WM8766

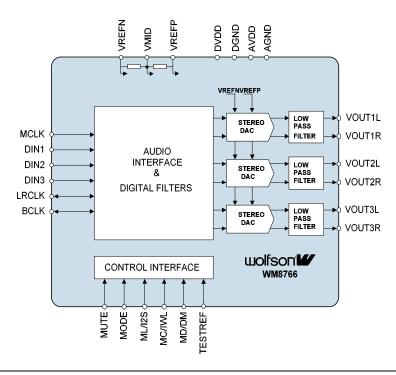
24-bit, 192kHz 6-Channel DAC

DESCRIPTION

The WM8766 is a multi-channel audio DAC ideal for DVD and surround sound processing applications for home hi-fi, automotive and other audio visual equipment.

Three stereo 24-bit multi-bit sigma delta DACs are used with oversampling digital interpolation filters. Digital audio input word lengths from 16-32 bits and sampling rates from 8kHz to 192kHz are supported. Each DAC channel has independent digital volume and mute control.

The audio data interface supports I^2S , left justified, right justified and DSP digital audio formats


The device is controlled via a 3 wire serial interface or directly using the hardware interface. These interfaces provide access to features including channel selection, volume controls, mutes, de-emphasis and power management facilities. The device is available in a 28-pin SSOP.

FEATURES

- 6-Channel DAC
- Audio Performance
 - 103dB SNR ('A' weighted @ 48kHz) DAC
- DAC Sampling Frequency: 8kHz 192kHz
- 3-Wire SPI Serial or Hardware Control Interface
- Programmable Audio Data Interface Modes
 - I²S, Left, Right Justified or DSP
 - 16/20/24/32 bit Word Lengths
- Three Independent stereo DAC outputs with independent digital volume controls
- Master or Slave Audio Data Interface
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation
- 28 pin SSOP Package

APPLICATIONS

- DVD Players
- Surround Sound AV Processors and Hi-Fi systems
- Automotive Audio

BLOCK DIAGRAM

WOLFSON MICROELECTRONICS plc

www.wolfsonmicro.com

Preliminary Technical Data, February 2004, 2.3

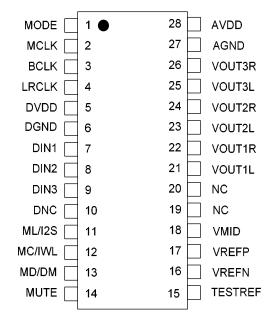

Copyright ©2004 Wolfson Microelectronics plc

TABLE OF CONTENTS

DESCRIPTION	
FEATURES	
APPLICATIONS	1
BLOCK DIAGRAM	
TABLE OF CONTENTS	
PIN CONFIGURATION 28 LEAD SSOP	3
ORDERING INFORMATION	3
PIN DESCRIPTION – 28 PIN SSOP	4
ABSOLUTE MAXIMUM RATINGS	5
RECOMMENDED OPERATING CONDITIONS	6
ELECTRICAL CHARACTERISTICS	6
TERMINOLOGY	
MASTER CLOCK TIMING	
DIGITAL AUDIO INTERFACE – MASTER MODE	
TABLE 2 DIGITAL AUDIO DATA TIMING – MASTER MODE	
DIGITAL AUDIO INTERFACE – SLAVE MODE	
MPU INTERFACE TIMING	
INTRODUCTION	
HARDWARE CONTROL MODES	
DIGITAL AUDIO INTERFACE	
POWERDOWN MODES	
ZERO DETECT	
SOFTWARE CONTROL INTERFACE OPERATION	
CONTROL INTERFACE REGISTERS	
REGISTER MAP	
DIGITAL FILTER CHARACTERISTICS	
DAC FILTER RESPONSES	
DIGITAL DE-EMPHASIS CHARACTERISTICS	
APPLICATIONS INFORMATION	
RECOMMENDED EXTERNAL COMPONENTS	
SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS	
PACKAGE DIMENSIONS	
ADDRESS:	32

PIN CONFIGURATION 28 LEAD SSOP

ORDERING INFORMATION

DEVICE	TEMP. RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL
WM8766EDS/V	-25 to +85°C	28-pin SSOP	MSL3
WM8766GEDS/V	-25 to +85°C	28-pin SSOP	MSL3
WW0700GEDS/V	-25 t0 +65 C	(lead free)	
	-25 to +85°C	28-pin SSOP	MSL3
WM8766EDS/RV	-25 t0 +65 C	(tape and reel)	
		28-pin SSOP	MSL3
WM8766GEDS/RV	-25 to +85°C	(lead free, tape	
		and reel)	

Note:

Reel quantity = 2,000

PIN DESCRIPTION – 28 PIN SSOP

PIN	NAME	TYPE	DESCRIPTION
1	MODE	Digital input	Control format selection
			0 = Software control
			1 = Hardware control
2	MCLK	Digital input	Master clock; 128, 192, 256, 384, 512 or 768fs (fs = word clock frequency)
3	BCLK	Digital input/output	Audio interface bit clock
4	LRCLK	Digital input/output	Audio left/right word clock
5	DVDD	Supply	Digital positive supply
6	DGND	Supply	Digital negative supply
7	DIN1	Digital input	DAC channel 1 data input
8	DIN2	Digital input	DAC channel 2 data input
9	DIN3	Digital input	DAC channel 3 data input
10	DNC	Do not connect	Do not connect
11	ML/I2S	Digital input	Software Mode: Serial interface Latch signal
			Hardware Mode: Input Audio Data Format
12	MC/IWL	Digital input	Software Mode: Serial control interface clock
			Hardware Mode: Audio data input word length
13	MD/DM	Digital input	Software Mode: Serial interface data
			Hardware Mode: De-emphasis selection
14	MUTE	Digital input/output	DAC Zero Flag output or DAC mute input
15	TESTREF	Digital input	Test reference
16	VREFN	Supply	DAC negative supply
17	VREFP	Supply	DAC positive reference supply
18	VMID	Analogue output	Midrail divider decoupling pin; 10uF external decoupling
19	NC	No connect	No internal connection
20	NC	No connect	No internal connection
21	VOUT1L	Analogue output	DAC channel 1 left output
22	VOUT1R	Analogue output	DAC channel 1 right output
23	VOUT2L	Analogue output	DAC channel 2 left output
24	VOUT2R	Analogue output	DAC channel 2 right output
25	VOUT3L	Analogue output	DAC channel 3 left output
26	VOUT3R	Analogue output	DAC channel 3 right output
27	AGND	Supply	Analogue negative supply and substrate connection
28	AVDD	Supply	Analogue positive supply

Note: Digital input pins have Schmitt trigger input buffers.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

 $\label{eq:MSL1} = \text{unlimited floor life at } <30^{\circ}\text{C} \ / \ 85\% \ \text{Relative Humidity. Not normally stored in moisture barrier bag.} \\ \end{tabular} MSL2 = \text{out of bag storage for 1 year at } <30^{\circ}\text{C} \ / \ 60\% \ \text{Relative Humidity. Supplied in moisture barrier bag.} \\ \end{tabular} MSL3 = \text{out of bag storage for 168 hours at } <30^{\circ}\text{C} \ / \ 60\% \ \text{Relative Humidity. Supplied in moisture barrier bag.} \\ \end{tabular}$

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+5V
Analogue supply voltage	-0.3V	+7V
Voltage range digital inputs	DGND -0.3V	DVDD +0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Master Clock Frequency		37MHz
Operating temperature range, T _A	-25°C	+85°C
Storage temperature after soldering	-65°C	+150°C
Package body temperature (soldering 10 seconds)		+260°C
Package body temperature (soldering 2 minutes)		+183°C

Notes:

1. Analogue and digital grounds must always be within 0.3V of each other for normal operation of the device.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD		2.7		3.6	V
Analogue supply range	AVDD, VREFP		2.7		5.5	V
Ground	AGND, VREFN, DGND			0		V
Difference DGND to AGND			-0.3	0	+0.3	V

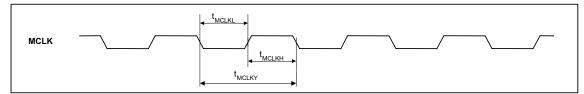
Note: Digital supply DVDD must never be more than 0.3V greater than AVDD for normal operation of the device .

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, DGND = 0V, T_A = $+25^{\circ}$ C, fs = 48kHz, MCLK = 256fs.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Logic Levels (CMOS Levels	vels)	•				
Input LOW level	VL				0.3 x DVDD	V
Input HIGH level	VIH		0.7 x DVDD			V
Output LOW	VoL	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	V _{OH}	I _{OH} =-1mA	0.9 x DVDD			V
Analogue Reference Levels						
Reference Voltage	V _{VMID}			VREFP/2		V
Potential Divider Resistance	R _{VMID}	(VREFP to VMID) and (VMID to VREFN)		133k		Ω
DAC Performance (Load = 10kg	2, 50pF)					
0dBFs Full Scale Output Voltage				1.0 x VREFP/5		Vrms
SNR (Note 1,2,4)		A-weighted, @ fs = 48kHz	95	103		dB
SNR (Note 1,2,4)		A-weighted @ fs = 96kHz		101		dB
SNR (Note 1,2,4)		A-weighted @ fs = 192kHz		101		dB
SNR (Note 1,2,4)		A-weighted @ fs = 48kHz, AVDD = 3.3V		101		dB
SNR (Note 1,2,4)		A-weighted @ fs = 96kHz, AVDD = 3.3V		99		dB
Dynamic Range (Note 2,4)	DNR	A-weighted, -60dB full scale input	95	103		dB
Total Harmonic Distortion (THD)		1kHz, 0dBFs		-90	-80	dB
Mute Attenuation		1kHz Input, 0dB gain		100		dB
DAC Channel Separation				100		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz 100mVp-p		45		dB
Supply Current						
Analogue Supply Current		AVDD, VREFP = 5V		13.8		mA
Digital Supply Current		DVDD = 3.3V		11.0		mA


Notes:

- 1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.
- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).

TERMINOLOGY

- 1. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Stop band attenuation (dB) Is the degree to which the frequency spectrum is attenuated (outside audio band).
- 5. Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.

MASTER CLOCK TIMING

Figure 1 DAC Master Clock Timing Requirements

Test Conditions

AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, DGND = 0V, $T_A = +25^{\circ}C$, fs = 48kHz, MCLK = 256fs unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
System Clock Timing Information						
MCLK System clock pulse width high	t _{MCLKH}		11			ns
MCLK System clock pulse width low	t _{MCLKL}		11			ns
MCLK System clock cycle time	t _{MCLKY}		28			ns
MCLK Duty cycle			40:60		60:40	

Table 1 Master Clock Timing Requirements

WM8766

DIGITAL AUDIO INTERFACE – MASTER MODE

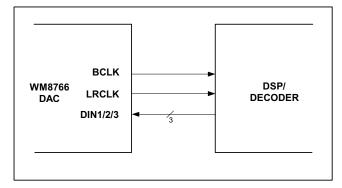


Figure 2 Audio Interface - Master Mode

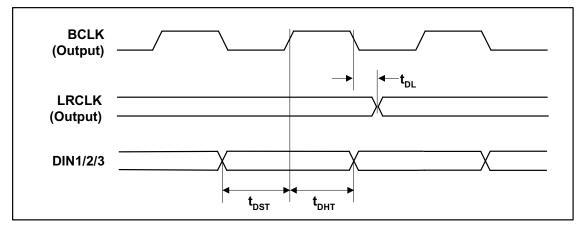


Figure 3 Digital Audio Data Timing – Master Mode

Test Conditions

AVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN, DGND = 0V, $T_A = +25^{\circ}C$, Master Mode, fs = 48kHz, MCLK = 256fs unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Audio Data Input Timing Inf	formation					
LRCLK propagation delay from BCLK falling edge	t _{DL}		0		10	ns
DIN1/2/3 setup time to BCLK rising edge	t _{DST}		10			ns
DIN1/2/3 hold time from BCLK rising edge	t _{DHT}		10			ns

Table 2 Digital Audio Data Timing – Master Mode

DIGITAL AUDIO INTERFACE – SLAVE MODE

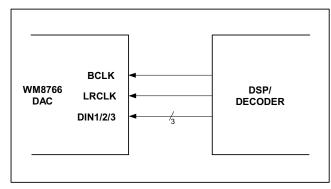


Figure 4 Audio Interface – Slave Mode

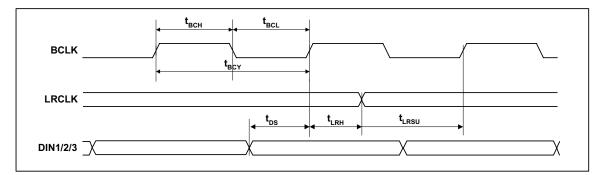


Figure 5 Digital Audio Data Timing – Slave Mode

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, $T_A = +25^{\circ}C$, Slave Mode, fs = 48kHz, MCLK = 256fs unless otherwise stated.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Audio Data Input Timing Info	ormation					
BCLK cycle time	t _{BCY}		50			ns
BCLK pulse width high	t _{BCH}		20			ns
BCLK pulse width low	t _{BCL}		20			ns
LRCLK set-up time to BCLK rising edge	t _{LRSU}		10			ns
LRCLK hold time from BCLK rising edge	t _{LRH}		10			ns
DIN1/2/3 set-up time to BCLK rising edge	t _{DS}		10			ns
DIN1/2/3 hold time from BCLK rising edge	t _{DH}		10			ns

Table 3 Digital Audio Data Timing – Slave Mode

WM8766

MPU INTERFACE TIMING

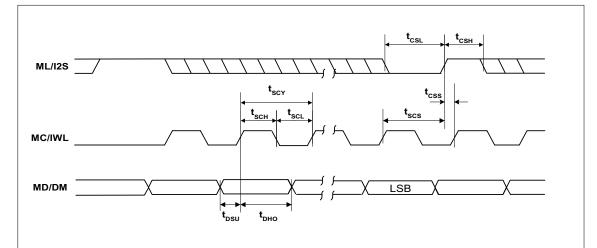


Figure 6 SPI Compatible Control Interface Input Timing

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
MC/IWL rising edge to ML/I2S rising edge	t _{scs}	60			ns
MC/IWL pulse cycle time	t _{SCY}	80			ns
MC/IWL pulse width low	t _{SCL}	30			ns
MC/IWL pulse width high	t _{SCH}	30			ns
MD/DM to MC/IWL set-up time	t _{DSU}	20			ns
MC/IWL to MD/DM hold time	t _{DHO}	20			ns
ML/I2S pulse width low	t _{CSL}	20			ns
ML/I2S pulse width high	t _{CSH}	20			ns
ML/I2S rising to MC/IWL rising	t _{CSS}	20			ns

Table 4 3-wire SPI Compatible Control Interface Input Timing Information

DEVICE DESCRIPTION

INTRODUCTION

WM8766 is a complete 6-channel DAC including digital interpolation and decimation filters and switched capacitor multi-bit sigma delta DACs with digital volume controls on each channel and output smoothing filters.

The device is implemented as 3 separate stereo DACs in a single package and controlled by a single interface.

Each stereo DAC has its own data input DIN1/2/3. DAC word clock LRCLK, DAC bit clock BCLK and DAC master clock MCLK are shared between them.

The Audio Interface may be configured to operate in either master or slave mode. In Slave mode, LRCLK and BCLK are all inputs. In Master mode, LRCLK and BCLK are all outputs.

Each DAC has its own digital volume control that is adjustable in 0.5dB steps. The digital volume controls may be operated independently. In addition, a zero cross detect circuit is provided for each DAC for the digital volume controls. The digital volume control detects a transition through the zero point before updating the volume. This minimises audible clicks and 'zipper' noise as the gain values change.

Control of internal functionality of the device is by 3-wire serial or pin programmable control interface. The software control interface may be asynchronous to the audio data interface as control data will be re-synchronised to the audio processing internally.

Operation using master clocks of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is provided for the DAC. In Slave mode selection between clock rates is automatically controlled. In master mode, the sample rate is set by control bit DACRATE. Audio sample rates (fs) from less than 8ks/s up to 192ks/s are allowed for the DAC, provided the appropriate master clock is input.

The audio data interface supports right, left and I²S interface formats along with a highly flexible DSP serial port interface.

AUDIO DATA SAMPLING RATES

In a typical digital audio system there is only one central clock source producing a reference clock to which all audio data processing is synchronised. This clock is often referred to as the audio system's Master Clock. The external master system clock can be applied directly through the DAC MCLK input pin(s) with no software configuration necessary.

The DAC master clock for WM8766 supports audio sampling rates from 128fs to 768fs, where fs is the audio sampling frequency (LRCLK) typically 32kHz, 44.1kHz, 48kHz, 96kHz or 192kHz. The master clock is used to operate the digital filters and the noise shaping circuits.

In Slave mode the WM8766 has a master clock detection circuit that automatically determines the relationship between the system clock frequency and the sampling rate (to within +/- 32 master clocks). If there is a greater than 32 clocks error the interface defaults to 768fs mode. The WM8766 is tolerant of phase variations or jitter on the master clock. Table 5 shows the typical master clock frequency inputs for the WM8766.

The signal processing for the WM8766 typically operates at an oversampling rate of 128fs. The exception to this is for operation with a 128/192fs system clock, e.g. for 192kHz operation, when the oversampling rate is 64fs.

SAMPLING RATE		System Clock Frequency (MHz)						
(LRCLK)	128fs	192fs	256fs	384fs	512fs	768fs		
32kHz	4.096	6.144	8.192	12.288	16.384	24.576		
44.1kHz	5.6448	8.467	11.2896	16.9340	22.5792	33.8688		
48kHz	6.144	9.216	12.288	18.432	24.576	36.864		
96kHz	12.288	18.432	24.576	36.864	Unavailable	Unavailable		
192kHz	24.576	36.864	Unavailable	Unavailable	Unavailable	Unavailable		

Table 5 System Clock Frequencies Versus Sampling Rate

HARDWARE CONTROL MODES

When the MODE pin is held high, the following hardware modes of operation are available.

MUTE AND AUTOMUTE OPERATION

In both hardware and software modes, MUTE controls the selection of MUTE directly, and can be used to enable and disable the automute function. This pin becomes an output when left floating and indicates infinite ZERO detect (IZD) has been detected.

	DESCRIPTION				
0	Normal Operation				
1	Mute DAC channels				
Floating	Enable IZD, MUTE becomes an output to indicate when IZD occurs. L=IZD detected, H=IZD not detected.				

Table 6 Mute and Automute Control

Figure 7 shows the application and release of MUTE whilst a full amplitude sinusoid is being played at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to decay exponentially from the DC level of the last input sample. The output will decay towards V_{MID} with a time constant of approximately 64 input samples. When MUTE is de-asserted, the output will restart almost immediately from the current input sample.

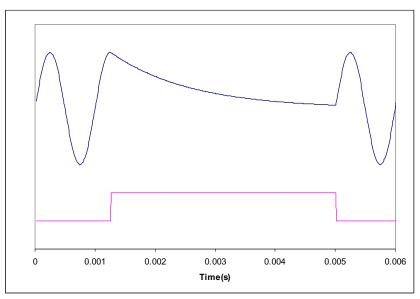
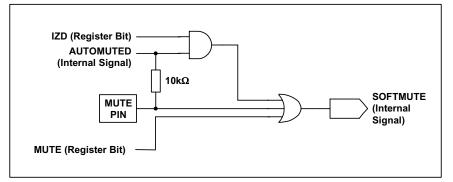


Figure 7 Application and Release of Soft Mute



PTD Rev 2.3 February 2004

The automute function detects a series of ZERO value audio samples of 1024 samples long being applied to both channels. After such an event, a latch is set whose output (AUTOMUTED) is wire OR'ed through a 10k Ω resistor to the MUTE pin. Thus if the MUTE pin is not being driven, the automute function will assert mute.

If MUTE is tied low, AUTOMUTED is overridden and will not mute unless the IZD register bit is set. If MUTE is driven from a bi-directional source, then both MUTE and automute functions are available. If MUTE is not driven, AUTOMUTED appears as a weak output ($10k\Omega$ source impedance) and can be used to drive external mute circuits. AUTOMUTED will be removed as soon as any channel receives a non-ZERO input.

A diagram showing how the various Mute modes interact is shown below Figure 8.

Figure 8 Selection Logic for MUTE Modes

INPUT FORMAT SELECTION

In hardware mode, ML/I2S and MC/IWL become input controls for selection of input data format type and input data word length for the DAC.

ML/I2S	MC/IWL	INPUT DATA MODE
0	0	24-bit right justified
0	1	20-bit right justified
1	0	16-bit I ² S
1	1	24-bit I ² S

Table 7 Input Format Selection

Note:

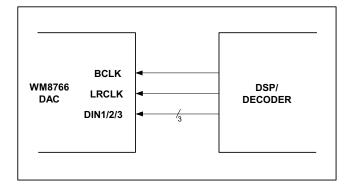
In 24 bit I^2S mode, any width of 24 bits or less is supported provided that the left/right clocks (LRCLK) are high for a minimum of 24 bit clocks (BCLK) and low for a minimum of 24 bit clocks. If exactly 32 bit clocks occur in one left/right clock (16 high, 16 low) the chip will auto detect and run a 16 bit data mode.

DE-EMPHASIS CONTROL

In hardware mode, the MD/DM pin becomes an input control for selection of de-emphasis filtering to be applied.

MD/DM	DE-EMPHASIS
0	Off
1	On

Table 8 De-emphasis Control


DIGITAL AUDIO INTERFACE

MASTER AND SLAVE MODES

The audio interface operates in either Slave or Master mode, selectable using the MS control bit. In both Master and Slave modes DIN1/2/3 are always inputs to the WM8766 and DOUT is always an output. The default is Slave mode.

In Slave mode, LRCLK and BCLK are inputs to the WM8766 DIN1/2/3 and LRCLK are sampled by the WM8766 on the rising edge of BCLK.

By setting the control bit BCP the polarity of BCLK may be reversed so that DIN1/2/3 and LRCLK are sampled on the falling edge of BCLK and DOUT changes on the rising edge of BCLK

Figure 9 Slave Mode

In Master mode, LRCLK and BCLK are outputs from the WM8766 (Figure 10). LRCLK and BCLK are generated by the WM8766. DIN1/2/3 are sampled by the WM8766 on the rising edge of BCLK.

By setting control bit BCP the polarity of BCLK may be reversed so that DIN1/2/3 are sampled on the falling edge of BCLK, and DOUT changes on the rising edge of BCLK.

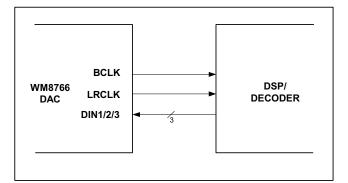


Figure 10 Master Mode

AUDIO INTERFACE FORMATS

Audio data is applied to the internal DAC filters via the Digital Audio Interface. 5 popular interface formats are supported:

- Left Justified mode
- Right Justified mode
- I2S mode
- DSP Early mode
- DSP Late mode

All 5 formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the exception of 32 bit right justified mode, which is not supported.

In left justified, right justified and l^2S modes, the digital audio interface receives DAC data on the DIN1/2/3 inputs. Audio Data for each stereo channel is time multiplexed with LRCLK indicating whether the left or right channel is present. LRCLK is also used as a timing reference to indicate the beginning or end of the data words.

In left justified, right justified and I²S modes, the minimum number of BCLKs per LRCLK period is 2 times the selected word length. LRCLK must be high for a minimum of word length BCLKs and low for a minimum of word length BCLKs. Any mark to space ratio on LRCLK is acceptable provided the above requirements are met.

In DSP early or DSP late mode, all 6 DAC channels are time multiplexed onto DIN1. LRCLK is used as a frame sync signal to identify the MSB of the first word. The minimum number of BCLKs per LRCLK period is 6 times the selected word length. Any mark to space ratio is acceptable on LRCLK provided the rising edge is correctly positioned.

LEFT JUSTIFIED MODE

In left justified mode, the MSB of DIN1/2/3 is sampled by the WM8766 on the first rising edge of BCLK following a LRCLK transition. LRCLK is high during the left samples and low during the right samples, see Figure 11.

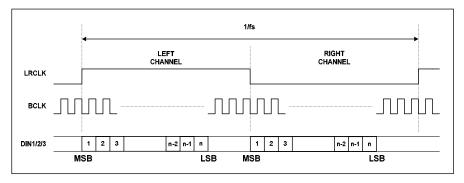


Figure 11 Left Justified Mode Timing Diagram

RIGHT JUSTIFIED MODE

In right justified mode, the LSB of DIN1/2/3 is sampled by the WM8766 on the rising edge of BCLK preceding a LRCLK transition. LRCLK are high during the left samples and low during the right samples, see Figure 12.

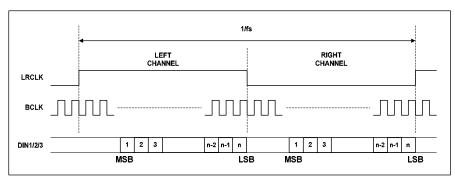


Figure 12 Right Justified Mode Timing Diagram

I2S MODE

In l^2 S mode, the MSB of DIN1/2/3 is sampled by the WM8766 on the second rising edge of BCLK following a LRCLK transition. LRCLK are low during the left samples and high during the right samples.

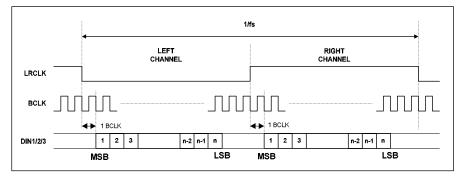
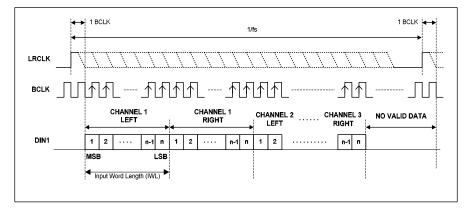



Figure 13 I²S Mode Timing Diagram

DSP EARLY MODE

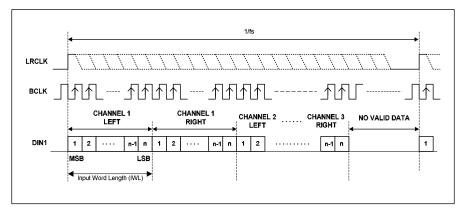

In DSP early mode, the MSB of DAC channel 1 left data is sampled by the WM8766 on the second rising edge on BCLK following a LRCLK rising edge. DAC channel 1 right and DAC channels 2 and 3 data follow DAC channel 1 left data (Figure 14).

Figure 14 DSP Early Mode Timing Diagram – DAC Data Input

DSP LATE MODE

In DSP late mode, the MSB of DAC channel 1 left data is sampled by the WM8766 on the first BCLK rising edge following a LRCLK rising edge. DAC channel 1 right and DAC channels 2 and 3 data follow DAC channel 1 left data (Figure 15).

Figure 15 DSP Late Mode Timing Diagram – DAC Data Input

In both early and late DSP modes, DACL1 is always sent first, followed immediately by DACR1 and the data words for the other 6 channels. No BCLK edges are allowed between the data words. The word order is DAC1 left, DAC1 right, DAC2 left, DAC2 right, DAC3 left, DAC3 right.

POWERDOWN MODES

The WM8766 has powerdown control bits allowing specific parts of the WM8766 to be powered off when not being used. The three stereo DACs each have a separate powerdown control bit, DACPD[2:0] allowing individual stereo DACs to be powered off when not in use. Setting DACPD[2:0] will powerdown everything except the reference VMID may be powered down by setting PDWN. Setting PDWN will override all other powerdown control bits. It is recommended that the DACs are powered down before setting PDWN.

WM8766

ZERO DETECT

The WM8766 has a zero detect circuit for each DAC channel that detects when 1024 consecutive zero samples have been input. The MUTE pin output may be programmed to output the zero detect signal (see Table 9) which may then be used to control external muting circuits. A '1' on MUTE indicates a zero detect. The zero detect may also be used to automatically enable DAC mute by setting IZD.

DZFM[1:0]	MUTE			
00	All channels zero			
01	Channel 1 zero			
10	Channel 2 zero			
11	Channel 3 zero			

Table 9 Zero Flag Output Select

SOFTWARE CONTROL INTERFACE OPERATION

The WM8766 is controlled using a 3-wire serial interface in software mode or pin programmable in hardware mode.

The control mode is selected by the state of the MODE pin.

3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE

MD/DM is used for the program data, MC/IWL is used to clock in the program data and ML/I2S is used to latch the program data. MD/DM is sampled on the rising edge of MC/IWL. The 3-wire interface protocol is shown in Figure 16.

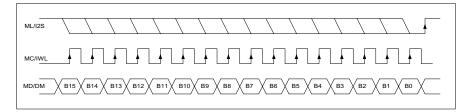


Figure 16 3-wire SPI Compatible Interface

- 1. B[15:9] are Control Address Bits
- 2. B[8:0] are Control Data Bits
- 3. ML/I2S is edge sensitive the data is latched on the rising edge of ML/I2S.

CONTROL INTERFACE REGISTERS

ATTENUATOR CONTROL MODE

Setting the ATC register bit causes the left channel attenuation settings to be applied to both left and right channel DACs from the next audio input sample. No update to the attenuation registers is required for ATC to take effect.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000010	3	ATC	0	Attenuator Control Mode:
DAC Channel Control				0: Right channels use right attenuations
				1: Right channels use left
				attenuations

INFINITE ZERO DETECT ENABLE

Setting the IZD register bit will enable the internal infinite zero detect function:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000010	4	IZD	0	Infinite Zero Mute Enable
DAC Channel Control				0 : Disable inifinite zero mute
				1: Enable infinite zero mute

With IZD enabled, applying 1024 consecutive zero input samples to each stereo channel will cause that stereo channel outputs to be muted to VMID. Mute will be removed as soon as that stereo channel receives a non-zero input.

DAC OUTPUT CONTROL

The DAC output control word determines how the left and right inputs to the audio Interface are applied to the left and right DACs:

REGISTER ADDRESS	BIT	LABEL	DEFAULT		DESCRIPTIC	ON
0000010 DAC Control	8:5	PL[3:0]	1001	PL[3:0]	Left Output	Right Output
				0000	Mute	Mute
				0001	Left	Mute
				0010	Right	Mute
				0011	(L+R)/2	Mute
				0100	Mute	Left
				0101	Left	Left
				0110	Right	Left
				0111	(L+R)/2	Left
				1000	Mute	Right
				1001	Left	Right
				1010	Right	Right
				1011	(L+R)/2	Right
				1100	Mute	(L+R)/2
				1101	Left	(L+R)/2
				1110	Right	(L+R)/2
				1111	(L+R)/2	(L+R)/2

DAC DIGITAL AUDIO INTERFACE CONTROL REGISTER

Interface format is selected via the FMT[1:0] register bits:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000011	1:0	FMT	00	Interface Format Select:
Interface Control		[1:0]		00 : Right justified mode
				01: Left justified mode
				10: I ² S mode
				11: DSP (early or late) mode

In left justified, right justified or l^2 S modes, the LRP register bit controls the polarity of LRCLK. If this bit is set high, the expected polarity of LRCLK will be the opposite of that shown in Figure 11, Figure 12 and Figure 13. Note that if this feature is used as a means of swapping the left and right channels, a 1 sample phase difference will be introduced. In DSP modes, the LRP register bit is used to select between early and late modes.

PTD Rev 2.3 February 2004

WM8766

Preliminary Technical Data

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000011	2	LRP	0	In left/right/I ² S Modes:
Interface Control				LRCLK Polarity (normal)
				0 : Normal LRCLK polarity
				1: Inverted LRCLK polarity
				In DSP Mode:
				0 : Early DSP mode
				1: Late DSP mode

By default, LRCLK and DIN1/2/3 are sampled on the rising edge of BCLK and should ideally change on the falling edge. Data sources that change LRCLK and DIN1/2/3 on the rising edge of BCLK can be supported by setting the BCP register bit. Setting BCP to 1 inverts the polarity of BCLK to the inverse of that shown in Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000011	3	BCP	0	BCLK Polarity (DSP Modes):
Interface Control				0: Normal BCLK polarity
				1: Inverted BCLK polarity

The IWL[1:0] bits are used to control the input word length.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000011	5:4	IWL	00	Input Word Length:
Interface Control		[1:0]		00 : 16 bit data
				01: 20 bit data
				10: 24 bit data
				11: 32 bit data

Note: 32-bit right justified mode is not supported.

In all modes, the data is signed 2's complement. The digital filters always input 24-bit data. If the DAC is programmed to receive 16 or 20 bit data, the WM8766 pads the unused LSBs with zeros. If the DAC is programmed into 32 bit mode, the 8 LSBs are ignored.

Note: In 24 bit l^2 S mode, any width of 24 bits or less is supported provided that LRCLK is high for a minimum of 24 BCLKs and low for a minimum of 24 BCLKs.

A number of options are available to control how data from the Digital Audio Interface is applied to the DAC channels.

DAC OUTPUT PHASE

The DAC Phase control word determines whether the output of each DAC is non-inverted or inverted

REGISTER ADDRESS	BIT	LABEL	DEFAULT		DESCRIPTIC	N
0000011	8:6	PHASE	000	Bit	DAC	Phase
DAC Phase		[2:0]		0	DAC1L/R	1 = invert
				1	DAC2L/R	1 = invert
				2	DAC3L/R	1 = invert

DIGITAL ZERO CROSS-DETECT

The Digital volume control also incorporates a zero cross detect circuit which detects a transition through the zero point before updating the digital volume control with the new volume. This is enabled by control bit DZCEN.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001001	0	ZCD	0	DAC Digital Volume Zero Cross
DAC Control				Enable:
				0: Zero cross detect enabled
				1: Zero cross detect disabled

MUTE FLAG OUTPUT

The DZFM control bits allow the selection of the six DAC channel zero flag bits for output on the MUTE pin. A '1' on MUTE indicates 1024 consecutive zero input samples to the DAC channels selected.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001001	2:1	DZFM[1:0]	00	Selects MUTE flag for output on the
Zero Flag				MUTE pin (A '1' indicates 1024
C C				consecutive zero input samples on
				the DAC channels selected.
				00: All channels zero
				01: Channel 1 zero
				10: Channel 2 zero
				11: Channel 3 zero

DZFM[1:0]	MUTE		
00	All channels zero		
01	Channel 1 zero		
10	Channel 2 zero		
11	Channel 3 zero		

DAC MUTE MODES

The WM8766 has individual mutes for each of the three DAC channels. Setting MUTE for a channel will apply a 'soft' mute to the input of the digital filters of the channel muted.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001001	5:3	DMUTE	000	DAC Soft Mute Select
DAC Mute		[2:0]		

21

DMUTE [2:0]	DAC CHANNEL 1	DAC CHANNEL 2	DAC CHANNEL 3
000	Not MUTE	Not MUTE	Not MUTE
001	MUTE	Not MUTE	Not MUTE
010	Not MUTE	MUTE	Not MUTE
011	MUTE	MUTE	Not MUTE
100	Not MUTE	Not MUTE	MUTE
101	MUTE	Not MUTE	MUTE
110	Not MUTE	MUTE	MUTE
111	MUTE	MUTE	MUTE

Setting the MUTEALL register bit will apply a 'soft' mute to the input of all the DAC digital filters:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000010	0	MUTEALL	0	Soft Mute Select:
DAC Mute				0 : Normal operation
				1: Soft mute all channels

Refer to Figure 7 for the plot of application and release of soft mute.

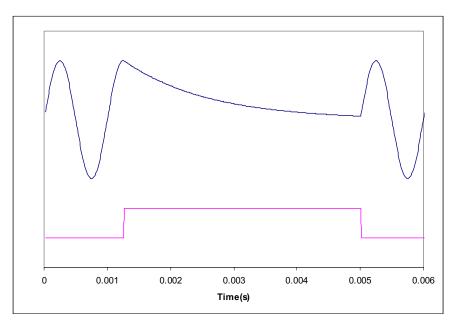


Figure 17 Application and Release of Soft Mute

Figure 17 shows the application and release of MUTE whilst a full amplitude sinusoid is being played at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to decay exponentially from the DC level of the last input sample. The output will decay towards V_{MID} with a time constant of approximately 64 input samples. If MUTE is applied to all channels for 1024 or more input samples the outputs will be connected directly to V_{MID} if IZD is set. When MUTE is deasserted, the output will restart immediately from the current input sample.

Note that all other means of muting the DAC channels: setting the PL[3:0] bits to 0, setting the PDWN bit or setting attenuation to 0 will cause much more abrupt muting of the output.

DE-EMPHASIS MODE

Each stereo DAC channel has an individual de-emphasis control bit:

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001001 DAC De-Emphahsis Control	[8:6]	DEEMPH [1:0]	000	De-emphasis Channel Selection Select:

DEEMPH	DAC CHANNEL 1	DAC CHANNEL 2	DAC CHANNEL 3
[1:0]			
000	Not DE-EMPHASIS	Not DE-EMPHASIS	Not DE-EMPHASIS
001	DE-EMPHASIS	Not DE-EMPHASIS	Not DE-EMPHASIS
010	Not DE-EMPHASIS	DE-EMPHASIS	Not DE-EMPHASIS
011	DE-EMPHASIS	DE-EMPHASIS	Not DE-EMPHASIS
100	Not DE-EMPHASIS	Not DE-EMPHASIS	DE-EMPHASIS
101	DE-EMPHASIS	Not DE-EMPHASIS	DE-EMPHASIS
110	Not DE-EMPHASIS	DE-EMPHASIS	DE-EMPHASIS
111	DE-EMPHASIS	DE-EMPHASIS	DE-EMPHASIS

Refer to Figure 27 for details of the De-Emphasis performance at different sample rates.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000010	1	DEEMPALL	0	DEMMP Select:
DAC DEMP				0 : Normal operation
				1: De-emphasis all channels

POWERDOWN MODE AND DAC DISABLE

Setting the PDWN register bit immediately powers down the DAC's on the WM8766, overriding the DACD powerdown bits control bits. All trace of the previous input samples are removed, but all control register settings are preserved. When PDWN is cleared the digital filters will be reinitialised

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000010	2	PDWN	0	Power Down all DAC's Select:
Powerdown Control				0: All DAC's enabled
				1: All DAC's disabled

The DACs may also be powered down individually by setting the DACPD disable bit. Each Stereo DAC channel has a separate disable DACPD[2:0]. Setting DACPD for a channel will disable the DACs and select a low power mode.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001010	3:1	DACPD[2:0]	000	DAC Disable
Powerdown Control				

DACPD [2:0]	DAC CHANNEL 1	DAC CHANNEL 2	DAC CHANNEL 3
000	Active	Active	Active
001	DISABLE	Active	Active
010	Active	DISABLE	Active
011	DISABLE	DISABLE	Active
100	Active	Active	DISABLE
101	DISABLE	Active	DISABLE
110	Active	DISABLE	DISABLE
111	DISABLE	DISABLE	DISABLE

PTD Rev 2.3 February 2004

MASTER POWERDOWN

This control bit powers down the references for the whole chip. Therefore for complete powerdown, all DACs should be powered down first before setting this bit.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001010	4	PWRDNALL	0	Master Power Down Bit:
Interface Control				0: Not powered down
				1: Powered down

MASTER MODE SELECT

Control bit MS selects between audio interface Master and Slave Modes. In Master mode LRCLK and BCLK are outputs and are generated by the WM8766. In Slave mode LRCLK and BCLK are inputs to WM8766.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001010	5	MS	0	DAC Audio Interface Master/Slave Mode Select:
Interface Control				0: Slave mode
				1: Master mode

MASTER MODE LRCLK FREQUENCY SELECT

In Master mode the WM8766 generates LRCLK and BCLK. These clocks are derived from the master clock and the ratio of MCLK to LRCLK is set by RATE.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001010	8:6	RATE [2:0]	010	Master Mode
Interface Control				MCLK:LRCLK Ratio Select:
				000: 128fs
				001: 192fs
				010: 256fs
				011: 384fs
				100: 512fs
				101: 768fs

MUTE PIN DECODE

The MUTE pin can either be used as an output or an input. When used as an input the MUTE pins action can be controlled by setting the DZFM bit to select the corresponding DAC for applying the MUTE to. As an output its meaning is selected by the DZFM control bits. By default selecting the MUTE pin to represent if DAC1 has received more than 1024 midrail samples will cause the MUTE pin to assert a softmute on DAC1. Disabling the decode block will cause any logical high on the MUTE pin to apply a softmute to all DAC's.

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0001100	6	MPD	0 0 MUTE Pin Decode Disable:	
MUTE Control				0: MUTE pin decode enable
				1: MUTE pin decode disable

DAC DIGITAL VOLUME CONTROL

The DAC volume may also be adjusted in the digital domain using independent digital attenuation control registers

REGISTER ADDRESS	BIT	LABEL	DEFAULT	DESCRIPTION
0000000 Digital	7:0	LDA1[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL1 in 0.5dB steps. See Table 10
Attenuation DACL1	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA1 in intermediate latch (no change to output) 1: Store LDA1 and update attenuation on all channels
0000001 Digital	7:0	RDA1[6:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR1 in 0.5dB steps. See Table 10.
Attenuation DACR1	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA1 in intermediate latch (no change to output) 1: Store RDA1 and update attenuation on all channels.
0000100 Digital	7:0	LDA2[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL2 in 0.5dB steps. See Table 10
Attenuation DACL2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA2 in intermediate latch (no change to output) 1: Store LDA2 and update attenuation on all channels.
0000101 Digital	7:0	RDA2[7:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR2 in 0.5dB steps. See Table 10
Attenuation DACR2	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA2 in intermediate latch (no change to output) 1: Store RDA2 and update attenuation on all channels.
0000110 Digital	7:0	LDA3[7:0]	11111111 (0dB)	Digital Attenuation data for Left channel DACL3 in 0.5dB steps. See Table 10
Attenuation DACL3	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store LDA3 in intermediate latch (no change to output) 1: Store LDA3 and update attenuation on all channels.
0000111 Digital	7:0	RDA3[7:0]	11111111 (0dB)	Digital Attenuation data for Right channel DACR3 in 0.5dB steps. See Table 10
Attenuation DACR3	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store RDA3 in intermediate latch (no change to output) 1: Store RDA3 and update attenuation on all channels.
0001000 Master	7:0	MASTDA [7:0]	11111111 (0dB)	Digital Attenuation data for all DAC channels in 0.5dB steps. See Table 10
Digital Attenuation (all channels)	8	UPDATE	Not latched	Controls simultaneous update of all Attenuation Latches 0: Store gain in intermediate latch (no change to output) 1: Store gain and update attenuation on all channels.

L/RDAX[7:0]	ATTENUATION LEVEL
00(hex)	-∞ dB (mute)
01(hex)	-127dB
:	:
:	:
:	:
FE(hex)	-0.5dB
FF(hex)	0dB

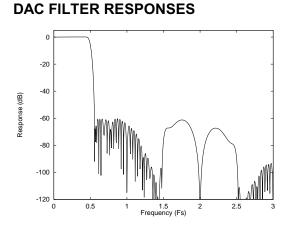
Table 10 Digital Volume Control Attenuation Levels

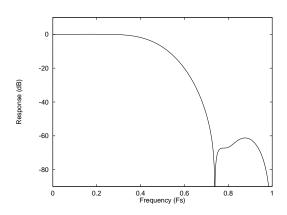
SOFTWARE REGISTER RESET

Writing to register 11111 will cause a register reset, resetting all register bits to their default values. The device will be held in this reset state until a subsequent register write to any address is completed.

REGISTER MAP

The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The WM8766 can be configured using the Control Interface. All unused bits should be set to '0'.


REGISTER	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0	DEFAULT
R0(00h)	0	0	0	0	0	0	0	UPDATE	PDATE LDA1[7:0]					011111111			
R1(01h)	0	0	0	0	0	0	1	UPDATE	PDATE RDA1[7:0]						011111111		
R2(02h)	0	0	0	0	0	1	0		PL[8:5] IZD ATC PDWN DEEMPALL MUTE				MUTEALL	100100000			
R3(03h)	0	0	0	0	0	1	1	P	PHASE[8:6] IWL[5:4] BCP LRP FMT[1:0]				[1:0]	000000000			
R4(04h)	0	0	0	0	1	0	0	UPDATE	JPDATE LDA2[7:0]					011111111			
R5(05h)	0	0	0	0	1	0	1	UPDATE	UPDATE RDA2[7:0]						011111111		
R6(06h)	0	0	0	0	1	1	0	UPDATE	UPDATE LDA3[7:0]							011111111	
R7(07h)	0	0	0	0	1	1	1	UPDATE				RDA	8[7:0]				011111111
R8(08h)	0	0	0	1	0	0	0	UPDATE				MASTE	DA[7:0]				011111111
R9(09h)	0	0	0	1	0	0	1	C	DEEMP[8:6]	C	MUTE[5:3]		DZFN	M[2:1]	ZCD	000000000
R10(0Ah)	0	0	0	1	0	1	0	DA	DACRATE[8:6] MS PWRDNALL DACPD[3:1] 0				0	010000000			
R12(0Ch)	0	0	0	1	1	0	0	0	0	MPD	0	0	0	0	0	0	000000000
R15(0Fh)	0	0	0	1	1	1	1	0	0	0	MPD	0	0	0	0	0	000000000
R31(1Fh)	0	0	1	1	1	1	1		RESET						00000000		


DIGITAL FILTER CHARACTERISTICS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	DAC Fi	lter			
Passband	±0.05 dB			0.444fs	
	-3dB		0.487fs		
Passband ripple				±0.05	dB
Stopband		0.555fs			
Stopband Attenuation	f > 0.555fs	-60			dB
Group Delay			21		fs

Table 11 Digital Filter Characteristics

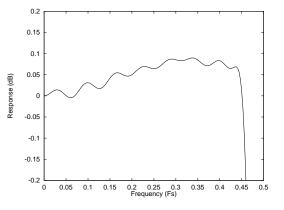


Figure 19 DAC Digital Filter Ripple -44.1, 48 and 96kHz

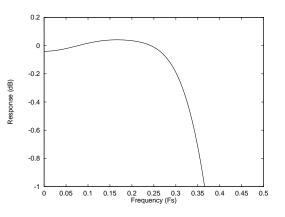
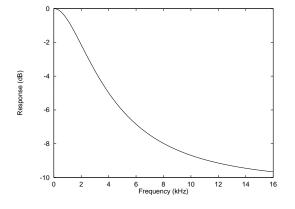



Figure 21 DAC Digital Filter Ripple – 192kHz

DIGITAL DE-EMPHASIS CHARACTERISTICS

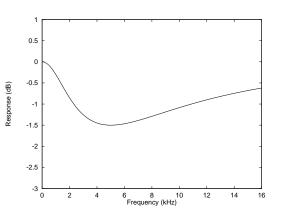
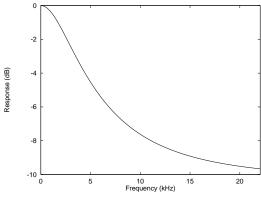



Figure 22 De-Emphasis Frequency Response (32kHz)

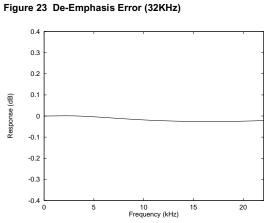


Figure 24 De-Emphasis Frequency Response (44.1KHz)

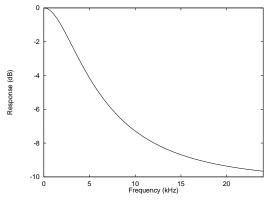


Figure 26 De-Emphasis Frequency Response (48kHz)

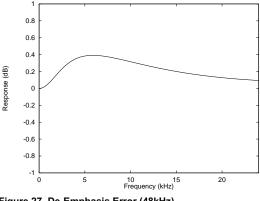
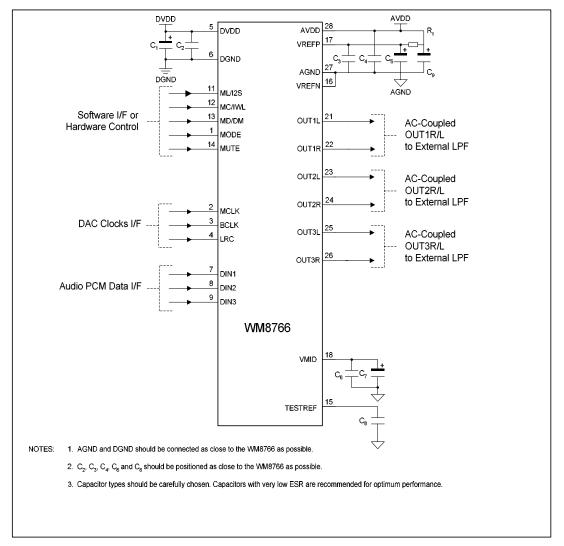



Figure 27 De-Emphasis Error (48kHz)

APPLICATIONS INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

RECOMMENDED EXTERNAL COMPONENTS VALUES

COMPONENT REFERENCE	SUGGESTED VALUE	DESCRIPTION
C1 and C5	10μF	De-coupling for DVDD and AVDD.
C2 to C4	0.1µF	De-coupling for DVDD and AVDD.
C6	0.1µF	Reference de-coupling capacitors for VMID and TESTREF pin.
C7	10μF	
C8	0.1µF	De-coupling for TESTREF.
C9	10μF	Filtering for VREFP. Omit if AVDD low noise.
R1	33VΩ	Filtering for VREP. Use 0Ω if AVDD low noise.

Table 12 External Components Description

SUGGESTED ANALOGUE LOW PASS POST DAC FILTERS

It is recommended that a lowpass filter be applied to the output from each DAC channel for Hi Fi applications. Typically a second order filter is suitable and provides sufficient attenuation of high frequency components (the unique low order, high bit count multi-bit sigma delta DAC structure used in WM8766 produces much less high frequency output noise than normal sigma delta DACs. This filter is typically also used to provide the 2x gain needed to provide the standard 2Vrms output level from most consumer equipment.

Figure 28 shows a suitable post DAC filter circuit, with 2x gain. Alternative inverting filter architectures might also be used with as good results.

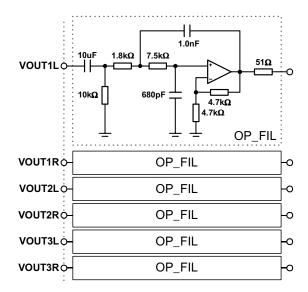
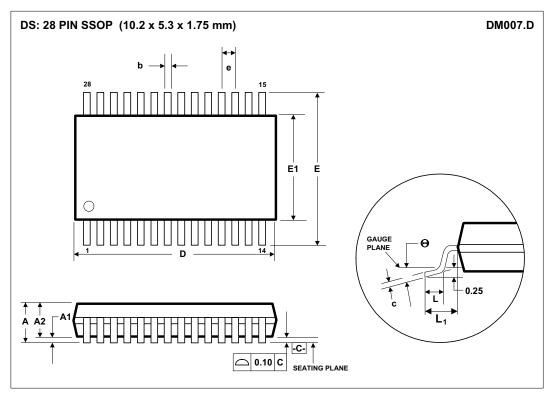



Figure 28 Recommended Post DAC Filter Circuit

PACKAGE DIMENSIONS

Symbols	Dimensions (mm)							
	MIN	MAX						
Α			2.0					
A ₁	0.05		0.25					
A ₂	1.65	1.75	1.85					
b	0.22	0.30	0.38					
C	0.09		0.25					
D	9.90	10.20	10.50					
е		0.65 BSC						
E	7.40 7.80 8.20							
E ₁	5.00	5.00 5.30 5						
L	0.55	0.75	0.95					
L ₁	0.125 REF							
θ	0° 4° 8°							
REF:	JEDEC.95, MO-150							

NOTES: A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS. B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM. D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.

WM8766

IMPORTANT NOTICE

Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WM's standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used by the customer to minimise inherent or procedural hazards. Wolfson products are not authorised for use as critical components in life support devices or systems without the express written approval of an officer of the company. Life support devices or systems are devices or systems that are intended for surgical implant into the body, or support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of WM covering or relating to any combination, machine, or process in which such products or services might be or are used. WM's publication of information regarding any third party's products or services does not constitute WM's approval, license, warranty or endorsement thereof.

Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive business practice, and WM is not responsible nor liable for any such use.

Resale of WM's products or services with <u>statements different from or beyond the parameters</u> stated by WM for that product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and deceptive business practice, and WM is not responsible nor liable for any such use.

ADDRESS:

Wolfson Microelectronics plc 20 Bernard Terrace Edinburgh EH8 9NX United Kingdom Tel :: +44 (0)131 272 7000

Fax :: +44 (0)131 272 7000 Email :: <u>sales@wolfsonmicro.com</u>

