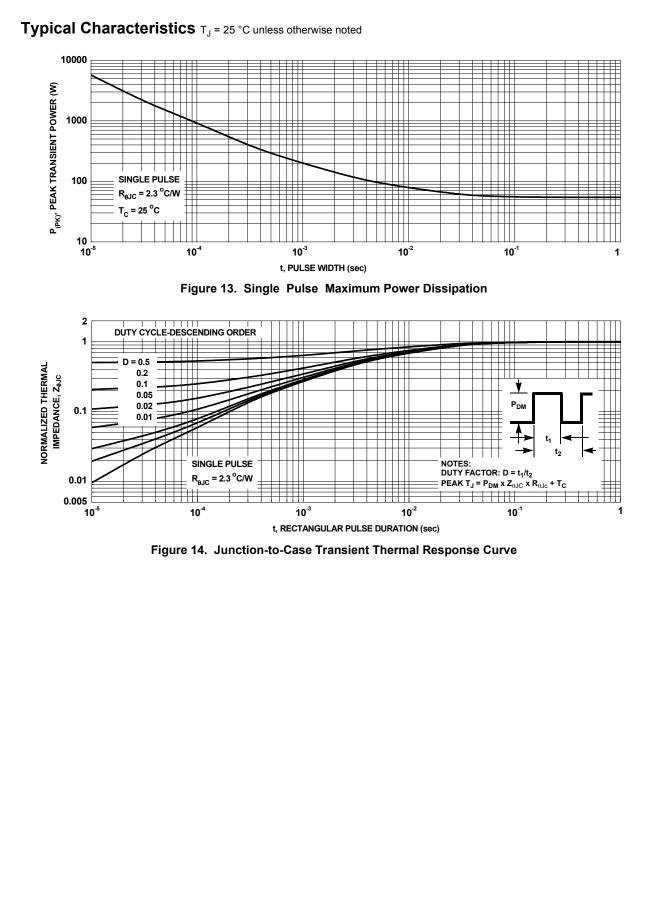

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
ABV _{DSS}	Breakdown Voltage Temperature					
ΔT_J	Coefficient	I_D = 250 $\mu A,$ referenced to 25 $^\circ C$		69		mV/°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
GSS	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±10	μA
On Chara	ICTERISTICS (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA		1.5	3.0	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage		1.0			24/20
ΔT_J	Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25 $^\circ C$		-6		mV/°C
r _{DS(on)} St		V _{GS} = 10 V, I _D = 8 A		17.8	22.5	mΩ
	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 7 A		23.2	31	
		V _{GS} = 10 V, I _D = 8 A, T _J = 125 °C		31.1	40	
FS	Forward Transconductance	V _{DS} = 5 V, I _D = 8 A		31		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			1157	1540	pF
Coss	Output Capacitance	$V_{\rm DS} = 50 \text{ V}, V_{\rm GS} = 0 \text{ V},$		181	245	pF
Srss	Reverse Transfer Capacitance	f = 1 MHz		7.7	15	pF
R _g	Gate Resistance			0.6		Ω
	g Characteristics			0.0		
d(on)	Turn-On Delay Time			6.6	14	ns
r	Rise Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 8 \text{ A},$		2.3	10	ns
d(off)	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6 Ω		20	32	ns
f	Fall Time			2.3	10	ns
ζ _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V$		18	26	nC
ζ _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 50 V,$		8.7	13	nC
ୁ C _{gs}	Gate to Source Gate Charge	I _D = 8 A		2.7		nC
ସୁ _{gd}	Gate to Drain "Miller" Charge			2.4		nC
Drain-So	urce Diode Characteristics					
V _{SD} Source		$V_{GS} = 0 V, I_S = 8 A$ (Note 2)		0.82	1.3	V
	Source to Drain Diode Forward Voltage			0.75	1.2	
rr	Reverse Recovery Time			43	70	ns
ე ^ლ	Reverse Recovery Charge	$I_{\rm F} = 8$ A, di/dt = 100 A/µs		43	70	nC
Drain-So V_{SD} t_{rr} Q_{rr} Notes: 1. R _{0JA} is the su	Source to Drain Diode Forward Voltage Reverse Recovery Time	$V_{GS} = 0 V$, $I_S = 2.6 A$ (Note 2) $I_F = 8 A$, di/dt = 100 A/µs tance where the case thermal reference is defined	as the solde	0.75 43 43	1.2 70 70	e dra

©2012 Fairchild Semiconductor Corporation FDD86102LZ Rev.C1


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Starting $T_J = 25^{\circ}C$, L = 1 mH, $I_{AS} = 13$ A, $V_{DD} = 90$ V, $V_{GS} = 10$ V.

4. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.



©2012 Fairchild Semiconductor Corporation FDD86102LZ Rev.C1

©2012 Fairchild Semiconductor Corporation FDD86102LZ Rev.C1

FDD86102LZ N-Channel PowerTrench[®] MOSFET

FDD86102LZ Rev.C1

©2012 Fairchild Semiconductor Corporation

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST® FastvCore™ FETBench™ FlashWriter[®] * **FPSTM**

FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]** ®

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM STEALTH™

p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* ISerDes™

The Power Franchise[®]

bwer

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

SuperFET[®]

SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

SupreMOS[®]

SyncFET™

Sync-Lock™

GENERAL

SYSTEM ®

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In De		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

©2012 Fairchild Semiconductor Corporation

FDD86102L7 Rev C1