# RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION

OCT 2011 REV. 1.0.0

### GENERAL DESCRIPTION

The SP339 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. Full operation requires only four external charge pump capacitors.

The RS-485/422 modes feature one driver and one receiver (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (3TX/5RX) provides full support of all eight signals commonly used with the DB9 RS-232 connector. A dedicated diagnostic loopback mode is also provided.

The high speed drivers operate up to 20Mbps in RS-485/422 modes, and up to 1Mbps in RS-232 mode. All drivers can be slew limited to 250kbps in any mode to minimize electromagnetic interference (EMI).

All transmitter outputs and receiver inputs feature robust electrostatic discharge (ESD) protection to ±15kV Human Body Model (HBM) and ±8kV IEC-61000-4-2 Contact. Each receiver output has full fail-safe protection to avoid system lockup, oscillation, or indeterminate states by defaulting to logic-high output level when the inputs are open, shorted, or terminated but undriven. No external biasing resistors are required.

The RS-232 receiver inputs include a  $5k\Omega$  pull-down to ground. The RS-485/422 receiver inputs are high impedance (>96k $\Omega$  when termination is disabled), allowing up to 256 devices on a single communication bus (1/8th unit load).

The SP339E operates from a single power supply, either 3.3V or 5V, with low idle current (2mA typical in all modes). The shutdown mode consumes less than 10µA for low power standby operation.

#### **FEATURES**

- Pin selectable Cable Termination
- No external resistors required for RS-485/422 termination and biasing
- 3.3V or 5V Single Supply Operation
- Robust ESD Protection on bus pins
  - ±15kV Human Body Model (HBM)
  - ±8kV IEC 61000-4-2 (Contact)
- Max Data Rate of 20Mbps in RS-485/422 Modes and up to 1Mbps in RS-232 Modes
- Pin selectable 250kbps Slew Limiting
- 3 Drivers, 5 Receivers RS-232/V.28
- 1 Driver, 1 Receiver RS-485/422
  - Full and Half Duplex Configuration
  - 1/8th Unit Load, up to 256 receivers on bus
- RS-485/422 Enhanced Failsafe for open, shorted, or terminated but idle inputs
- Space saving 6mm x 6mm QFN-40 Package
- Pin compatible with SP338E

### TYPICAL APPLICATIONS

- Dual Protocol Serial Ports (RS-232 or RS-485/422)
- Industrial Computers
- Industrial and Process Control Equipment
- Point-Of-Sale Equipment
- Networking Equipment
- HVAC Controls Equipment
- Building Security and Automation Equipment

### ORDERING INFORMATION

| PART NUMBER    | Package    | OPERATING TEMPERATURE RANGE | DEVICE STATUS |
|----------------|------------|-----------------------------|---------------|
| SP339EER1-L    | 40-pin QFN | -40°C to +85°C              | Active        |
| SP339EER1-L/TR | 40-pin QFN | -40°C to +85°C              | Active        |
| SP339ECR1-L    | 40-pin QFN | 0°C to +70°C                | Active        |
| SP339ECR1-L/TR | 40-pin QFN | 0°C to +70°C                | Active        |

# **ABSOLUTE MAXIMUM RATINGS**

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

| Supply Voltage V <sub>CC</sub>                            | -0.3V to +6.0V                 |  |  |  |  |
|-----------------------------------------------------------|--------------------------------|--|--|--|--|
| Receiver Input Voltage (from Ground)                      | ±20V                           |  |  |  |  |
| Driver Output Voltage (from Ground)                       | ±20V                           |  |  |  |  |
| Short Circuit Duration, TX out to Ground                  | Continuous                     |  |  |  |  |
| Voltage at TTL Input Pins                                 | -0.3V to V <sub>CC</sub> +0.5V |  |  |  |  |
| Storage Temperature Range                                 | -65°C to +150°C                |  |  |  |  |
| Lead Temperature (soldering, 10s)                         | +300°C                         |  |  |  |  |
| Power Dissipation 40-pin QFN (derate 17mW/°C above +70°C) | 500mW                          |  |  |  |  |

## **CAUTION:**

ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

# **ESD PROTECTION**

|          |                                 | MIN. | TYP. | Max. | Units |                         |
|----------|---------------------------------|------|------|------|-------|-------------------------|
| R1-R9    | R1-R9 Tx Output & Rx Input Pins |      | ±15  |      | kV    | Human Body Model (HBM)  |
| 1(1-1(3) |                                 |      | ±8   |      | kV    | IEC 61000-4-2 (Contact) |
|          | All Other Pins                  |      | ±2   |      | kV    | Human Body Model (HBM)  |



# PIN DESCRIPTIONS BY MODE (MODE1, MODE0)

| Pin | Name   | <b>00,</b> Figure 1                                 | <b>00,</b> Figure 1 <b>01,</b> Figure 2 |                                  | <b>11,</b> Figure 4 |  |  |  |
|-----|--------|-----------------------------------------------------|-----------------------------------------|----------------------------------|---------------------|--|--|--|
| 1   | L1     | R1 0                                                | utput                                   | 1                                | 1                   |  |  |  |
| 2   | L2     | R2 O                                                | utput                                   | R1 Output                        | R1 Output           |  |  |  |
| 3   | L3     | T1 lı                                               | nput                                    | T1 Input                         | T1 Input            |  |  |  |
| 4   | L4     | T2 lı                                               | nput                                    |                                  |                     |  |  |  |
| 5   | L6     | R3 O                                                | utput                                   | 1                                | 1                   |  |  |  |
| 6   | L7     | T3 lı                                               | nput                                    |                                  |                     |  |  |  |
| 7   | L8     | R4 O                                                | utput                                   | 1                                | 1                   |  |  |  |
| 8   | L9     | R5 O                                                | utput                                   | 1                                | 1                   |  |  |  |
| 9   | VCC    | V <sub>CC</sub>                                     |                                         |                                  |                     |  |  |  |
| 10  | GND    | Ground                                              |                                         |                                  |                     |  |  |  |
| 11  | SLEW   |                                                     | SLEW = \                                | CC enables 250kbps slew limiting |                     |  |  |  |
| 12  | DIR1   |                                                     |                                         | T1 Enable,<br>R1 Disable         | T1 Enable           |  |  |  |
| 13  | N/C    | Т                                                   | his pin is not used and                 | is disconnected internal         | ly                  |  |  |  |
| 14  | MODE0  | 0                                                   | 1                                       | 0                                | 1                   |  |  |  |
| 15  | MODE1  | 0                                                   | 0                                       | 1                                | 1                   |  |  |  |
| 16  | N/C    | This pin is not used and is disconnected internally |                                         |                                  |                     |  |  |  |
| 17  | TERM   |                                                     | Enables RS-485/422 re                   |                                  |                     |  |  |  |
| 18  | N/C    | This pin is not used and is disconnected internally |                                         |                                  |                     |  |  |  |
| 19  | ENABLE | ENAB                                                | BLE = V <sub>CC</sub> for operation     | , ENABLE = 0V for shut           | tdown               |  |  |  |
| 20  | VCC    |                                                     | V                                       | СС                               |                     |  |  |  |



# PIN DESCRIPTIONS BY MODE (MODE1, MODE0)

| Pin | Name | <b>00,</b> Figure 1                                             | <b>01,</b> Figure 2             | <b>11,</b> Figure 4         |          |  |  |  |  |  |
|-----|------|-----------------------------------------------------------------|---------------------------------|-----------------------------|----------|--|--|--|--|--|
| 21  | R9   |                                                                 | R5 Input                        |                             |          |  |  |  |  |  |
| 22  | R8   |                                                                 |                                 |                             |          |  |  |  |  |  |
| 23  | GND  |                                                                 | Gr                              | ound                        |          |  |  |  |  |  |
| 24  | R7   |                                                                 | T3 Output                       |                             |          |  |  |  |  |  |
| 25  | R6   |                                                                 | R3 Input                        |                             |          |  |  |  |  |  |
| 26  | GND  |                                                                 | Gr                              | round                       |          |  |  |  |  |  |
| 27  | R4   |                                                                 | T2 Output                       |                             |          |  |  |  |  |  |
| 28  | R3   |                                                                 | T1 Output                       |                             |          |  |  |  |  |  |
| 29  | GND  |                                                                 | Ground                          |                             |          |  |  |  |  |  |
| 30  | R2   |                                                                 | R2 Input                        | R1 Input A, T1 Out A        | T1 Out A |  |  |  |  |  |
| 31  | R1   |                                                                 | R1 Input                        | R1 Input B, T1 Out B        | T1 Out B |  |  |  |  |  |
| 32  | VCC  |                                                                 | \                               | V <sub>CC</sub>             |          |  |  |  |  |  |
| 33  | VSS  | $V_{SS}$ - Charge pump negative supply, $0.1 \mu F$ from ground |                                 |                             |          |  |  |  |  |  |
| 34  | C2-  |                                                                 | C <sub>2+</sub> - Charge pum    | p cap 2 negative lead       |          |  |  |  |  |  |
| 35  | C1-  |                                                                 | C <sub>1-</sub> - Charge pum    | p cap 1 negative lead       |          |  |  |  |  |  |
| 36  | GND  |                                                                 | Gr                              | ound                        |          |  |  |  |  |  |
| 37  | C1+  |                                                                 | C <sub>1+</sub> - Charge pump c | ap 1 positive lead, 0.1μF   |          |  |  |  |  |  |
| 38  | VCC  |                                                                 | V <sub>CC</sub>                 |                             |          |  |  |  |  |  |
| 39  | C2+  |                                                                 | C <sub>2+</sub> - Charge pump c | ap 2 positive lead, 0.1μF   |          |  |  |  |  |  |
| 40  | VDD  | V <sub>D</sub>                                                  | <sub>D</sub> - Charge pump posi | tive supply, 0.1μF to groun | d        |  |  |  |  |  |



# **ELECTRICAL CHARACTERISTICS**

# UNLESS OTHERWISE NOTED:

 $V_{CC}$  = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 $\mu$ F;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL           | PARAMETERS MIN. TYP. M               |                      | Max.      | Units   | CONDITIONS |                                                                                |
|------------------|--------------------------------------|----------------------|-----------|---------|------------|--------------------------------------------------------------------------------|
| DC CHARAC        | CTERISTICS                           |                      |           |         |            |                                                                                |
| I <sub>CC</sub>  | Supply Current (RS-232)              |                      | 2         | 8       | mA         | No load, idle inputs                                                           |
| I <sub>CC</sub>  | Supply Current (RS-485)              |                      | 2         | 8       | mA         | No load, idle inputs                                                           |
| I <sub>CC</sub>  | Vcc Shutdown Current                 |                      | 1         | 10      | μА         | ENABLE = 0V                                                                    |
| TRANSMITT        | ER and LOGIC INPUT PINS: Pins 3, 4,  | 6, 11, 12            | 2, 14, 15 | , 17-19 |            |                                                                                |
| V <sub>IH</sub>  | Logic Input Voltage High             | 2.0                  |           |         | V          | V <sub>CC</sub> = 3.3V                                                         |
| V <sub>IH</sub>  | Logic Input Voltage High             | 2.4                  |           |         | V          | V <sub>CC</sub> = 5.0V                                                         |
| V <sub>IL</sub>  | Logic Input Voltage Low              |                      |           | 0.8     | V          |                                                                                |
| I <sub>IL</sub>  | Logic Input Leakage Current Low      |                      |           | 1       | μА         | Input Low (V <sub>IN</sub> = 0V)                                               |
| I <sub>IH</sub>  | Logic Input Leakage Current High     |                      |           | 1       | μА         | Input High (V <sub>IN</sub> = V <sub>CC</sub> ),<br>pins 3, 4 and 6            |
| I <sub>PD</sub>  | Logic Input Pull-down Current        |                      |           | 50      | μА         | Input High (V <sub>IN</sub> = V <sub>CC</sub> ),<br>pins 11, 12, 14, 15, 17-19 |
| V <sub>HYS</sub> | Logic Input Hysteresis               |                      | 200       |         | mV         |                                                                                |
| RECEIVER (       | OUTPUTS: Pins 1, 2, 5, 7, 8          |                      |           |         |            |                                                                                |
| V <sub>OH</sub>  | Receiver Output Voltage High         | V <sub>CC</sub> -0.6 |           |         | V          | I <sub>OUT</sub> = -1.5mA                                                      |
| V <sub>OL</sub>  | Receiver Output Voltage Low          |                      |           | 0.4     | V          | I <sub>OUT</sub> = 2.5mA                                                       |
| I <sub>OSS</sub> | Receiver Output ShortCircuit Current |                      | ±20       | ±60     | mA         | $0 \leq V_O \leq V_{CC}$                                                       |
| l <sub>OZ</sub>  | Receiver Output Leakage Current      |                      | ±0.1      | ±1      | μА         | $0 \le V_O \le V_{CC,}$<br>Receivers disabled                                  |



# **ELECTRICAL CHARACTERISTICS (Continued)**

# **UNLESS OTHERWISE NOTED:**

 $V_{CC}$  = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1µF;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL           | PARAMETERS                   | Min. | TYP. | Max. | Units | Conditions                           |
|------------------|------------------------------|------|------|------|-------|--------------------------------------|
| SINGLE-EN        | DED RECEIVER INPUTS (RS-232) |      |      |      |       |                                      |
| V <sub>IN</sub>  | Input Voltage Range          | -15  |      | +15  | V     |                                      |
| V <sub>IL</sub>  | Input Threshold Low          | 0.6  | 1.2  |      | V     | V <sub>CC</sub> = 3.3V               |
| ¥ IL             | input Threshold Low          | 0.8  | 1.5  |      | V     | V <sub>CC</sub> = 5.0V               |
| V <sub>IH</sub>  | Input Threshold High         |      | 1.5  | 2.0  | V     | V <sub>CC</sub> = 3.3V               |
| VIН              | input micshold mgn           |      | 1.8  | 2.4  | V     | V <sub>CC</sub> = 5.0V               |
| V <sub>HYS</sub> | Input Hysteresis             |      | 0.3  |      | V     |                                      |
| R <sub>IN</sub>  | Input Resistance             | 3    | 5    | 7    | kΩ    | $-15V \le V_{IN} \le +15V$           |
| SINGLE-EN        | DED DRIVER OUTPUTS (RS-232)  |      |      |      |       |                                      |
| Vo               | Output Voltage Swing         | ±5.0 | ±5.5 |      | V     | Output loaded with $3k\Omega$ to Gnd |
|                  | Super voluge oming           |      |      | ±7.0 | V     | No load output                       |
| I <sub>SC</sub>  | Short Circuit Current        |      |      | ±60  | mA    | V <sub>O</sub> = 0V                  |
| R <sub>OFF</sub> | Power Off Impedance          | 300  | 10M  |      | Ω     | $V_{CC}$ = 0V, $V_{O}$ = ±2V         |



# **ELECTRICAL CHARACTERISTICS (Continued)**

UNLESS OTHERWISE NOTED:  $V_{CC}$  = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 $\mu$ F;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL            | PARAMETERS MIN. TYP. MAX. UNITS                      |                                           | CONDITIONS |                                                           |    |                                                                    |
|-------------------|------------------------------------------------------|-------------------------------------------|------------|-----------------------------------------------------------|----|--------------------------------------------------------------------|
| DIFFERENT         | IAL RECEIVER INPUTS (RS-485 / RS-4                   | 122)                                      |            |                                                           |    |                                                                    |
| R <sub>IN</sub>   | Receiver Input Resistance                            | 96                                        |            |                                                           | kΩ | TERM = $0V$ ,<br>$-7V \le V_{IN} \le +12V$                         |
| $V_{TH}$          | Receiver Differential Threshold<br>Voltage           | -200                                      | -125       | -50                                                       | mV |                                                                    |
| $\Delta V_{TH}$   | Receiver Input Hysteresis                            |                                           | 25         |                                                           | mV | V <sub>CM</sub> = 0V                                               |
| I <sub>IN</sub>   | Pacaivar Innut Current                               |                                           |            | 125                                                       | μА | V <sub>IN</sub> = +12V                                             |
| 'IN               | Receiver Input Current                               |                                           |            | -100                                                      | μА | V <sub>IN</sub> = -7V                                              |
| R <sub>TERM</sub> | Termination Resistance                               | mination Resistance   100   120   155   O |            | TERM = $V_{CC}$ , Figure 5<br>-7V $\leq V_{CM} \leq +12V$ |    |                                                                    |
| R <sub>TERM</sub> | Termination Resistance                               | 100                                       | 120        | 140                                                       | Ω  | TERM = $V_{CC}$ , Figure 5<br>$V_{CM} = 0V$                        |
| DIFFERENT         | IAL DRIVER OUTPUTS (RS-485 / RS-4                    | 22)                                       |            |                                                           |    |                                                                    |
|                   |                                                      | 2                                         |            | V <sub>CC</sub>                                           | V  | $R_L = 100\Omega$ (RS-422), Figure 6                               |
| $V_{OD}$          | Differential Driver Output                           | 1.5                                       |            | V <sub>CC</sub>                                           | V  | $R_L = 54\Omega$ (RS-485), Figure 6                                |
| VOD               | Dillerential Driver Output                           | 1.5                                       |            | V <sub>CC</sub>                                           | V  | V <sub>CM</sub> = -7V, Figure 7                                    |
|                   |                                                      | 1.5                                       |            | V <sub>CC</sub>                                           | V  | V <sub>CM</sub> = +12V, Figure 7                                   |
| $\Delta V_{OD}$   | Change In Magnitude of Differential Output Voltage   | -0.2                                      |            | +0.2                                                      | V  | $R_L = 54\Omega$ or $100\Omega$ , Figure 6                         |
| $V_{CM}$          | Driver CommonMode Output Voltage                     |                                           |            | 3                                                         | V  | $R_L$ = 54Ω or 100Ω, Figure 6                                      |
| $\Delta V_{CM}$   | Change In Magnitude of<br>Common Mode Output Voltage |                                           |            | 0.2                                                       | ٧  | $R_L = 54\Omega$ or $100\Omega$ , Figure 6                         |
| I <sub>OSD</sub>  | Driver Output Short Circuit Current                  |                                           |            | ±250                                                      | mA | -7V ≤ V <sub>O</sub> ≤ +12V, Figure 8                              |
| I <sub>O</sub>    | Driver Output Leakage Current                        |                                           |            | ±100                                                      | μА | DIR1 = 0V in Mode 11,<br>or ENABLE = 0V,<br>$-7V \le V_O \le +12V$ |



# **TIMING CHARACTERISTICS**

## **U**NLESS OTHERWISE NOTED:

 $V_{CC}$  = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1  $\mu$ F;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25  $^{\circ}$ C.

| SYMBOL                                                                                                | PARAMETERS                                                        | MIN.    | TYP.    | Max.    | Units | CONDITIONS                                                                                                   |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------|---------|---------|-------|--------------------------------------------------------------------------------------------------------------|
| ALL MODES                                                                                             |                                                                   |         |         |         |       |                                                                                                              |
| t <sub>ENABLE</sub>                                                                                   | Enable from Shutdown                                              |         | 1000    |         | ns    |                                                                                                              |
| t <sub>SHUTDOWN</sub>                                                                                 | Enable to Shutdown                                                |         | 1000    |         | ns    |                                                                                                              |
| RS-232, DAT                                                                                           | A RATE = 250kbps (SLEW = Vcc), ON                                 | IE TRAN | SMITTE  | R SWITC | HING  |                                                                                                              |
|                                                                                                       | Maximum Data Rate                                                 | 250     |         |         | kbps  | $R_L = 3k\Omega, C_L = 1000pF$                                                                               |
| t <sub>RHL</sub> , t <sub>RLH</sub>                                                                   | Receiver Propagation Delay                                        |         | 100     |         | ns    | C <sub>1</sub> = 150pF, Figure 9                                                                             |
| t <sub>RHL</sub> -t <sub>RLH</sub>                                                                    | Receiver Propagation Delay Skew                                   |         |         | 100     | ns    | o_ roopr, rigaro o                                                                                           |
| t <sub>DHL</sub> , t <sub>DLH</sub>                                                                   | Driver Propagation Delay                                          |         | 1400    |         | ns    | $R_L = 3k\Omega, C_L = 2500pF,$                                                                              |
| t <sub>DHL</sub> -t <sub>DLH</sub>                                                                    | Driver Propagation Delay Skew                                     |         |         | 600     | ns    | Figure 10                                                                                                    |
|                                                                                                       |                                                                   | •       |         |         |       |                                                                                                              |
| t <sub>SHL,</sub> t <sub>SLH</sub>                                                                    | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 4       |         | 30      | V/μs  | $V_{CC}$ = 3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ , $C_L$ = 150pF to 2500pF, Figure 10                     |
| t <sub>SHL</sub> , t <sub>SLH</sub> Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V |                                                                   | 6       |         | 30      | V/μs  | $V_{CC}$ = 3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ ,<br>$C_L$ = 150pF to 2500pF,<br>$T_A$ = 25°C, Figure 10 |
| RS-232, DAT                                                                                           | A RATE = 1Mbps (SLEW = 0V), ONE                                   | TRANSM  | ITTER S | WITCHI  | NG    |                                                                                                              |
|                                                                                                       | Maximum Data Rate                                                 | 1       |         |         | ,     | $R_L = 3k\Omega$ , $C_L = 250pF$                                                                             |
| t <sub>RHL</sub> , t <sub>RLH</sub>                                                                   | Receiver Propagation Delay                                        |         | 100     |         | ns    | O 450-5 Figure 0                                                                                             |
| t <sub>RHL</sub> -t <sub>RLH</sub>                                                                    | Receiver Propagation Delay Skew                                   |         |         | 100     | ns    | C <sub>L</sub> = 150pF, Figure 9                                                                             |
| t <sub>DHL</sub> , t <sub>DLH</sub>                                                                   | Driver Propagation Delay                                          |         | 300     |         | ns    | $R_L = 3k\Omega, C_L = 1000pF,$                                                                              |
| t <sub>DHL</sub> -t <sub>DLH</sub>                                                                    | Driver Propagation Delay Skew                                     |         |         | 150     | ns    | Figure 10                                                                                                    |
|                                                                                                       |                                                                   | ···     |         |         | •     |                                                                                                              |
| t <sub>SHL,</sub> t <sub>SLH</sub>                                                                    | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 15      |         | 150     | V/μs  | $V_{CC}$ = 3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ ,<br>$C_L$ = 150pF to 1000pF,<br>Figure 10               |
| t <sub>SHL,</sub> t <sub>SLH</sub>                                                                    | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 24      |         | 150     | V/μs  | $V_{CC}$ = 3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ ,<br>$C_L$ = 150pF to 1000pF,<br>$T_A$ = 25°C, Figure 10 |



# **TIMING CHARACTERISTICS (Continued)**

UNLESS OTHERWISE NOTED:  $V_{CC}$  = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 $\mu$ F;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL                                | PARAMETERS                                       | MIN.               | TYP.   | Max.     | Units     | CONDITIONS                                     |  |
|---------------------------------------|--------------------------------------------------|--------------------|--------|----------|-----------|------------------------------------------------|--|
| RS-485/RS-42                          | 2, DATA RATE = 250kbps (SLEW = V                 | /cc), ONE          | TRANS  | MITTER   | SWITC     | HING                                           |  |
|                                       | Maximum Data Rate                                | 250                |        |          | kbps      | $R_L = 54\Omega$ , $C_L = 50pF$                |  |
| t <sub>RPHL</sub> , t <sub>RPLH</sub> | Receiver Propagation Delay                       |                    | 50     | 150      | ns        | C <sub>1</sub> = 15pF, Figure 11               |  |
| t <sub>RPHL</sub> -t <sub>RPLH</sub>  | Receiver Propagation Delay Skew                  |                    |        | 20       | ns        |                                                |  |
| t <sub>DPHL</sub> , t <sub>DPLH</sub> | Driver Propagation Delay                         |                    | 500    | 1000     | ns        | D 540 0 50 5                                   |  |
| t <sub>DPHL</sub> -t <sub>DPLH</sub>  | Driver Propagation Delay Skew                    |                    |        | 100      | ns        | $R_L = 54\Omega$ , $C_L = 50pF$ ,<br>Figure 12 |  |
| $t_{DR,} t_{DF}$                      | Driver Rise and Fall Time                        | 300                | 650    | 1200     | ns        | 1 19010 12                                     |  |
|                                       |                                                  |                    |        |          |           |                                                |  |
| $t_{RZH}$ , $t_{RZL}$                 | Receiver Output Enable Time                      |                    |        | 200      | ns        | Figure 13                                      |  |
| $t_{RHZ}$ , $t_{RLZ}$                 | Receiver Output Disable Time                     |                    |        | 200      | ns        | Tigure 10                                      |  |
| t <sub>DZH</sub> , t <sub>DZL</sub>   | Driver Output Enable Time                        |                    |        | 1000     | ns        | Figure 14                                      |  |
| t <sub>DHZ</sub> , t <sub>DLZ</sub>   | Driver Output Disable Time                       | bisable Time 200 n |        | ns       | Tigure 14 |                                                |  |
| RS-485/RS-42                          | 2, DATA RATE = 20Mbps (SLEW = 0'                 | V), ONE            | TRANSM | IITTER S | WITCH     | ING                                            |  |
|                                       | Maximum Data Rate                                | 20                 |        |          | Mbps      | $R_L = 54\Omega$ , $C_L = 50pF$                |  |
| t <sub>RPHL</sub> , t <sub>RPLH</sub> | Receiver Propagation Delay                       |                    | 50     | 150      | ns        | C <sub>L</sub> = 15pF, Figure 11               |  |
| t <sub>RPHL</sub> -t <sub>RPLH</sub>  | Receiver Propagation Delay Skew                  |                    |        | 10       | ns        | C <sub>L</sub> = 15pr, Figure 11               |  |
| t <sub>DPHL</sub> , t <sub>DPLH</sub> | Driver Propagation Delay                         |                    | 30     | 100      | ns        |                                                |  |
| t <sub>DPHL</sub> -t <sub>DPLH</sub>  | Driver Propagation Delay Skew                    |                    |        | 10       | ns        | $R_L = 54\Omega$ , $C_L = 50pF$ , Figure 12    |  |
| t <sub>DR</sub> , t <sub>DF</sub>     | Driver Rise and Fall Time                        |                    | 10     | 20       | ns        | Tigure 12                                      |  |
|                                       |                                                  | •                  | •      | •        | •         |                                                |  |
| $t_{RZH}$ , $t_{RZL}$                 | Receiver Output Enable Time                      |                    |        | 200      | ns        | Figure 13                                      |  |
| t <sub>RHZ</sub> , t <sub>RLZ</sub>   | Receiver Output Disable Time                     |                    |        | 200      | ns        | Tigule 10                                      |  |
| t <sub>DZH</sub> , t <sub>DZL</sub>   | Driver Output Enable Time                        |                    |        | 200      | ns        | Figure 14                                      |  |
| touz touz                             | DHZ, t <sub>DLZ</sub> Driver Output Disable Time |                    |        | 200 ns   |           | Figure 14                                      |  |



# **BLOCK DIAGRAM BY MODE (MODE1, MODE0)**

FIGURE 1. MODE 00 - LOOPBACK

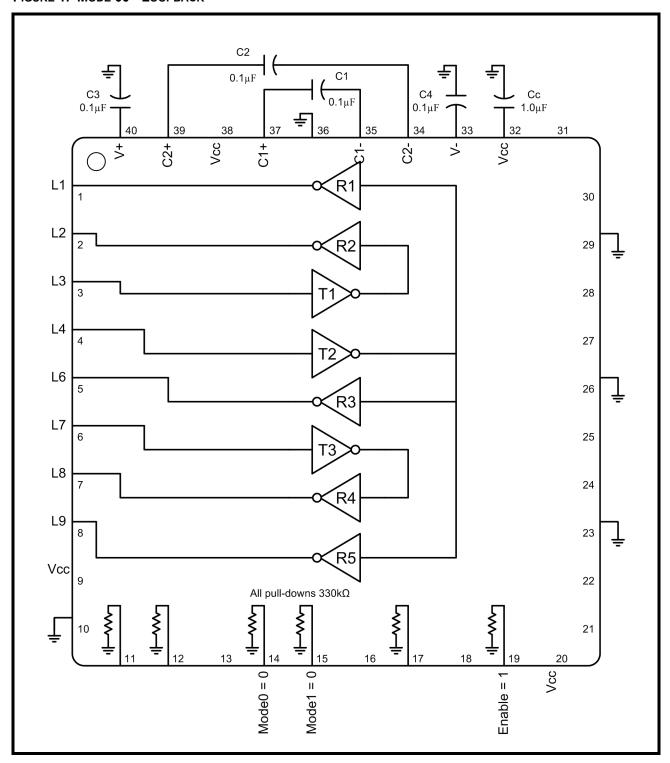





FIGURE 2. MODE 01 - RS-232

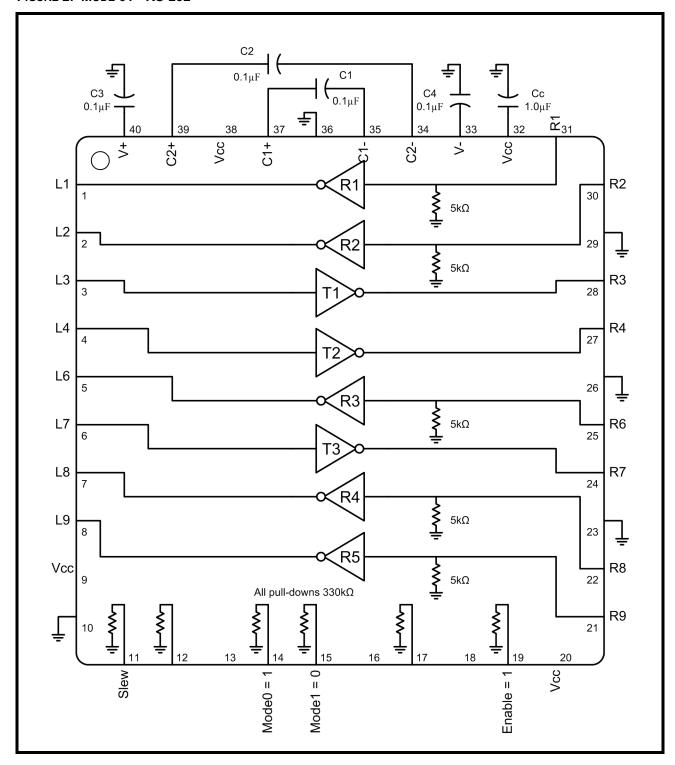





FIGURE 3. MODE 10 - RS-485 HALF DUPLEX

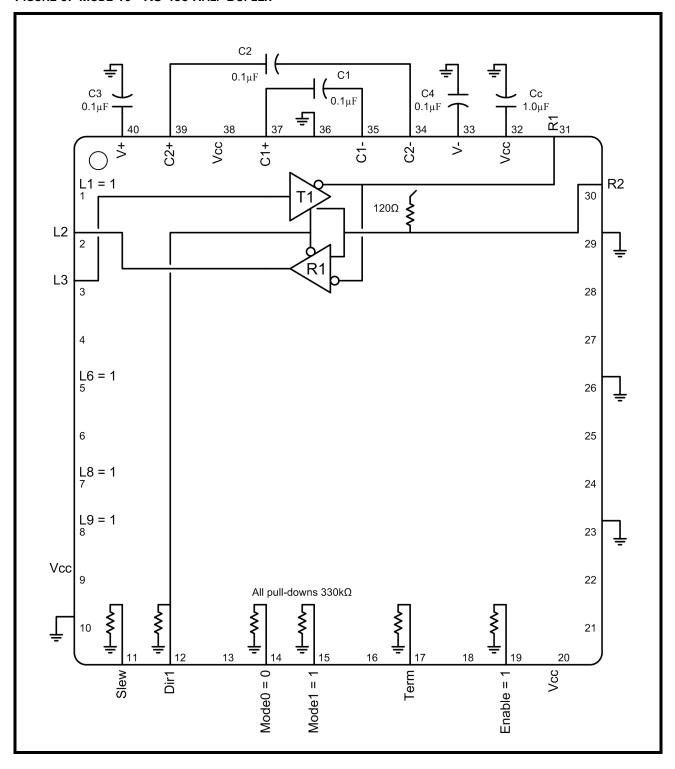
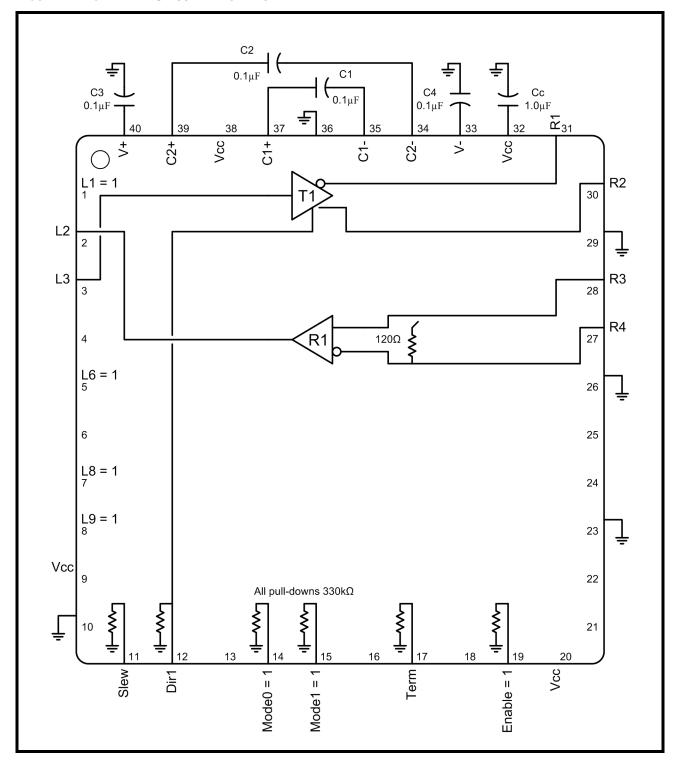






FIGURE 4. MODE 11 - RS-485/422 FULL DUPLEX





# **TEST FIXTURES**

## FIGURE 5. RS-485/422 RECEIVER TERMINATION RESISTANCE

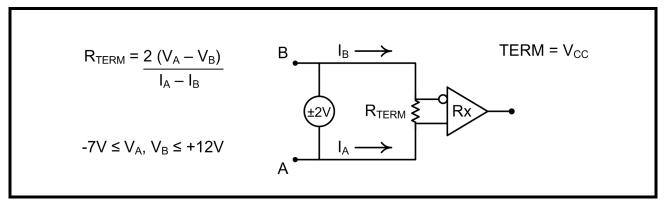



FIGURE 6. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE

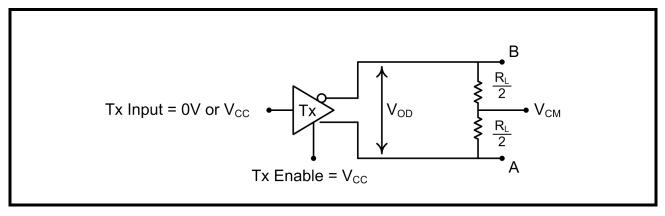
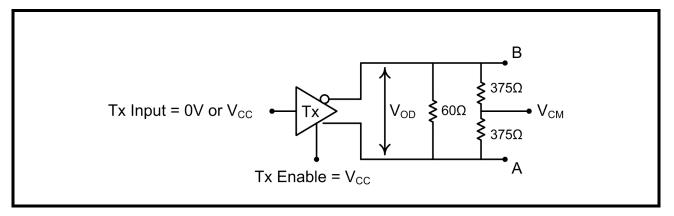




FIGURE 7. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE OVER COMMON MODE





# FIGURE 8. RS-485/422 DRIVER OUTPUT SHORT CIRCUIT CURRENT

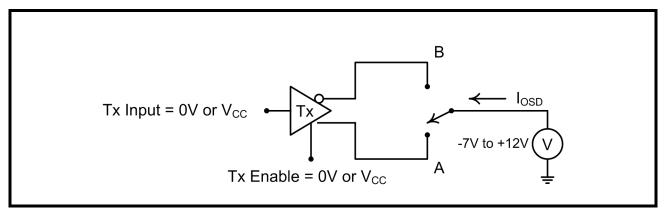
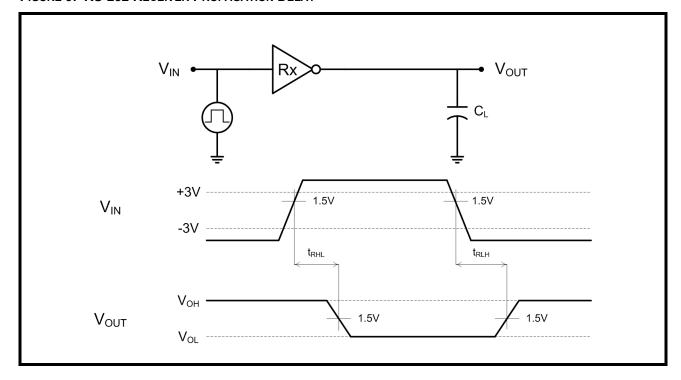




FIGURE 9. RS-232 RECEIVER PROPAGATION DELAY





# FIGURE 10. RS-232 DRIVER PROPAGATION DELAY

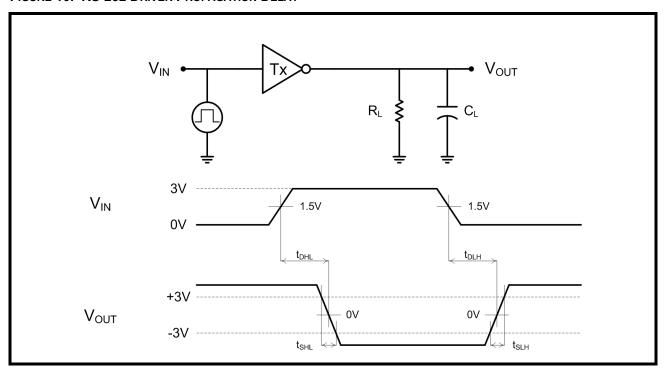



FIGURE 11. RS-485/422 RECEIVER PROPAGATION DELAY

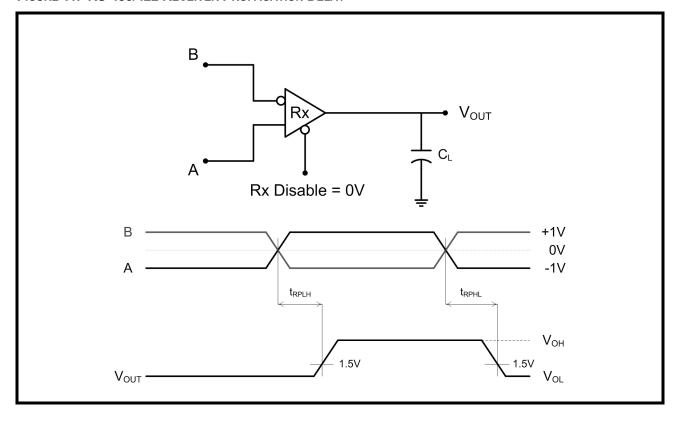





FIGURE 12. RS-485/422 DRIVER PROPAGATION DELAY AND RISE/FALL TIMES

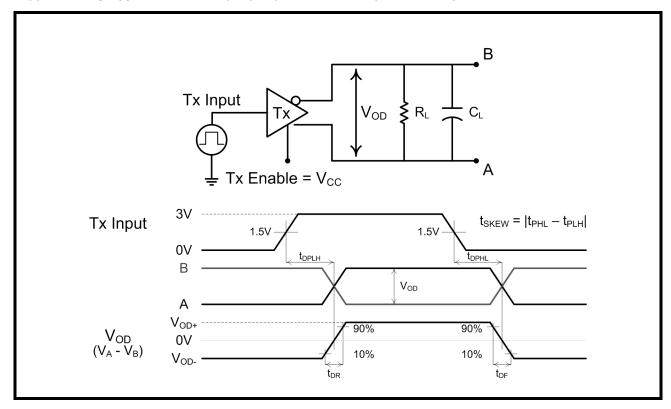
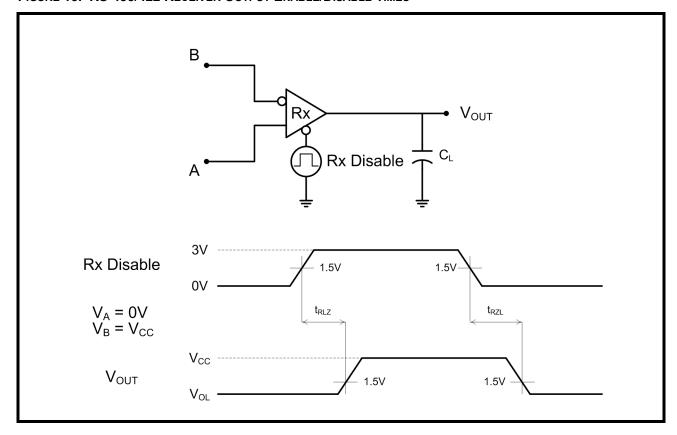
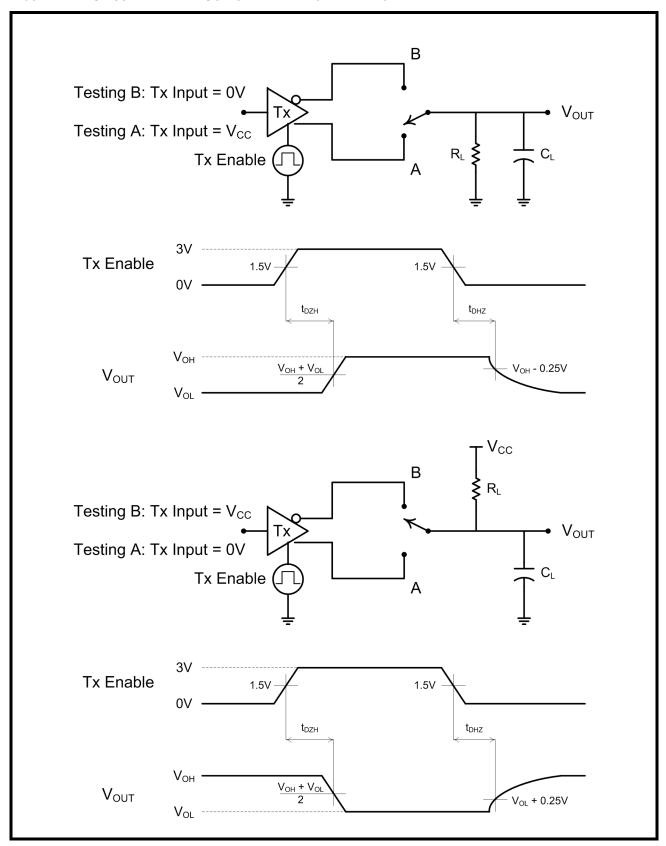





FIGURE 13. RS-485/422 RECEIVER OUTPUT ENABLE/DISABLE TIMES





## FIGURE 14. RS-485/422 DRIVER OUTPUT ENABLE/DISABLE TIMES



### RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION

### PRODUCT SUMMARY

The SP339 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. The RS-485/422 modes feature one driver and one receiver (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (3TX/5RX) provides full support of all eight signals commonly used with the DB9 RS-232 connector. A dedicated mode is also available for diagnostic loopback testing.

### INTERNALLY SWITCHED CABLE TERMINATION

Enabling and disabling the RS-485/422 termination resistor is one of the largest challenges system designers face when sharing a single connector or pair of lines across multiple serial protocols. A termination resistor may be necessary for accurate RS-485/422 communication, but must be removed when the lines are used for RS-232. SP339E provides an elegant solution to this problem by integrating the termination resistor and switching control, and allowing it to be switched in and out of the circuit with a single pin. No external switching components are required.

### **ENHANCED FAILSAFE**

Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the SP339E guarantees a logic-high receiver output when the receiver inputs are open, shorted, or terminated but idle/undriven. The enhanced failsafe interprets 0V differential as a logic high with a minimum 50mV noise margin, while maintaining compliance with the EIA/TIA-485 standard of ±200mV. No external biasing resistors are required, further easing the usage of multiple protocols over a single connector.

### ±15kV ESD PROTECTION

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures, which have been tested up to ±15kV without damage. These structures withstand high ESD in all states: normal operation, shutdown and powered down.

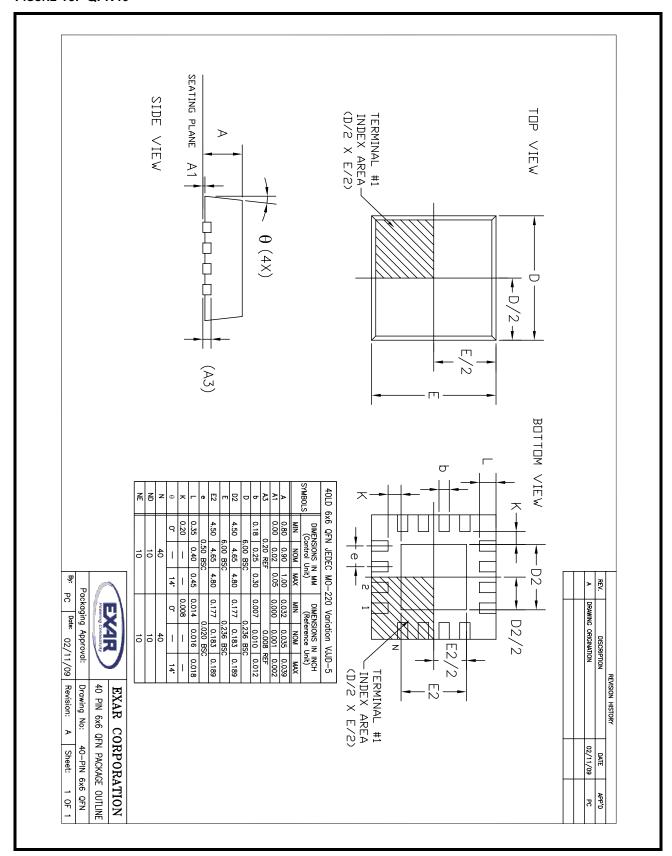
ESD protection is be tested in various ways. Exar uses the following methods to qualify the protection structures designed into SP339E:

- ±15kV using the Human Body Model (HBM)
- ±-8kV using IEC 61000-4-2 Contact Discharge

The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is higher than HBM. The SP339E has passed both HBM and IEC 61000-4-2 testing without damage.

### ±20V FAULT TOLERANCE

All bus pins on the SP339E are protected against direct shorts or long term faults, up to ±20V. This allows the part to interoperate with legacy systems using ±15V RS-232 logic levels without damage or failure.


### **DIAGNOSTIC LOOPBACK MODE**

The SP339E includes a diagnostic digital loop back mode for system testing as shown in Figure 1. The loopback mode connects the TTL driver inputs to the TTL receiver outputs, bypassing the analog driver and receiver circuitry. The analog/bus pins are internally disconnected in this mode.



# **PACKAGE DRAWINGS**

## FIGURE 15. QFN40







## **REVISION HISTORY**

| DATE         | REVISION | DESCRIPTION        |
|--------------|----------|--------------------|
| October 2011 | 1.0.0    | Production Release |

### **NOTICE**

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2011 EXAR Corporation

Datasheet Oct 2011.

For technical support please email Exar's Serial Technical Support group at: serialtechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.