
+3.3V Low Power RS-485/RS-422 Transceivers

- Operates From A Single +3.3V Supply
- Interoperable With +5V Logic
- ±200mV Receiver Input Sensitivity
- -7V to +12V Common-Mode Input Voltage Range
- Devices Allow Up To 32 Transceivers On The Serial Bus
- Driver/Receiver Enable Lines (**SP3494**)
- 2nA Low-Power Shutdown Mode (**SP3494**)
- Compatible With The MAX3488, LTC490 and 75179 Industry Standard Pinouts (\$P3493)
- Compatible With The MAX3486 and 75176 Industry Standard Pinouts (**SP3494**)

DESCRIPTION

The SP3493 and the 3494 devices are +3.3V, low power transceivers that meet the specifications of the RS-485 and RS-422 serial protocols. The SP3493 and the 3494 devices are pin-to-pin compatible with the Sipex SP3490 and the SP3481 devices, respectively, as well as other popular industry standards. The devices feature Sipex's BiCMOS process, allowing low power operation without sacrificing performance. The partially slew-rate limited drivers minimize EMI and reduce reflections caused by improperly terminated cables allowing error-free data transmission. The SP3493 is a full-duplex low power transceiver that will deliver a data transmission rate up to 250kbps. The SP3494 is a half-duplex partially slew-rate limited transceiver that will deliver a data transmission rate up to 2.5Mbps. The SP3494 is equipped with a low-power shutdown mode and driver/receiver high-Z enable lines.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}	+6.0V
Input Voltages	
Drivers	0.3V to +6.0V
Receivers	±14V
Output Voltages	
Drivers	±14V
Receivers	0.3V to +6.0V
Storage Temperature	65°C to +150°
Power Dissipation per Package	
8-pin PDIP (derate11.8mW/°C above +70°C)	1000mW
8-pin NSOIC (derate 6.90mW/°C above +70°C)	600mW

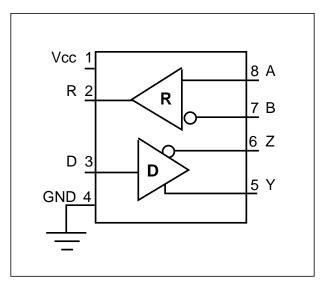
CAUTION:
ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

SPECIFICATIONS

 $\rm T_{AMB}$ = $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 3.3V \pm 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP3493 DRIVER					
DC Characteristics					
Differential Output Voltage	GND		V _{cc}	Volts	Unloaded; $R = \infty \Omega$; <i>Figure 1</i>
Differential Output Voltage	2		V _{cc}	Volts	With Load; $R = 50\Omega$; (RS-422);
D''' '' 1 O ' ' ' ' ' '	, _			,,,,	Figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	With Load; $R = 27\Omega$; (RS-485); Figure 1
Change in Magnitude of Drivel Differential Output Voltage for	[
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; Figure 1
Driver Common-Mode			0.2	VOILS	1 = 21 sz 01 1 = 30sz, 1 igure 1
Output Voltage			3	Volts	$R = 27\Omega$ or $R = 50\Omega$; Figure 1
Input High Voltage	2.0			Volts	, 3
Input Low Voltage			0.8	Volts	
Input Current			<u>+</u> 10	μΑ	
Driver Short-Circuit Current			0=0		7) / / / / / / / / / / / / / / / / / / /
V _{OUT} = HIGH			<u>+</u> 250	mA	$-7V \le V_0 \le +12V$
V _{OUT} = LOW			<u>+</u> 250	mA	-7V ≤ V _O ≤ +12V
SP3493 DRIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Driver Input to Output, t _{PLH}	400	900	1500	ns	Figures 2 and 8
Driver Input to Output, t _{PHL}	400	900	1500	ns	Figures 2 and 8
Differential Driver Cleans		40			I (\(\) \(
Differential Driver Skew		10		ns	$ t_{PHL}(Y) - t_{PLH}(Y) , t_{PHL}(Z) - t_{PLH}(Z) ,$ Figures 2 and 8
					Figures 2 and 8
Driver Rise or Fall Time		10	30	ns	From 10% to 90%; Figures 3 and 9
3					2 2 12 12 12 13 1 1 1 1 1 1 1 1 1 1 1 1
SP3493 RECEIVER					
DC Characteristics				, , ,	
Differential Input Threshold	0.2	25	+0.2	Volts	-7V ≤ V _{CM} ≤ 12V
Input Hysteresis Output Voltage High	V .04	25		mV Volts	$V_{CM} = 0V''$
Output Voltage Low	V _{CC} -0.4		0.4	Volts	$I_O = -1.5 \text{mA}, V_{ID} = +200 \text{mV}$ $I_O = +2.5 \text{mA}, V_{ID} = -200 \text{mV}$
Input Resistance	12	15	0.7	kΩ	$V_{\rm D} = 42.0 \text{m/s}, V_{\rm ID} = 42.0 \text{m/s}$
Input Current (A, B); V _{IN} = 12V	'-		1.0	mA	$V_{IN} = 12V$
Input Current (A, B); $V_{IN} = -7V$			-0.8	mA	$V_{IN}^{m} = -7V$
Short-Circuit Current			60	mA	$0\ddot{V} \le V_{O} \le V_{CC}$

SPECIFICATIONS (continued)


 $\rm T_{AMB}\!=T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}\!=3.3V\pm5\%$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP3493 RECEIVER					
AC Characteristics Maximum Data Rate Receiver Input to Output, t _{PLH}	250 35	70	120	kbps ns	Figures 6 and 11
Receiver Input to Output, t _{PHL}	35	70	120	ns	Figures 6 and 11
Differential Receiver Skew		10		ns	Figures 6 and 11
SP3493 POWER REQUIREME Supply Current SP3494 DRIVER	ENTS	1000	2000	μΑ	D = Ø or V _{CC}
DC Characteristics Differential Output Voltage Differential Output Voltage	GND 2		V _{cc}	Volts Volts	Unloaded; R = ∞ ; Figure 1 with load; R = 50Ω ; (RS-422); Figure 1
Differential Output Voltage Change in Magnitude of Driver	1.5		V _{cc}	Volts	with load; $R = 27\Omega$; (RS-485); Figure 1
Differential Output Voltage for Complimentary States Driver Common-Mode			0.2	Volts	R = 27 Ω or R = 50 Ω ; <i>Figure 1</i>
Output Voltage Input High Voltage Input Low Voltage Input Current Driver Short-Circuit Current	2.0		3 0.8 <u>+</u> 10	Volts Volts Volts μΑ	$R = 27\Omega$ or $R = 50\Omega$; Figure 1 Applies to DE, DI, \overline{RE} Applies to DE, DI, \overline{RE} Applies to DE, DI, \overline{RE}
V _{OUT} = HIGH V _{OUT} = LOW			<u>+</u> 250 <u>+</u> 250	mA mA	-7V ≤ V _O ≤ +12V -7V ≤ V _O ≤ +12V
SP3494 DRIVER					
AC Characteristics Maximum Data Rate	2.5			Mbps	$\overline{RE} = V_{CC}$, $DE = V_{CC}$
Driver Input to Output, t _{PLH}	20	45	75	ns	Figures 2 and 8
Driver Input to Output, t _{PHL}	20	45	75	ns	Figures 2 and 8
Differential Driver Skew Driver Rise or Fall Time Driver Enable to Output High Driver Enable to Output Low Driver Disable Time from Low Driver Disable Time from High		10 30 52 60 40 60	70 120 120 120 120	ns ns ns ns ns	t _{DO1} - t _{DO2} , Figures 2 and 9 From 10% to 90%, Figures 3 and 9 Figures 4 and 10 Figures 5 and 10 Figures 5 and 10 Figures 4 and 10
SP3494 RECEIVER					
DC Characteristics Differential Input Threshold Input Hysteresis Output Voltage High Output Voltage Low Three-State (High Impedance)	-0.2 V _{CC} -0.4	20	+0.2	Volts mV Volts Volts	$-7V \le V_{CM} \le +12V$ $V_{CM} = 0V$ $V_{ID} = +200 \text{mV}, -1.5 \text{mA}$ $V_{ID} = -200 \text{mV}, 2.5 \text{mA}$
Output Current Input Resistance Input Current (A, B); V _{IN} = 12V Input Current (A, B); V _{IN} = -7V Short-Circuit Current	12 7	15	±1 1.0 -0.8 60	μΑ kΩ mA mA mA	$\begin{array}{l} 0 \text{V} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}; \ \overline{\text{RE}} = \text{V}_{\text{CC}} \\ -7 \text{V} \leq \text{V}_{\text{CM}} \leq +12 \text{V} \\ \text{DE} = 0 \text{V}, \ \text{V}_{\text{CC}} = 0 \text{V or } 3.6 \text{V}, \ \text{V}_{\text{IN}} = 12 \text{V} \\ \text{DE} = 0 \text{V}, \ \text{V}_{\text{CC}} = 0 \text{V or } 3.6 \text{V}, \ \text{V}_{\text{IN}} = -7 \text{V} \\ 0 \text{V} \leq \text{V}_{\text{CM}} \leq \text{V}_{\text{CC}} \end{array}$

SPECIFICATIONS (continued)

 $T_{AMB} = T_{MIN}$ to T_{MAX} and $V_{CC} = +3.3V \pm 5\%$ unless otherwise noted.

2.5 40 40	70 70 10 35 35 35	100 100 60 60	Mbps ns ns ns	\overline{RE} = 0V, DE = 0V Figures 6 and 11 Figures 6 and 11 t_{RSKEW} = $ t_{RPHL} - t_{RPLH} $, Figures 6 and 11 Figures 7 and 12; S ₁ closed, S ₂ open
40	70 10 35 35	100 60	ns ns ns ns	Figures 6 and 11 Figures 6 and 11 $t_{RSKEW} = t_{RPHL} - t_{RPLH} $, Figures 6 and 11
40	70 10 35 35	100 60	ns ns ns ns	Figures 6 and 11 Figures 6 and 11 $t_{RSKEW} = t_{RPHL} - t_{RPLH} $, Figures 6 and 11
	70 10 35 35	100 60	ns ns ns ns	Figures 6 and 11 Figures 6 and 11 $t_{RSKEW} = t_{RPHL} - t_{RPLH} $, Figures 6 and 11
40	10 35 35	60	ns ns	$t_{RSKEW} = t_{RPHL} - t_{RPLH} $, Figures 6 and 11
	35 35		ns	
	35			Figures 7 and 12; S ₁ closed, S ₂ open
		60		
		00	l ns l	Figures 7 and 12; S₂ closed, S₁ open
		60	ns	Figures 7 and 12; S_1 closed, S_2 open
	35	60	ns	Figures 7 and 12; S_2 closed, S_1 open
50	75	200	ns	$\overline{RE} = 3.3V$, $DE = 0V$
	65	150	ns	Figures 4 and 10
	65	150	ns	Figures 5 and 10
	50	200	ns	Figures 7 and 12; S ₂ closed, S ₁ open
	50	200	ns	Figures 7 and 12; S ₁ closed, S ₂ open
ITS				
				
	1000 800	2000 1500	μA μA	\overline{RE} , DI = 0V or V_{CC} ; DE = V_{CC} \overline{RE} = 0V, DI = 0V or V_{CC} ; DE = 0V
			'	DE = 0V, \overline{RE} =V _{CC}
		65 65 50 50	65 150 65 150 50 200 50 200 TS	65 150 ns 65 150 ns 50 200 ns 50 200 ns 7S 1000 2000 μA 800 1500 μA

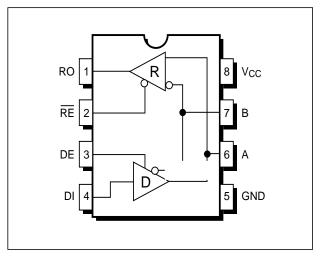
SP3493 Pinout

PIN FUNCTION - SP3493

Pin 1 - V_{cc} - Positive supply +3.00 < V_{cc} < +3.60

Pin 2 - R - Receiver output.

Pin 3 - D - Driver input.


Pin 4 - GND - Ground connection.

Pin 5 - Y - Non-inverting driver output.

Pin 6 - Z - Inverting driver output.

Pin 7 - B - Inverting receiver input.

Pin 8 - A - Non-inverting receiver input.

SP3494 Pinout

PIN FUNCTION - SP3494

Pin 1 – RO – Receiver Output.

Pin $2 - \overline{RE}$ – Receiver Output Enable Active LOW.

Pin 3 – DE – Driver Output Enable Active HIGH.

Pin 4 – DI – Driver Input.

Pin 5 – GND – Ground Connection.

Pin 6 – A – Driver Output/Receiver Input

Non-inverting.

Pin 7 − B − Driver Output/Receiver Input Inverting.

Pin $8 - Vcc - Positive Supply +3.00V < V_{CC} < +3.60V$

DESCRIPTION

The **SP3493/3494** are +3.3V transceivers that meet the electrical specifications of the RS-485 and RS-422 serial protocols. The **SP3493/3494** feature Sipex's BiCMOS process allowing low power operation without sacrificing performance.

The **SP3493** device is a +3.3V full-duplex transceiver that is pin-to-pin compatible with the **Sipex SP3490** and **SP490** devices as well as popular industry standards such as the MAX3488, the LTC490, and the 75179. The **SP3493** has a driver with a data transmission rate of 250kbps.

The **SP3494** device is a +3.3V half-duplex transceiver that is pin-to-pin compatible with the **Sipex SP3481** and **SP481** devices as well as popular industry standards such as the MAX3486 and the 75176. The **SP3494** has a partially slewrate limited driver with a data transmission rate of 2.5Mbps.

Drivers

The SP3493/3494 devices both have differential outputs. The typical voltage output swing with no load will be 0V to $V_{\rm CC}$. With worst case loading of 54Ω across the differential outputs, the driver can maintain greater than 1.5V voltage levels.

The **SP3494** device has an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. A logic LOW on DE (pin 3) will force the driver outputs at high impedance (high-Z). The **SP3493** device does not have a driver enable.

The **SP3493/SP3494** drivers will operate up to 250kbps and 2.5Mbps, respectively. In addition to adhering to the 250mA $I_{\rm SC}$ maximum limit on the driver output, the driver output short-circuit protection will allow the devices to withstand an infinite short circuit over the -7.0V to +12V common mode range without damage.

Receivers

The receivers have differential inputs with an input sensitivity as low $\pm 200 \text{mV}$. Input impedance of the receivers is typically $15 \text{k}\Omega$ ($12 \text{k}\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems.

Both the **SP3493/SP3494** receivers are equipped with fail-safe which guarantees that the receiver outputs will be in a high state when the input is left unconnected.

The **SP3494** receiver has a high impedance (high-Z) enable control pin. A logic LOW on RE (pin 2) will enable the receiver; a logic HIGH on RE (pin 2) will disable the receiver.

The **SP3494** is equipped with a shutdown mode. To enable the shutdown state, both the driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 3) and a logic HIGH on \overline{RE} (pin 2) will put the **SP3494** into shutdown. In shutdown, the supply current will drop to 2nA typical, $1\mu A$ maximum.

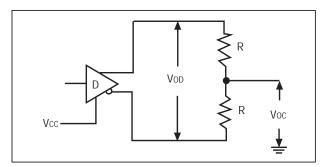


Figure 1. Driver DC Test Load Circuit

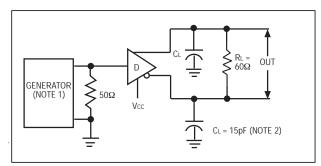


Figure 3. Driver Differential Output Delay and Transition Time Circuit

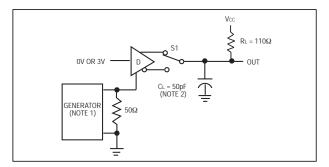


Figure 5. Driver Enable and Disable Timing Circuit, Output LOW

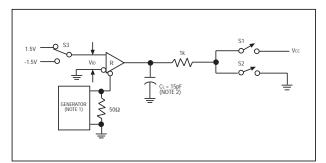


Figure 7. Receiver Enable and Disable Timing Circuit

I	NPUT	S		OUTI	PUTS
RE	DE	DI	LINE CONDITION	В	A
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z

Table 1. Transmit Function Truth Table

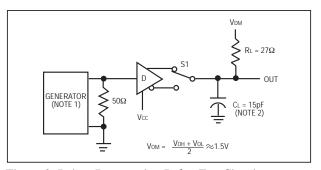


Figure 2. Driver Propagation Delay Test Circuit

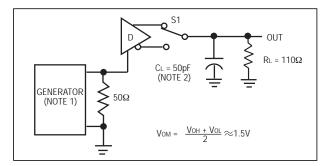


Figure 4. Driver Enable and Disable Timing Circuit, output HiGH

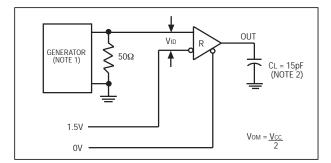


Figure 6. Receiver Propagation Delay Test Circuit

INPUTS			OUTPUTS	
RE	DE	A - B	R	
0	0	+0.2V	1	
0	0	-0.2V	0	
0	0	Inputs Open	1	
1	0	X	Z	

Table 2. Receive Function Truth Table

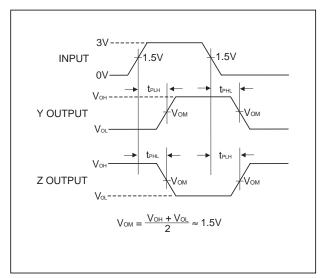


Figure 8. Driver Propagation Delay Waveforms

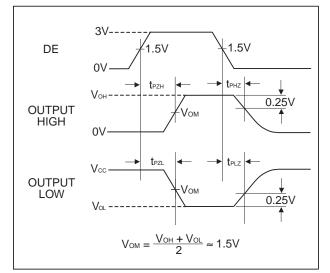


Figure 10. Driver Enable and Disable Timing Waveforms

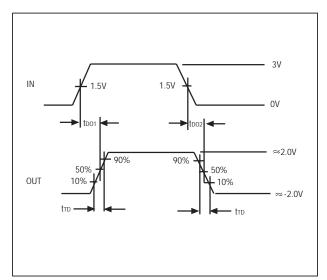


Figure 9. Driver Differential Output Delay and Transition Time Waveforms

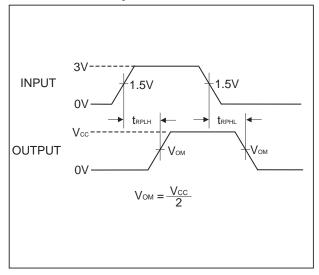
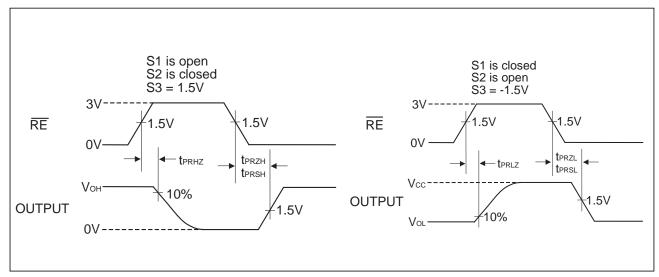
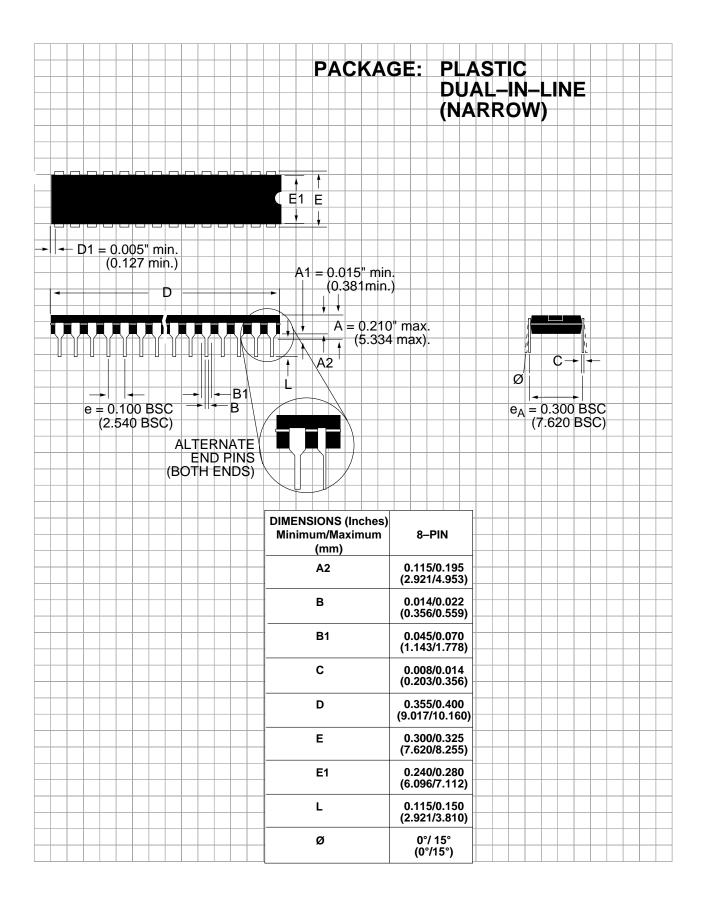
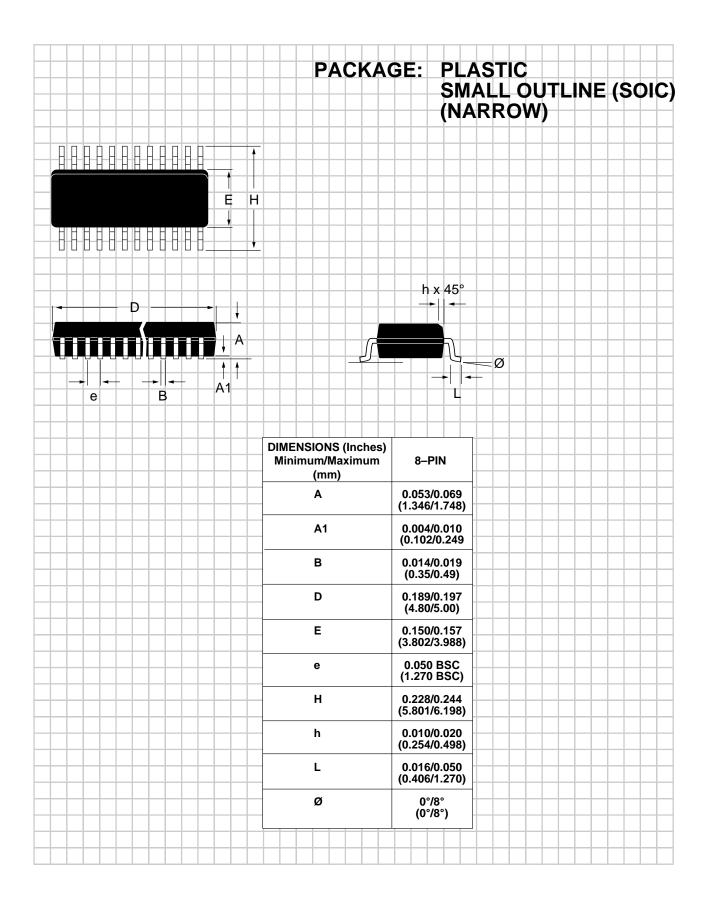


Figure 11. Receiver Propagation Delay Waveforms


Figure 12. Receiver Enable and Disable Waveforms

NOTE 1: The input pulse is supplied by a generator with the following characteristics:

PRR=250KHz, 50% duty cycle, $t_r < 6.0$ ns, $Z_0 = 50\Omega$.

NOTE 2: C_L includes probe and stray capacitance.

ORDERING INFORMATION **Temperature Range Package** SP3493CN $\mathsf{SP3493CP} \cdot \ldots \cdot \ldots \cdot \ldots \cdot \ldots \cdot 0^{\circ} \mathsf{C} \text{ to } + 70^{\circ} \mathsf{C} \cdot \ldots \cdot \mathsf{S-pin} \text{ Plastic DIP}$-40°C to +85°C 8-pin Narrow SOIC SP3493EN.-40°C to +85°C 8-pin Plastic DIP SP3493EP. 8-pin Plastic DIP 8-pin Narrow SOIC

Please consult the factory for pricing and availability on a Tape-On-Reel option.

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sales Office

22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.