

LM3710/LM3711

Microprocessor Supervisory Circuits with Power Fail Input, Low Line Output, Manual Reset and Watchdog Timer

General Description

The LM3710/LM3711 series of microprocessor supervisory circuits provide the maximum flexibility for monitoring power supplies and battery controlled functions in systems without backup batteries. The LM3710/LM3711 series are available in MSOP-10 and 9-bump micro SMD packages.

Built-in features include the following:

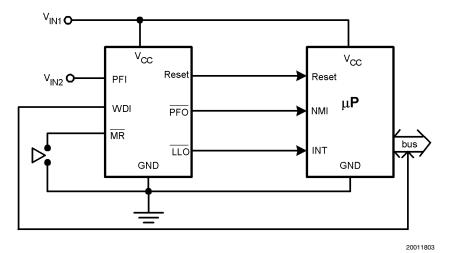
Reset: Reset is asserted during power-up, power-down, and brownout conditions. $\overline{\text{RESET}}$ is guaranteed down to V_{CC} of 1 0V

Manual Reset Input: An input that asserts reset when pulled low.

Power-Fail Input: A 1.225V threshold detector for power fail warning, or to monitor a power supply other than $V_{\rm CC}$.

Low Line Output: This early power failure warning indicator goes low when the supply voltage drops to a value which is 2% higher than the reset threshold voltage.

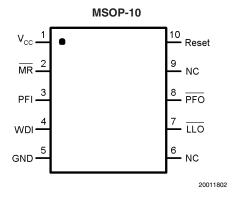
Watchdog Timer: The WDI (Watchdog Input) monitors one of the μ P's output lines for activity. If no output transition occurs during the watchdog timeout period, reset is activated.

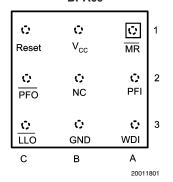

Features

- Standard Reset Threshold voltage: 3.08V
- Custom Reset Threshold voltages: For other voltages between 2.2V and 5.0V in 10mV increments, contact National Semiconductor Corp.
- No external components required
- Manual-Reset input
- RESET (LM3710) or RESET (LM3711) outputs
- Precision supply voltage monitor
- Factory programmable Reset and Watchdog Timeout Delays
- Separate Power Fail comparator
- Available in micro SMD package for minimum footprint
- ±0.5% Reset threshold accuracy at room temperature
- ±2% Reset threshold accuracy over temperature extremes
- Reset assertion down to 1V V_{CC} (RESET option only)
- 28 µA V_{CC} supply current

Applications

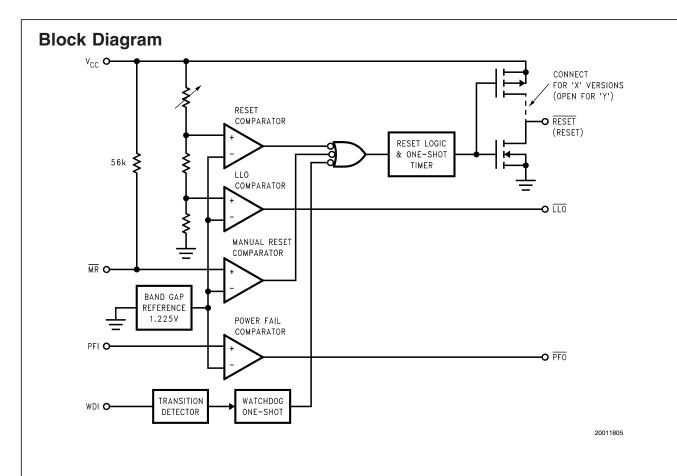
- Embedded Controllers and Processors
- Intelligent Instruments
- Automotive Systems
- Critical µP Power Monitoring


Typical Application


© 2002 National Semiconductor Corporation

DS200118

Connection Diagram



Top View (looking from the coating side) micro SMD 9 Bump Package BPA09

Pin Descriptions

Pin No.			
micro SMD	MSOP	Name	Function
A1	2	MR	Manual-Reset input. When $\overline{\text{MR}}$ is less than V_{MRT} (Manual Reset Threshold) RESET/RESET is engaged.
B1	1	V _{cc}	Power Supply input.
C1	10	RESET	Reset Logic Output. Pulses low for t_{RP} (Reset Timeout Period) when triggered, and stays low whenever V_{CC} is below the reset threshold or when \overline{MR} is below V_{MRT} . It remains low for t_{RP} after either V_{CC} rises above the reset threshold, or after \overline{MR} input rises above V_{MRT} (LM3710 only).
		RESET	Reset Logic Output. RESET is the inverse of RESET (LM3711 only).
C2	8	PFO	Power-Fail Logic Output. When PFI is below V _{PFT} , PFO goes low; otherwise, PFO remains high.
C3	7	ĪLŌ	Low-Line Logic Output. Early Power-Fail warning output. Low when V _{CC} falls below V _{LLOT} (Low-Line Output Threshold). This output can be used to generate an NMI (Non-Maskable Interrupt) to provide an early warning of imminent power-failure.
B3	5	GND	Ground reference for all signals.
A3	4	WDI	Watchdog Input Transition Monitor: If no transition activity occurs for a period exceeding t_{WD} (Watchdog Timeout Period), reset is engaged.
A2	3	PFI	Power-Fail Comparator Input. When PFI is less than V _{PFT} (Power-Fail Reset Threshold), the PFO goes low; otherwise, PFO remains high.
B2	6, 9	NC	No Connect. Test input used at factory only. Leave floating.

Base Part Number: LM3710 X Q BP 308 Reset Threshold Voltage*: 308 = 3.08V Reset Threshold Voltage*: 308 = 3.08V Package Type: X: CMOS Y: Open-drain Reset Timeout Period (typ) B1 D2 D3 D4 BP: micro SMD, Tape&Reel 250 Units

D1 D2 D3 D4 1.4ms 28ms 200ms 600ms WD E* Timeout **W1** 6.2ms G* Н* Period **W2** 102ms J* L* K* M* (typ) **W3** 1600ms P* N* Q R* **W4** 25600ms S* U* V*

*For other voltages between 2.2V and 5.0V, please contact National Semiconductor sales office.

20011804

BPX: micro SMD, Tape&Reel 3000 Units

LM3710/LM3711

		Reset Timeout	Watchdog	Package		Package	
Part Number	Output	Period	Timeout Period	MSOP	micro SMD	Marking	
LM3710XQBP-308	totem-pole	200ms	1600ms		х	%%IA	
LM3710XQBPX-308	totem-pole	200ms	1600ms		х	%%IA	
LM3710XQMM-308	totem-pole	200ms	1600ms	х		R37B	
LM3710XQMMX-308	totem-pole	200ms	1600ms	Х		R37B	
LM3711XQBP-308	totem-pole	200ms	1600ms		х	%%IB	
LM3711XQBPX-308	totem-pole	200ms	1600ms		х	%%IB	
LM3711XQMM-308	totem-pole	200ms	1600ms	Х		R38B	
LM3711XQMMX-308	totem-pole	200ms	1600ms	х		R38B	

^{%%} is the datecode and will vary with time.

Table Of Functions

Part Number	Active Low Reset	Active High Reset	Output (X = totem-pole) (Y = open-drain)	Reset Timeout Period	Watchdog Timeout Period	Manual Reset	Power Fail Comparator	Low Line Output
LM3710	х		X, Y*	Customized	Customized	Х	x	х
LM3711		х	Х	Customized	Customized	Х	х	х

^{* =} available upon request. Contact National

^{* =} available upon request. Contact National Semiconductor

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to 6.0V

All Other Inputs -0.3V to V_{CC} + 0.3V

ESD Ratings (Note 2)

Human Body Model 1.5kV Machine Model 150V Power Dissipation

(Note 3)

Operating Ratings (Note 1)

Temperature Range $-40^{\circ}C \leq T_{J} \leq 85^{\circ}C$

LM3710/LM3711 Series Electrical Characteristics

Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER SI	JPPLY					
V_{CC}	Operating Voltage	LM3710	1.0		5.5	V
	Range: V _{CC}	LM3711	1.2		5.5	7 °
I _{CC}	V _{CC} Supply Current	All inputs = V _{CC} ; all outputs floating		28	50	μA
RESET TH	RESHOLD		'			•
V _{RST}	Reset Threshold	V _{CC} falling	-0.5		+0.5	
			-2	V _{RST}	+2	%
		V_{CC} falling: $T_A = 0^{\circ}C$ to $70^{\circ}C$	-1.5		+1.5	7
V _{RSTH}	Reset Threshold Hysteresis			0.0032•V _{RST}		mV
t _{RP}	Reset Timeout	Reset Timeout Period = E, J, N, S	1	1.4	2	
	Period	Reset Timeout Period = F, K, P, T	20	28	40	me
		Reset Timeout Period = G, L, Q, U	140	200	280	ms
		Reset Timeout Period = H, M, R, V	1120	1600	2240	
t _{RD}	V _{CC} to Reset Delay	V _{CC} falling at 1mV/μs		20		μs
RESET (LI	//3711)					•
V _{OL}	RESET	$V_{CC} > 2.25V, I_{SINK} = 900\mu A$			0.3	
		V _{CC} > 2.7V, I _{SINK} = 1.2mA			0.3	\ \
		V _{CC} > 4.5V, I _{SINK} = 3.2mA			0.4	7
V _{OH}	RESET	$V_{CC} > 1.2V$, $I_{SOURCE} = 50\mu A$	0.8 V _{CC}			
		V _{CC} > 1.8V, I _{SOURCE} = 150μA	0.8 V _{CC}			7
		$V_{CC} > 2.25V$, $I_{SOURCE} = 300\mu A$	0.8 V _{CC}			V
		$V_{\rm CC}$ > 2.7V, $I_{\rm SOURCE}$ = 500 μ A	0.8 V _{cc}			
		$V_{\rm CC} > 4.5 \text{V}$, $I_{\rm SOURCE} = 800 \mu \text{A}$	V _{CC} - 1.5V			7
I _{LKG}	Output Leakage	V _{RESET} = 5.5V			1.0	μA
	Current					
RESET (LI	//3710)					
V_{OL}	RESET	$V_{CC} > 1.0V, I_{SINK} = 50\mu A$			0.3	
		$V_{CC} > 1.2V, I_{SINK} = 100\mu A$			0.3	
		$V_{CC} > 2.25V, I_{SINK} = 900\mu A$			0.3	
		$V_{CC} > 2.7V, I_{SINK} = 1.2mA$			0.3	V
		$V_{\rm CC}$ > 4.5V, $I_{\rm SINK}$ = 3.2mA			0.4	_
V _{OH}	RESET	$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{cc}			
		$V_{\rm CC} > 2.7 \text{V}$, $I_{\rm SOURCE} = 500 \mu \text{A}$	0.8 V _{CC}			
		$V_{\rm CC} > 4.5 \text{V}$, $I_{\rm SOURCE} = 800 \mu \text{A}$	V _{CC} - 1.5V			

LM3710/LM3711 Series Electrical Characteristics (Continued)

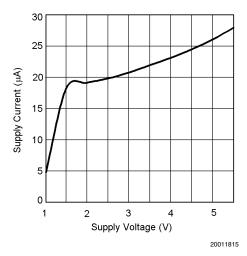
Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
WDI	•					
WDI	Watchdog Input Current		-1		+1	μА
WDI_{T}	Watchdog Input Threshold		0.2•V _{CC}	1.225	0.8•V _{cc}	V
t _{WD}	Watchdog Timeout Period	Watchdog Timeout Period = E, F, G, H Watchdog Timeout Period = J, K, L, M Watchdog Timeout Period = N, P, Q, R Watchdog Timeout Period = S, T, U, V	4.3 71 1120 17900	6.2 102 1600 25600	9.3 153 2400 38400	ms
PFI/MR	1		T	T	1	
V_{PFT}	PFI Input Threshold		1.200	1.225	1.250	V
V_{MRT}	MR Input Threshold	MR, Low	2.0		0.8	V
V _{PFTH} /	PFI/MR Threshold Hysteresis	PFI/ \overline{MR} falling: $V_{CC} = V_{RST MAX}$ to 5.5V		0.0032•V _{RST}		mV
I _{PFI}	Input Current (PFI only)		-75		75	nA
R_{MR}	MR Pull-up Resistance		35	56	75	kΩ
t _{MD}	MR to Reset Delay			12		μS
FFO, LLO	MR Pulse Width		25			μS
V _{OL}	PFO, LLO Output Voltage	$V_{CC} > 2.25V$, $I_{SINK} = 900\mu A$ $V_{CC} > 2.7V$, $I_{SINK} = 1.2mA$			0.3	
V _{OH}		$V_{CC} > 4.5V$, $I_{SINK} = 3.2$ mA $V_{CC} > 2.25V$, $I_{SOURCE} = 300$ µA	0.8 V _{CC}		0.4	V
OH		V _{CC} > 2.7V, I _{SOURCE} = 500μA V _{CC} > 4.5V, I _{SOURCE} = 800μA	0.8 V _{CC} V _{CC} - 1.5V			
LLO OUTP	PUT		_			
V _{LLOT}	LLO Output Threshold (V _{LLO} - V _{RST} , V _{CC} falling)		1.01•V _{RST}	1.02•V _{RST}	1.03•V _{RST}	V
V _{LLOTH}	Low-Line Comparator Hysteresis			0.0032•V _{RST}		mV
t _{CD}	Low-Line Comparator Delay	V _{CC} falling at 1mV/μs		20		μs

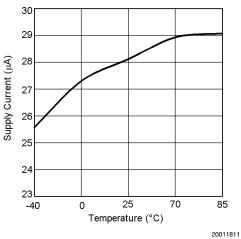
LM3710/LM3711 Series Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed conditions.

Note 2: The Human Body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

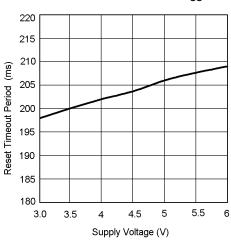

Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_J(MAX)$, the junction-to-ambient thermal resistance, θ_{J-A} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using:

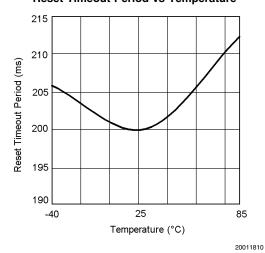
$$P(MAX) = \frac{T_{J}(MAX) - T_{A}}{\theta_{J-A}}$$

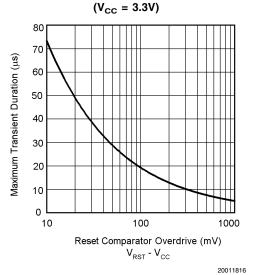

Where the value of θ_{J-A} for the MSOP-10 package is 195°C/W in a typical PC board mounting and the micro SMD package is 220°C/W.

Typical Performance Characteristics

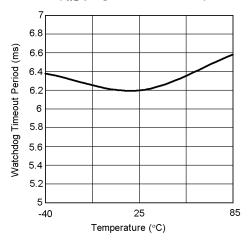

Supply Current vs Supply Voltage


3.3V Supply Current vs Temperature


Normalized Reset Threshold Voltage vs Temperature


Reset Timeout Period vs V_{CC}

Reset Timeout Period vs Temperature



Max. Transient Duration vs Reset Comparator Overdrive

Typical Performance Characteristics (Continued)

Watchdog Timeout Period vs Temperature (t_{wp} programmed as 6.2ms)

20011813

Circuit Information

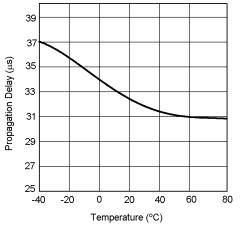
Reset Output

The Reset input of a μP initializes the device into a known state. The LM3710/LM3711 microprocessor supervisory circuits assert a forced reset output to prevent code execution errors during power-up, power-down, and brownout conditions.

RESET is guaranteed valid for $V_{CC} > 1V$. Once V_{CC} exceeds the reset threshold, an internal timer maintains the output for the reset timeout period. After this interval, reset goes high. The LM3710 offers an active-low $\overline{\text{RESET}}$; The LM3711 offers an active-high RESET.

Any time $V_{\rm CC}$ drops below the reset threshold (such as during a brownout), the reset activates. When $V_{\rm CC}$ again rises above the reset threshold, the internal timer starts. Reset holds until $V_{\rm CC}$ exceeds the reset threshold for longer than the reset timeout period. After this time, reset releases.

The Manual Reset input (\overline{MR}) will initiate a forced reset also. See the *Manual Reset Input* section.


Reset Threshold

The LM3710/LM3711 family is available with a reset voltage of 3.08V. Other reset thresholds in the 2.20V to 5.0V range, in steps of 10 mV, are available; contact National Semiconductor for details.

Manual Reset Input (MR)

Many μP -based products require a manual reset capability, allowing the operator to initiate a reset. The \overline{MR} input is fully debounced and provides an internal 56 k Ω pull-up. When the \overline{MR} input is pulled below V_{MRT} (1.225V) for more than 25 μs , reset is asserted after a typical delay of 12 μs . Reset remains active as long as \overline{MR} is held low, and releases after the reset timeout period expires after \overline{MR} rises above V_{MRT} . Use \overline{MR} with digital logic to assert or to daisy chain supervisory circuits. It may be used as another low-line comparator by adding a buffer.

Low-Line Comparator Propagation Delay vs Temperature

20011814

Power-Fail Comparator (PFI/PFO)

The PFI is compared to a 1.225V internal reference, V_{PFT} . If PFI is less than V_{PFT} , the Power Fail Output \overline{PFO} drops low. The power-fail comparator signals a falling power supply, and is driven typically by an external voltage divider that senses either the unregulated supply or another system supply voltage. The voltage divider generally is chosen so the voltage at PFI drops below V_{PFT} several milliseconds before the main supply voltage drops below the reset threshold, providing advanced warning of a brownout.

The voltage threshold is set by R_1 and R_2 and is calculated as follows:

$$V_{PFT} = \left(\frac{R1 + R2}{R2}\right) \times 1.225V$$

Note this comparator is completely separate from the rest of the circuitry, and may be employed for other functions as needed.

Low-Line Output (LLO)

The low-line output comparator is typically used to provide a non-maskable interrupt to a μP when V_{CC} begins falling. LLO monitors V_{CC} and goes low when V_{CC} falls below V_{LLOT} (typically 1.02 • V_{RST}) with hysteresis of 0.0032 • V_{RST} .

Watchdog Timer Input (WDI)

The watchdog timer input monitors one of the microprocessor's output lines for activity. Each time a transition occurs on this monitored line, the watchdog counter is reset. However, if no transition occurs and the timeout period is reached, the LM3710/LM3711 assumes that the microprocessor has locked up and the reset output is activated.

WDI is a high impedance input.

Special Precautions for the micro SMD Package

As with most integrated circuits, the LM3710 and LM3711 are sensitive to exposure from visible and infrared (IR) light radiation. Unlike a plastic encapsulated IC, the micro SMD package has very limited shielding from light, and some sensitivity to light reflected from the surface of the PC board or long wavelength IR entering the die from the side may be

Circuit Information (Continued)

experienced. This light could have an unpredictable affect on the electrical performance of the IC. Care should be taken to shield the device from direct exposure to bright visible or IR light during operation.

Micro SMD Mounting

The micro SMD package requires specific mounting techniques which are detailed in National Semiconductor Application Note AN-1112. Referring to the section *Surface*

Mount Technology (SMT) Assembly Considerations, it should be noted that the pad style which must be used with the 9-pin package is the NSMD (non-solder mask defined) type.

For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.

Timing Diagrams

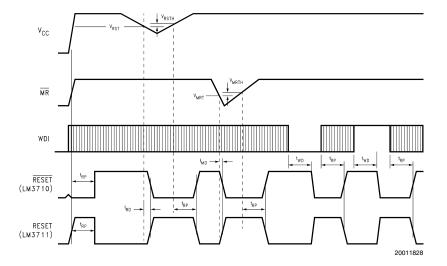


FIGURE 1. LM3710/LM3711 Reset Time with $\overline{\text{MR}}$ and WDI

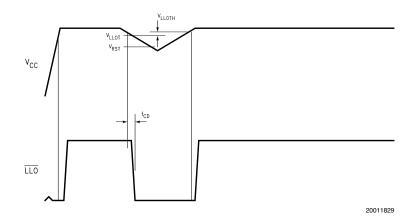


FIGURE 2. LLO Output

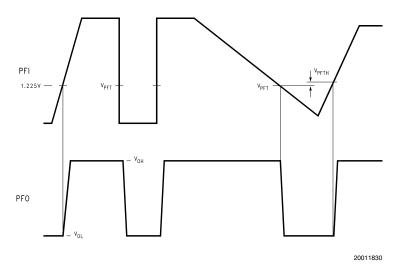


FIGURE 3. PFI Comparator Timing Diagram

Typical Application Circuits

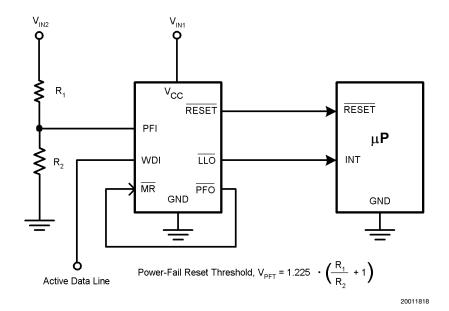


FIGURE 4. Monitoring Two Critical Supplies And Dataline

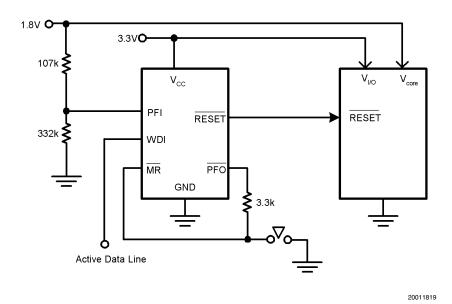


FIGURE 5. Monitoring Two Supplies plus Manual Reset And Dataline

Typical Application Circuits (Continued)

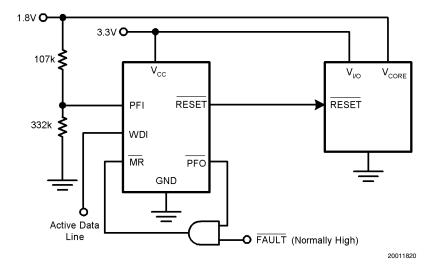
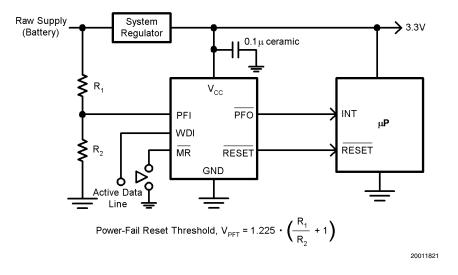



FIGURE 6. Monitoring Dual Supplies plus External Fault Input And Dataline

Note: $\overline{\text{MR}}$ input with its 1.225V nominal threshold, may monitor an additional supply voltage. An internal 56 k Ω pull-up resistor is included on this input.

FIGURE 7. Microprocessor Supervisor with Early Warning Detector

Typical Application Circuits (Continued)

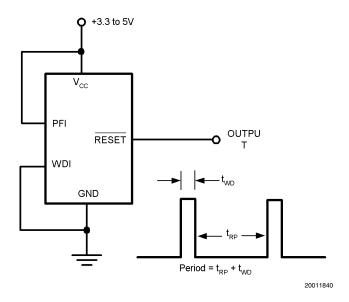
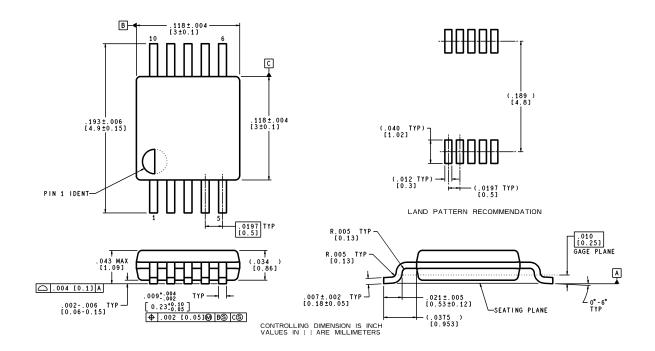
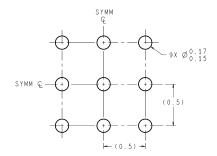
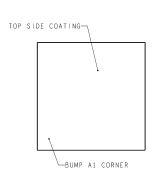
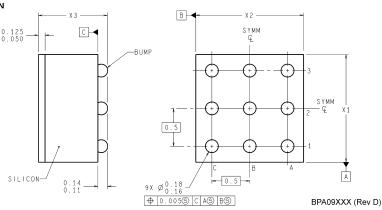



FIGURE 8. LM3710 Long Period oscillator


Physical Dimensions inches (millimeters) unless otherwise noted

MUB10A (Rev A)


10 Lead MSOP Package NS Package Number MUB10A


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. EPOXY COATING
- 2. 63Sn/37Pb EUTECTIC BUMP
- 3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
- 4. PIN 1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION. REMAINING PINS ARE NUMBERED COUNTER CLOCKWISE
- 5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.

6.NO JEDEC REGISTRATION AS OF AUG.1999.

9 bump micro SMD Package **NS Package Number BPA09FFB** The dimensions of X1, X2 and X3 are given below

> X1 = 1.412mmX2 = 1.412mmX3 = 0.850mm

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560

Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.