NPN SILICON POWER TRANSISTOR

- DESCRIPTION

These devices are designed for high-voltage and high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V applications in switch mode.

- FEATURES

* Reverse biased SOA with inductive load @ Tc= $100^{\circ} \mathrm{C}$
* Inductive switching matrix $0.5 \sim 1.5 \mathrm{Amp}, 25$ and $100^{\circ} \mathrm{C}$ Typical tc $=290 \mathrm{~ns} @ 1 \mathrm{~A}, 100^{\circ} \mathrm{C}$.
* 700V blocking capability
- APPLICATIONS
* Switching regulator's, inverters
* Motor controls
* Solenoid/relay drivers
* Deflection circuits
- ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Packing
Lead Free	Halogen-Free		1	2	3	
MJE13003L-P-x-T60-K	MJE13003G-P-x-T60-K	TO-126	B	C	E	Bulk
MJE13003L-P-x-T6C-A-K	MJE13003G-P-x-T6C-A-K	TO-126C	E	C	B	Bulk
MJE13003L-P-x-T6C-F-K	MJE13003G-P-x-T6C-F-K	TO-126C	B	C	E	Bulk
MJE13003L-P-x-T92-B	MJE13003G-P-x-T92-B	TO-92	E	C	B	Tape Box
MJE13003L-P-x-T92-K	MJE13003G-P-x-T92-K	TO-92	E	C	B	Bulk
MJE13003L-P-x-T92-R	MJE13003G-P-x-T92-R	TO-92	E	C	B	Tape Reel
MJE13003L-P-x-T9L-B	MJE13003G-P-x-T9L-B	TO-92L	E	C	B	Tape Box
MJE13003L-P-x-T9L-K	MJE13003G-P-x-T9L-K	TO-92L	E	C	B	Bulk
MJE13003L-P-x-T9L-R	MJE13003G-P-x-T9L-R	TO-92L	E	C	B	Tape Reel
MJE13003L-P-x-TM3-T	MJE13003G-P-x-TM3-T	TO-251	B	C	E	Tube
MJE13003L-P-x-TN3-R	MJE13003G-P-x-TN3-R	TO-252	B	C	E	Tape Reel
MJE13003L-P-x-TN3-T	MJE13003G-P-x-TN3-T	TO-252	B	C	E	Tube

MJE13003L-P-x-T6C-A-K

(1)Packing Type
(2)Pin Assignment
(3)Package Type
(4)Rank
(5)Lead Free
(1) B: Tape Box, K: Bulk, R: Tape Reel, T: Tube
(2) refer to Pin Assignment (for TO-126C)
(3) T60: TO-126, T6C:TO-126C, T92: TO-92,

T9L: TO-92L, TM3: TO-251, TN3: TO-252
(4) x : refer to Classification of $h_{\text {FE1 }}$
(5) G: Halogen Free, L: Lead Free

- ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Emitter Voltage		$\mathrm{V}_{\text {CEO(SUS })}$	400	V
Collector-Base Voltage		$V_{\text {CBO }}$	700	V
Emitter Base Voltage		$V_{\text {Ebo }}$	9	V
Collector Current	Continuous	Ic	1.5	A
	Peak (1)	$\mathrm{I}_{\text {cm }}$	3	
Base Current	Continuous	I_{B}	0.75	A
	Peak (1)	$\mathrm{I}_{\text {BM }}$	1.5	
Emitter Current	Continuous	I_{E}	2.25	A
	Peak (1)	$\mathrm{I}_{\text {EM }}$	4.5	
Total Power Dissipation ($\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	TO-126 / TO-126C	$P_{\text {D }}$	1.4	W
	TO-92 / TO-92L		1.1	W
	TO-251/ TO-252		25	W
Junction Temperature		TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {STG }}$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS (Note)						
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEOSUS }}$	$\mathrm{l}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{B}}=0$	400			V
Collector Cutoff Current $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Iceo	$\mathrm{V}_{\text {CEO }}=$ Rated Value,$\mathrm{V}_{\mathrm{BE}(\mathrm{OFF})}=1.5 \mathrm{~V}$			1	mA
					5	
Emitter Cutoff Current	$\mathrm{I}_{\text {EBO }} \quad \mathrm{V}_{\mathrm{EB}}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$				1	mA
SECOND BREAKDOWN						
Second Breakdown Collector Current with bass forward biased	Is/b		See Fig. 5			
Clamped Inductive SOA with base reverse biased	RB ${ }_{\text {SOA }}$		See Fig. 6			
ON CHARACTERISTICS (Note)						
DC Current Gain	$\mathrm{h}_{\text {FE1 }}$	$\mathrm{I}_{\mathrm{C}}=0.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	14		57	
	$\mathrm{h}_{\text {FE2 }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	5		30	
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}$			0.5	V
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}$			1	
		$\mathrm{I}_{\mathrm{C}}=1.2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$			3	
		$\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			1	
Base-Emitter Saturation Voltage	$V_{\text {be(SAT) }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}$			1	V
		$\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}$			1.2	
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			1.1	
DYNAMIC CHARACTERISTICS						
Current-Gain-Bandwidth Product	f_{T}	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	4	10		MHz
Output Capacitance	$\mathrm{C}_{\text {OB }}$	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}$		21		pF
SWITCHING CHARACTERISTICS						
Resistive Load (Table 1)						
Delay Time	t_{D}	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.2 \mathrm{~A}, \\ \mathrm{tp}_{\mathrm{P}}=25 \mathrm{~s}, \text { Duty Cycle } \leq 1 \% \end{array}\right.$		0.05	0.1	$\mu \mathrm{s}$
Rise Time	t_{R}			0.5	1	$\mu \mathrm{s}$
Storage Time	$\mathrm{t}_{\text {s }}$			2	4	$\mu \mathrm{s}$
Fall Time	t_{F}			0.4	0.7	$\mu \mathrm{s}$
Inductive Load, Clamped (Table 1)						
Storage Time	$\mathrm{t}_{\text {STG }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{Vclamp}=300 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{OFF})}=5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$		1.7	4	$\mu \mathrm{s}$
Crossover Time	t_{c}			0.29	0.75	$\mu \mathrm{s}$
Fall Time	t_{F}			0.15		$\mu \mathrm{s}$

Note: Pulse Test : PW=300 s , Duty Cycle $\leq 2 \%$

- CLASSIFICATION OF $\mathrm{h}_{\text {FE1 }}$

RANK	A	B	C	D	E	F	G	H
RANGE	$14 \sim 22$	$21 \sim 27$	$26 \sim 32$	$31 \sim 37$	$36 \sim 42$	$41 \sim 47$	$46 \sim 52$	$51 \sim 57$

- APPLICATION INFORMATION

Table 1.Test Conditions for Dynamic Performance

Reverse Bias Safe Operating Area and Inductive Switching		Resistive Switching
	Coil Data : GAP for $30 \mathrm{mH} / 2 \mathrm{~A}$ Vcc $=20 \mathrm{~V}$ Ferroxcube core \#6656 Lcoil $=50 \mathrm{mH}$ Vclamp $=300 \mathrm{~V}$ Full Bobbin $(\sim 200$ Turns $) \# 20$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=125 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=125 \Omega \\ & \mathrm{D} 1=1 \mathrm{~N} 5820 \text { or } \\ & \text { Equiv. } \\ & \mathrm{R}_{\mathrm{C}}=47 \Omega \end{aligned}$
	Output Waveforms	

Table 2. Typical Inductive Switching Performance

Ic (A)	Tc $\left({ }^{\circ} \mathrm{C}\right)$	t_{sv} $(\mu \mathrm{s})$	t_{Rv} $(\mu \mathrm{s})$	t_{FI} $(\mu \mathrm{s})$	$\mathrm{t}_{T \mathrm{I}}$ $(\mu \mathrm{s})$	tc $(\mu \mathrm{s})$
0.5	25	1.3	0.23	0.30	0.35	0.30
	100	1.6	0.26	0.30	0.40	0.36
1	25	1.5	0.10	0.14	0.05	0.16
	100	1.7	0.13	0.26	0.06	0.29
1.5	25 100	1.8 3	0.07 0.08	0.10	0.22	0.05
0.08	0.16					
0.28						

Note: All Data Recorded in the Inductive Switching Circuit in Table 1

Fig. 1 Inductive Switching Measurements

- SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads, which are common to switch mode power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

```
tsv = Voltage Storage Time, 90% I I }1\mathrm{ to 10% Vclamp
trv = Voltage Rise Time, 10 ~ 90% Vclamp
t}\mp@subsup{\textrm{t}}{\textrm{FI}}{}=\mathrm{ Current Fall Time, 90~10% IC
t}\mp@subsup{\textrm{t}}{\textrm{T}}{}=\mathrm{ Current Tail, 10 ~ 2% IC
tc = Crossover Time, 10% Vclamp to 10% Ic
```

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation:
$P_{\text {SWT }}=1 / 2 \mathrm{~V}_{\mathrm{CC}} \mathrm{l}_{\mathrm{C}}\left(\mathrm{t}_{\mathrm{C}}\right) \mathrm{f}$
In general, $\mathrm{t}_{\mathrm{RV}}+\mathrm{t}_{\mathrm{FI}} \approx \mathrm{t}_{\mathrm{C}}$. However, at lower test currents this relationship may not be valid.
As is common with most switching transistors, resistive switching is specified at $25^{\circ} \mathrm{C}$ and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this transistor are the inductive switching speeds (t_{c} and t_{sv}) which are guaranteed at $100^{\circ} \mathrm{C}$.

RESISTIVE SWITCHING PERFORMANCE

Fig. 2 Turn-On Time

Fig. 3 Turn-Off Time

Fig. 4 Thermal Response

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Fig. 5 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{PK})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_{C} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Fig.5.
$\mathrm{T}_{\mathrm{J}(\mathrm{PK})}$ may be calculated from the data in Fig.4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as RBsoa(Reverse Bias Safe Operating Area) and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Fig. 6 gives RBsoa characteristics.

The Safe Operating Area of Fig. 5 and 6 are specified ratings (for these devices under the test conditions shown.)

Fig. 5 Active Region Safe Operating Area

Fig. 6 Reverse Bias Safe Operating Area

- TYPICAL CHARACTERISTICS

- TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

