

AK4480

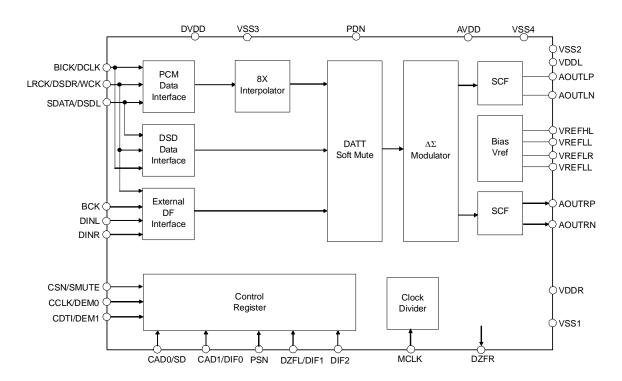
High Performance 114dB 32-Bit DAC

GENERAL DESCRIPTION

The AK4480 is a 32-bit DAC, which corresponds to Blu-ray Disc systems. An internal circuit includes newly developed 32bit Digital Filter for better sound quality achieving low distortion characteristics and wide dynamic range. The AK4480 has full differential SCF outputs, removing the need for AC coupling capacitors and increasing performance for systems with excessive clock jitter. The AK4480 accepts 216kHz PCM data and 1-bit DSD data, ideal for a wide range of applications including Blu-ray Discs and SACDs.

FEATURES

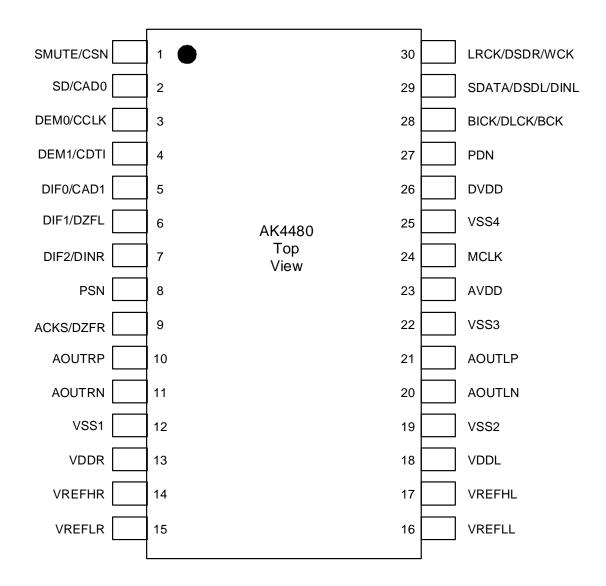
- 128x Over Sampling
- Sampling Rate: 30kHz ~ 216kHz
- 32Bit 8x Digital Filter
 - Ripple: ±0.005dB, Attenuation: 70dB
 - Minimum delay option GD=7/fs
 - Sharp Roll-off Filter
 - Slow Roll-off Filter
- High Tolerance to Clock Jitter
- Low Distortion Differential Output
- DSD Data Input
- Digital De-emphasis for 32, 44.1, 48kHz Sampling
- Soft Mute
- Digital Attenuator (Linear 256 steps)
- Mono Mode
- External Digital Filter Mode
- THD+N: -100dB
- DR, S/N: 114dB (117dB when Mono mode)
- I/F Format: 24/32bit MSB justified, 16/20/24/32bit LSB justified, I2S, DSD
- Master Clock:


30kHz ~ 32kHz: 1152fs

30kHz ~ 54kHz: 512fs or 768fs 30kHz ~ 108kHz: 256fs or 384fs 108kHz ~ 216kHz: 128fs or 192fs

Power Supply: 4.75 ~ 5.25V
Digital Input Level: TTL
Package: 30pin VSOP

■ Block Diagram



Block Diagram

■ Ordering Guide

AKD4480 Evaluation Board for AK4480

■ Pin Layout

PIN/FUNCTION

No.	Pin Name	I/O	Function
			Soft Mute in Parallel Control Mode
1	SMUTE	I	When this pin goes to "H", soft mute cycle is initiated.
1			When returning to "L", the output mute releases.
	CSN	I	Chip Select in Serial Control Mode
_	SD	I	Digital Filter Select Pin
2	CAD0	I	Chip Address 0 in Serial Control Mode
2	DEM0	I	De-emphasis Enable 0 in Parallel Control Mode
3	CCLK	I	Control Data Clock in Serial Control Mode
4	DEM1	I	De-emphasis Enable 1 in Parallel Control Mode
4	CDTI	I	Control Data Input in Serial Control Mode
_	DIF0	I	Digital Input Format 0 in PCM Mode
5	CAD1	I	Chip Address 1 in Serial Control Mode
	DIF1	I	Digital Input Format 1 in PCM Mode
6	DZFL	О	Left Channel Zero Input Detect in Serial Control Mode
_	DIF2	I	Digital Input Format 2 in PCM Mode
7	DINR	I	Rch Audio Serial Data Input in External DF Mode.
0	DCM	т	Parallel/Serial Select (Internal pull-up pin)
8	PSN	I	"L": Serial Control Mode, "H": Parallel Control Mode
9	ACKS	I	Clock Auto Setting Mode Pin
9	DZFR	О	Rch Zero Input Detect in Serial Control Mode
10	AOUTRP	О	Right Channel Positive Analog Output
11	AOUTRN	О	Right Channel Negative Analog Output
12	VSS1	-	Connected to VSS2/3/4 Ground
13	VDDR	-	Right Channel Analog Power Supply, 4.75~5.25V
14	VREFHR	I	Right Channel High Level Voltage Reference Input
15	VREFLR	I	Right Channel Low Level Voltage Reference Input
16	VREFLL	I	Left Channel Low Level Voltage Reference Input
17	VREFHL	I	Left Channel High Level Voltage Reference Input
18	VDDL	-	Left Channel Analog Power Supply, 4.75~5.25V
19	VSS2	-	Ground (connected to VSS1/3/4 ground)
20	AOUTLN	О	Left Channel Negative Analog Output
21	AOUTLP	О	Left Channel Positive Analog Output
22	VSS3	-	Ground (connected to VSS1/2/4 ground)
23	AVDD	-	Analog Power Supply, 4.75 to 5.25V
24	MCLK	I	Master Clock Input
25	VSS4	-	Connected to VSS1/2/3 Ground
26	DVDD	-	Digital Power Supply, 4.75 ~ 5.25V
_			Power-Down Mode
27	PDN	I	When at "L", the AK4480 is in power-down mode and is held in reset.
			The AK4480 should always be reset upon power-up.

Note: All input pins except internal pull-up/down pins must not be left floating.

PIN/FUNCTION (Continued)

No.	Pin Name	I/O	Function
	BICK	I	Audio Serial Data Clock in PCM Mode
28	DCLK	I	Audio Serial Data Clock in DSD Mode
	BCK	I	Audio Serial Data Clock in EXDF Mode
	SDATA	I	Audio Serial Data Input in PCM Mode
29	DSDL	I	Lch Audio Serial Data Clock in DSD Mode
	DINL	I	Lch Audio Serial Data Clock in EXDF Mode
	LRCK	I	L/R Clock in PCM Mode
30	DSDR	I	Rch Audio Serial Data Input Pin in DSD Mode
	WCK	I	Word Clock Pin in EXDF Mode

Note: All input pins except internal pull-up/down pins must not be left floating.

■ Handling of Unused Pin

The unused I/O pins should be processed appropriately as below.

(1) Parallel Mode (PCM Mode only)

Classification	Pin Name	Setting
Analog	AOUTLP, AOUTLN	These pins must be open.
Analog	AOUTRP, AOUTRN	These pins must be open.

(2) Serial Mode

1. PCM Mode

Classification	Pin Name	Setting
Amalaa	AOUTLP, AOUTLN	These pins must be open.
Analog	AOUTRP, AOUTRN	These pins must be open.
D:-:4-1	DIF2, PSN	These pins must be connected to VSS4.
Digital	DZFL, DZFR	These pins must be open.

2. DSD Mode

Classification	Pin Name	Setting
Analog	AOUTLP, AOUTLN	These pins must be open.
Analog	AOUTRP, AOUTRN	These pins must be open.
Digital	DIF2, PSN	These pins must be connected to VSS4.
Digital	DZFL, DZFR	These pins must be open.

3. Ex DF Mode

Classification	Pin Name	Setting
Analog	AOUTLP, AOUTLN	These pins must be open.
Analog		These pins must be open.
Digital	DIF2, PSN	These pins must be connected to VSS4.
Digital	DZFL, DZFR	These pins must be open.

	ABSOL	UTE MAXIMUM	RATINGS		
(VSS1-4 =0V; Note	e 1)				
Parameter		Symbol	min	max	Unit
Power Supplies:	Analog	AVDD	-0.3	6.0	V
	Analog	VDDL/R	-0.3	6.0	V
	Digital	DVDD	-0.3	6.0	V
Input Current, An	y Pin Except Supplies	IIN	-	±10	mA
Digital Input Volt	age	VIND	-0.3	DVDD+0.3	V
Ambient Tempera	ture (Power applied)	Ta	-10	70	°C
Storage Temperat	ure	Tstg	-65	150	°C

Note 1. All voltages with respect to ground.

Note 2. VSS1-4 must be connected to the same analog ground plane.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

	RECOMMENDED OPERATING CONDITIONS						
(VSS1-4 =0V; Not	te 1)						
Parameter		Symbol	min	typ	max	Unit	
Power Supplies (Note 3)	Analog Analog Digital	AVDD VDDL/R DVDD	4.75 4.75 4.75	5.0 5.0 5.0	5.25 5.25 5.25	V V V	
Voltage Reference (Note 4)	VREFHL/R VREFLL/R	VREFHL/R VREFLL/R	AVDD-0.5	- VSS	AVDD -	V V	

Note 1. All voltages with respect to ground.

Note 3. The power up sequence between AVDD, VDDL/R and DVDD is not critical.

Note 4. The VREFLL/R pin must be the same voltage as VSS.

The analog output voltage scales with the voltage of (VREFH – VREFL).

AOUT (typ.@0dB) = $(AOUT+) - (AOUT-) = \pm 2.4 \text{Vpp} \times (\text{VREFHL/R} - \text{VREFLL/R})/5$.

^{*} AKM assumes no responsibility for the usage beyond the conditions in this data sheet.

ANALOG CHARACTERISTICS

(Ta=25°C; AVDD=VDDL/R=DVDD=5.0V; VSS1-4=0V; VREFHL/R=AVDD, VREFLL/R= VSS; Input data = 24bit; $R_L \ge 1k\Omega$; BICK=64fs; Signal Frequency = 1kHz; Sampling Frequency = 44.1kHz; Measurement bandwidth = 20Hz ~ 20kHz; External Circuit: Figure 20; unless otherwise specified.)

Parameter			min	typ	max	Unit
Resolution			-	-	32	Bits
Dynamic Characteristics	(Note 5)					
THD+N	fs=44.1kHz	0dBFS	-	-100	-93	dB
	BW=20kHz	-60dBFS	-	-51	-	dB
	fs=96kHz	0dBFS	-	97	-	dB
	BW=40kHz	-60dBFS	-	-48	-	dB
	fs=192kHz	0dBFS		97	-	dB
	BW=40kHz	-60dBFS		-48	-	dB
	BW=80kHz	-60dBFS		-45	-	dB
Dynamic Range (-60dBFS	Dynamic Range (-60dBFS with A-weighted) (Note 6)					dB
S/N (A-weighted)		(Note 7)	108	114		dB
Interchannel Isolation (1k)	Hz)		100	110		dB
DC Accuracy						
Interchannel Gain Mismatc	h		-	0	0.3	dB
Gain Drift		(Note 8)	-	20	-	ppm/°C
Output Voltage		(Note 9)	±2.25	±2.4	±2.55	Vpp
Load Capacitance			-	-	25	pF
Load Resistance		(Note 10)	2	-	-	kΩ
Power Supplies						
Power Supply Current						
	tion (PDN pin = "H"	<u>'</u>)				
	O + VDDL/R	<i>,</i>	-	30	45	mA
DVDI	DVDD ($fs \le 96kHz$)				-	mA
DVDI	DVDD (fs = 192kHz)				36	mA
Power down ((PDN pin = "L")	(Note 11)				
AVDI	D+VDDL/R+DVDD		-	10	100	μΑ

- Note 5. Measured by Audio Precision, System Two. Averaging mode. Refer to the evaluation board manual.
- Note 6. Figure 20 External LPF Circuit Example 2. 100dB for 16-bit data.
- Note 7. Figure 20 External LPF Circuit Example 2. S/N does not depend on input data size.
- Note 8. The voltage on (VREFH VREFL) is held +5V externally.
- Note 9. Full-scale voltage(0dB). Output voltage scales with the voltage of (VREFHL/R VREFLL/R). AOUT (typ.@0dB) = (AOUT+) (AOUT-) = ± 2.4 Vpp × (VREFHL/R VREFLL/R)/5.
- Note 10. Regarding Load Resistance, AC load is $2k\Omega$ (min) with a DC cut capacitor. Please refer to Figure 20. The load resistance is 4k ohm (min) to ground when without a DC cut capacitor. Please refer to Figure 19. Load Resistance is with respect to ground. Analog characteristics are sensitive to capacitive load that is connected output pin. Therefore the capacitive load must be minimized.
- Note 11. In the power down mode. P/S pin = DVDD, and all other digital input pins including clock pins (MCLK, BICK and LRCK) are held VSS4.

SHARP ROLL-OFF FILTER CHARACTERISTICS (fs = 44.1kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Normal Speed Mode; DEM=OFF; SLOW bit ="0", SD bit="0")

Parameter	Symbol	min	typ	max	Unit	
Digital Filter						
Passband (Note	12)	PB	0	-	20.0	kHz
Eraguanay Dagnanga	±0.05dB	PB	0		20.0	kHz
Frequency Response	-6.0dB		-	22.05	-	kHz
Stopband	(Note 12)	SB	24.1			kHz
Passband Ripple		PR	-0.005		+0.0001	dB
Stopband Attenuation		SA	70			dB
Group Delay (Note 13)		GD	-	27	-	1/fs
Digital Filter + SCF						
Frequency Response: 0 ~ 20	.0kHz		-0.2	-	+0.2	dB

SHARP ROLL-OFF FILTER CHARACTERISTICS (fs = 96kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 ~ 5.25V, DVDD=4.75 ~ 5.25V; Double Speed Mode; DEM=OFF; SLOW bit ="0", SD bit="0")

Parameter		Symbol	min	typ	max	Unit	
Digital Filter							
Passband (Note 12)		PB	0	-	43.5	kHz	
Frequency Response	±0.05dB		0	-	43.5	kHz	
	-6.0dB		-	48.0	-	kHz	
Stopband	(Note 12)	SB	52.5	-		kHz	
Passband Ripple		PR	-0.005	-	+0.0001	dB	
Stopband Attenuation		SA	70	-	-	dB	
Group Delay	(Note 13)	GD	-	27	-	1/fs	
Digital Filter + SCF							
Frequency Response: 0 ~ 40.	.0kHz		-0.3	-	+0.3	dB	

SHARP ROLL-OFF FILTER CHARACTERISTICS (fs = 192kHz)

 $(Ta=25^{\circ}C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Quad Speed Mode; DEM=OFF; SLOW bit ="0", SD bit="0")$

Parameter		Symbol	min	typ	max	Unit	
Digital Filter	Digital Filter						
Passband (Note 12)		PB	0	-	87.0	kHz	
Frequency Response	±0.05dB		0		87.0	kHz	
	-6.0dB		-	96.0	-	kHz	
Stopband	(Note 12)	SB	105			kHz	
Passband Ripple		PR	-0.005	-	+0.0001	dB	
Stopband Attenuation		SA	70	-	-	dB	
Group Delay	(Note 13)	GD	-	27	-	1/fs	
Digital Filter + SCF							
Frequency Response: 0 ~ 80.0kH	Iz	_	-1	-	+0.1	dB	

Note 12. The passband and stopband frequencies scale with fs. For example, PB=0.4535×fs (@±0.01dB), SB=0.546×fs. Note 13. The calculating delay time which occurred by digital filtering. This time is from setting the 16/20/24/32bit data of both channels to input register to the output of analog signal.

SLOW ROLL-OFF FILTER CHARACTERISTICS (fs = 44.1kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 ~ 5.25V, DVDD=4.75 ~ 5.25V; Normal Speed Mode; DEM=OFF; SLOW bit="1", SD bit = "0")

Parameter	Symbol	min	typ	max	Unit		
Digital Filter							
Passband (Note 14)		PB	0	-	8.1	kHz	
Frequency Response	±0.07dB		0	-	8.1	kHz	
	-3.0dB		-	18.2	-	kHz	
Stopband	(Note 14)	SB	39.2	-	-	kHz	
Passband Ripple		PR	-0.07	-	+0.02	dB	
Stopband Attenuation		SA	73	-	-	dB	
Group Delay	(Note 13)	GD	-	27	-	1/fs	
Digital Filter + SCF							
Frequency Response: 0 ~ 20.0kH	Iz		-5	-	+0.1	dB	

SLOW ROLL-OFF FILTER CHARACTERISTICS (fs = 96kHz)

 $(Ta=25^{\circ}C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Double Speed Mode DEM=OFF; SLOW bit="1", SD bit = "0")$

Parameter	Symbol	min	typ	max	Unit		
Digital Filter							
Passband (Note 14)		PB	0	-	17.7	kHz	
Frequency Response	±0.07dB		0	-	17.7	kHz	
	-3.0dB		-	39.6	-	kHz	
Stopband	(Note 14)	SB	85.3	-	-	kHz	
Passband Ripple		PR	-0.07	-	+0.02	dB	
Stopband Attenuation		SA	73	-	-	dB	
Group Delay	(Note 13)	GD	-	27	-	1/fs	
Digital Filter + SCF							
Frequency Response: 0 ~ 40.0kH	Iz		-4	-	+0.1	dB	

SLOW ROLL-OFF FILTER CHARACTERISTICS (fs = 192kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 ~ 5.25V, DVDD=4.75 ~ 5.25V; Quad Speed Mode; DEM=OFF; SLOW bit="1", SD bit = "0")

Parameter	Symbol	min	typ	max	Unit		
Digital Filter							
Passband (Note 14)		PB	0	-	35.5	kHz	
Frequency Response	±0.07dB		0	-	35.5	kHz	
	-3.0dB		-	79.1	-	kHz	
Stopband	(Note 14)	SB	171	-	-	kHz	
Passband Ripple		PR	-0.07	-	+0.02	dB	
Stopband Attenuation		SA	73	-	-	dB	
Group Delay	(Note 13)	GD	-	27	-	1/fs	
Digital Filter + SCF							
Frequency Response: 0 ~ 80.0kH	Iz	•	-5	-	+0.1	dB	

Note 14. The passband and stopband frequencies scale with fs. For example, PB=0.185×fs (@±0.04dB), SB=0.888×fs.

MINIMUM DELAY FILTER CHARACTERISTICS (fs = 44.1kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Normal Speed Mode; DEM=OFF; SLOW bit = "0", SD bit="1")

Parameter	Symbol	min	typ	max	Unit			
Digital Filter								
Passband (Note 14)	±0.01dB	PB	0	-	20.0	kHz		
Frequency Response	±0.06dB		0	-	20.0	kHz		
	-6.0dB		-	22.05	-	kHz		
Stopband	(Note 14)	SB	24.1	-	-	kHz		
Passband Ripple		PR	-0.0052	-	+0.0006	dB		
Stopband Attenuation		SA	70	-	-	dB		
Group Delay	(Note 13)	GD	-	7	-	1/fs		
Digital Filter + SCF								
Frequency Response: 0 ~ 20.0kH	łz		-0.2	-	+0.2	dB		

MINIMUM DELAY FILTER CHARACTERISTICS (fs = 96kHz)

(Ta=25°C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Double Speed Mode; DEM=OFF; SLOW bit = "0", SD bit="1")

Parameter	Symbol	min	typ	max	Unit			
Digital Filter								
Passband (Note 14)	±0.01dB	PB	0	-	43.5	kHz		
Frequency Response	±0.06dB		0	-	43.5	kHz		
	-6.0dB		-	48.0	-	kHz		
Stopband	(Note 14)	SB	52.5	-	-	kHz		
Passband Ripple		PR	-0.0052	ı	+0.0006	dB		
Stopband Attenuation		SA	70	1	-	dB		
Group Delay (Note 13)		GD	-	7	-	1/fs		
Digital Filter + SCF								
Frequency Response: 0 ~ 40.0kH	[z	•	-0.3	-	+0.3	dB		

MINIMUM DELAY FILTER CHARACTERISTICS (fs = 192kHz)

 $(Ta=25^{\circ}C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V; Quad Speed Mode; DEM=OFF; SLOW bit = "0", SD bit="1")$

Parameter		Symbol	min	typ	max	Unit		
Digital Filter								
Passband (Note 14)	±0.01dB	PB	0	-	87.0	kHz		
Frequency Response	±0.06dB		0	-	87.0	kHz		
	-6.0dB		-	96.0	-	kHz		
Stopband	(Note 14)	SB	105	-	-	kHz		
Passband Ripple		PR	-0.0052	-	+0.0006	dB		
Stopband Attenuation		SA	70	-	-	dB		
Group Delay	(Note 13)	GD	-	7	-	1/fs		
Digital Filter + SCF								
Frequency Response: 0 ~ 80.0kH	Iz		-1	-	+0.1	dB		

DC CHARACTERISTICS

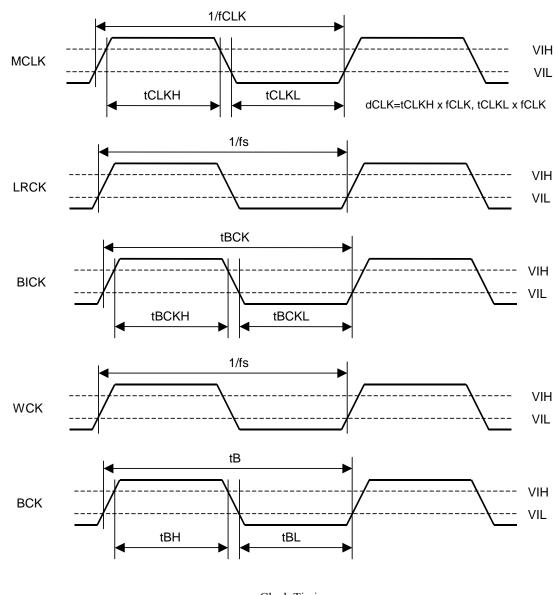
(Ta=25°C; AVDD=VDDL/R=4.75 ~ 5.25V, DVDD=4.75 ~ 5.25V)

Parameter		Symbol	min	typ	max	Unit
High-Level Input Voltage		VIH	2.2	-	-	V
Low-Level Input Voltage		VIL	-	-	0.8	V
High-Level Output Voltage	(Iout=-100μA)	VOH	DVDD-0.5	-	-	V
Low-Level Output Voltage	$(Iout=100\mu A)$	VOL	-	-	0.5	V
Input Leakage Current	(Note 15)	Iin	-	-	±10	μA

Note 15. The TEST1/CAD0 pin is an internal pull-down pin, and the P/S pin is an internal pull-up pin, nominally 100kΩ. Therefore TEST1/CAD0 pin and P/S pin are not included.

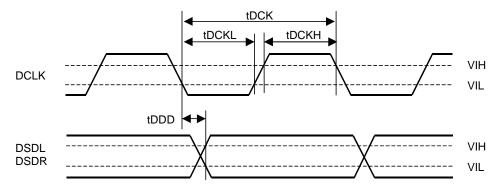
SWITCHING CHARACTERISTICS

 $(Ta=25^{\circ}C; AVDD=VDDL/R=4.75 \sim 5.25V, DVDD=4.75 \sim 5.25V)$

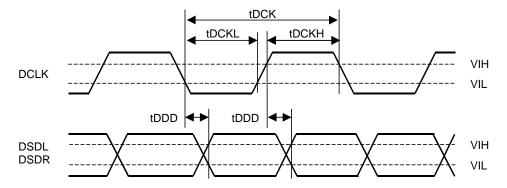

Parameter		Symbol	min	typ	max	Unit
Master Clock Timing						
Frequency		fCLK	7.7		41.472	MHz
Duty Cycle		dCLK	40		60	%
LRCK Frequency	(Note 16)		-			
1152fs, 512fs or 768fs	(5,000 50)	fsn	30		54	kHz
256fs or 384fs		fsd	54		108	kHz
128fs or 192fs		fsq	108		216	kHz
Duty Cycle		Duty	45		55	%
PCM Audio Interface Timing						
BICK Period						
1152fs, 512fs or 768fs		tBCK	1/128fsn			ns
256fs or 384fs		tBCK	1/64fsd			ns
128fs or 192fs		tBCK	1/64fsq			ns
BICK Pulse Width Low		tBCKL	30			ns
BICK Pulse Width High		tBCKH	30			ns
BICK "↑" to LRCK Edge	(Note 17)	tBLR	20			ns
LRCK Edge to BICK "↑"	(Note 17)	tLRB	20			ns
SDATA Hold Time		tSDH	20			ns
SDATA Setup Time		tSDS	20			ns
External Digital Filter Mode			_			
BICK Period		tB	27			ns
BCK Pulse Width Low		tBL	10			ns
BCK Pulse Width High		tBH	10			ns
BCK "↑" to WCK Edge		tBW	5			ns
WCK Edge to BCK "↑"		tWB	5			ns
WCK Pulse Width Low		tWCK	54			ns
WCK Pulse Width High		tWCH	54			ns
DATA Hold Time		tDH	5			ns
DATA Setup Time		tDS	5			ns
*						
DSD Audio Interface Timing DCLK Period		tDCK		1/64fs		na
DCLK Period DCLK Pulse Width Low		tDCKL	160	1/0418		ns
		tDCKL	160			ns
DCLK Pulse Width High	(Note 10)				20	ns
DCLK Edge to DSDL/R	(Note 18)	tDDD	-20		20	ns
Control Interface Timing		, CCT	200			
CCLK Period		tCCK	200			ns
CCLK Pulse Width Low		tCCKL	80			ns
Pulse Width High		tCCKH	80			ns
CDTI Setup Time		tCDS	50			ns
CDTI Hold Time		tCDH	50			ns
CSN High Time		tCSW	150			ns
CSN "↓" to CCLK "↑"		tCSS	50			ns
CCLK "↑" to CSN "↑"		tCSH	50			ns
Reset Timing						
PDN Pulse Width	(Note 19)	tPD	150			ns

Note 16. When the 1152fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK4480 should be reset by the PDN pin or RSTN bit.

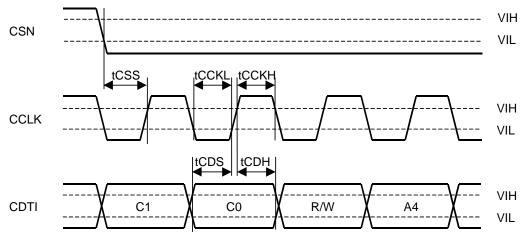

- Note 17. BICK rising edge must not occur at the same time as LRCK edge.
- Note 18. DSD data transmitting device must meet this time.
- Note 19. The AK4480 can be reset by bringing the PDN pin "L" to "H" upon power-up.

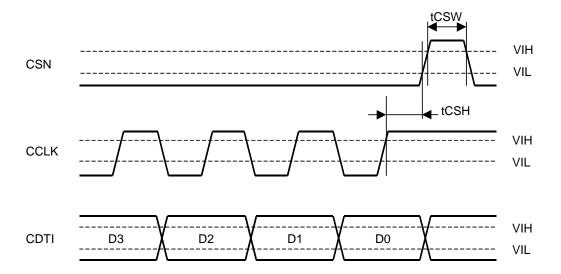

■ Timing Diagram

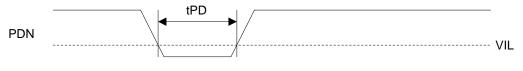
Downloaded from Elcodis.com electronic components distributor

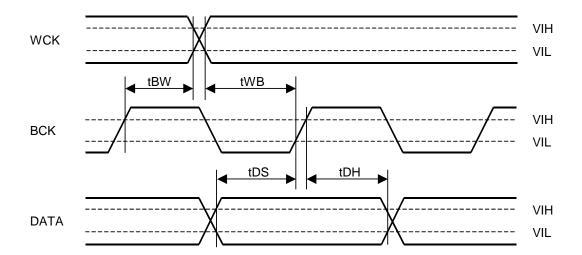


Clock Timing




Audio Serial Interface Timing (DSD Normal Mode, DCKB bit = "0")


Audio Serial Interface Timing (DSD Phase Modulation Mode, DCKB bit = "0")


WRITE Command Input Timing

WRITE Data Input Timing

Power Down & Reset Timing

External Digital Filter I/F mode

OPERATION OVERVIEW

■ D/A Conversion Mode

In serial mode, the AK4480 can covert both PCM and DSD data. The D/P bit controls PCM/DSD mode. When DSD mode, DSD data can be input from DCLK, DSDL and DSDR pins. When PCM mode, PCM data can be input from BICK, LRCK and SDATA pins. When PCM/DSD mode is changed by D/P bit, the AK4480 should be reset by RSTN bit. It takes about $2/\text{fs} \sim 3/\text{fs}$ to change the mode. In parallel mode, the AK4480 can only convert PCM data.

D/P bit	Interface
0	PCM
1	DSD

Table 1. PCM/DSD Mode Control

When DP bit= "0", an internal digital filter or external digital filter can be selected. When using an external digital filter (EX DF I/F mode), data is input to each MCLK, BCK, WCK, DINL and DINR pin. EXD bit controls the modes. When switching internal and external digital filters, the AK4480 must be reset by RSTN bit. A Digital filter switching takes 2~3k/fs.

Ex DF bit	Interface
0	PCM
1	EX DF I/F

Table 2. Digital Filter Control (DP bit = "0")

■ System Clock

[1] PCM Mode

The external clocks, which are required to operate the AK4480, are MCLK, BICK and LRCK. MCLK should be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation filter and the delta-sigma modulator. There are two modes for setting MCLK frequency, Manual Setting Mode and Auto Setting Mode. In auto setting mode, sampling speed and MCLK frequency are detected automatically and then the initial master clock is set to the appropriate frequency (Table 3). When external clocks are changed, the AK4480 should be reset by the PDN pin or RSTN bit.

The AK4480 is automatically placed in power saving mode when MCLK or LRCK is stopped during normal operation mode, and the analog output goes to AVDD/2 (typ). When MCLK and LRCK are input again, the AK4480 is powered up. After exiting reset following power-up, the AK4480 is not fully operational until MCLK and LRCK are input.

The MCLK frequency corresponding to each sampling speed should be provided (Table 3).

- (1) Parallel Mode (P/S pin = "H")
- 1. Manual Setting Mode (ACKS pin = "L")

The MCLK frequency corresponding to each sampling speed should be provided (Table 3). DFS1 bit is fixed to "0". Quad speed mode is not supported in this mode.

LRCK	MCLK (MHz)							BICK
fs	128fs	192fs	256fs	384fs	512fs	768fs	1152fs	64fs
32.0kHz	N/A	N/A	8.1920	12.2880	16.3840	24.5760	36.8640	2.0480MHz
44.1kHz	N/A	N/A	11.2896	16.9344	22.5792	33.8688	N/A	2.8224MHz
48.0kHz	N/A	N/A	12.2880	18.4320	24.5760	36.8640	N/A	3.0720MHz
88.2kHz	11.2896	16.9344	22.5792	33.8688	N/A	N/A	N/A	5.6448MHz
96.0kHz	12.2880	18.4320	24.5760	36.8640	N/A	N/A	N/A	6.1440MHz

Table 3. System Clock Example (Manual Setting Mode @Parallel Mode)(N/A: Not available)

 $32kHz \sim 96kHz$ sampling rates are supported (Table 4). However, when the sampling rate is $32kHz \sim 48kHz$, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.

ACKS pin	MCLK	DR,S/N
L	256fs/384fs/512fs/768fs	114dB
Н	256fs/384fs	111dB
Н	512fs/768fs	114dB

Table 4. Relationship between MCLK Frequency and DR, S/N (fs = 44.1kHz)

2. Auto Setting Mode (ACKS pin = "H")

MCLK frequency and the sampling speed are detected automatically (Table 5). MCLK with appropriate frequency should be input externally for each speed (Table 6).

MC	LK	Sampling Speed	
115	52fs	Normal (fs≤32kHz)	
512fs/256fs	768fs/384fs	Normal	
256fs	384fs	Double	
128fs	192fs	Quad	

Table 5. Sampling Speed (Auto Setting Mode @Parallel Mode)

LRCK		MCLK (MHz)							
fs	128fs	192fs	256fs	384fs	512fs	768fs	1152fs	Speed	
32.0kHz	N/A	N/A	8.1920	12.2880	16.3840	24.5760	36.8640		
44.1kHz	N/A	N/A	11.2896	16.9344	22.5792	33.8688	N/A	Normal	
48.0kHz	N/A	N/A	12.2880	18.4320	24.5760	36.8640	N/A		
88.2kHz	N/A	N/A	22.5792	33.8688	N/A	N/A	N/A	Double	
96.0kHz	N/A	N/A	24.5760	36.8640	N/A	N/A	N/A	Double	
176.4kHz	22.5792	33.8688	N/A	N/A	N/A	N/A	N/A	Ouad	
192.0kHz	24.5760	36.8640	N/A	N/A	N/A	N/A	N/A	Quad	

Table 6. System Clock Example (Auto Setting Mode @Parallel Mode) (N/A: Not available)

MCLK= 256fs/384fs supports sampling rate of 32kHz \sim 96kHz (Table 7). However, when the sampling rate is 32kHz \sim 48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.

ACKS pin	MCLK	DR,S/N
L	256fs/384fs/512fs/768fs	114dB
Н	256fs/384fs	111dB
Н	512fs/768fs	114dB

Table 7. Relationship between MCLK Frequency and DR, S/N (fs = 44.1kHz)

- (2) Serial Mode (P/S pin = "L")
- 1. Manual Setting Mode (ACKS bit = "0")

MCLK frequency is detected automatically and the sampling speed is set by DFS1-0 bits (Table 8). The MCLK frequency corresponding to each sampling speed should be provided (Table 9). The AK4480 is set to Manual Setting Mode at power-up (PDN pin = "L" \rightarrow "H"). When DFS1-0 bits are changed, the AK4480 should be reset by RSTN bit.

DFS1 bit	DFS0 bit	Sampling I		
0	0	Normal Speed Mode	30kHz ~ 54kHz	(default)
0	1	Double Speed Mode	54kHz ~ 108kHz	
1	0	Quad Speed Mode	120kHz ~ 216kHz	

Table 8. Sampling Speed (Manual Setting Mode @Serial Mode)

LRCK		MCLK (MHz)								
fs	128fs	192fs	256fs	384fs	512fs	768fs	1152fs	64fs		
32.0kHz	N/A	N/A	8.1920	12.2880	16.3840	24.5760	36.8640	2.0480MHz		
44.1kHz	N/A	N/A	11.2896	16.9344	22.5792	33.8688	N/A	2.8224MHz		
48.0kHz	N/A	N/A	12.2880	18.4320	24.5760	36.8640	N/A	3.0720MHz		
88.2kHz	11.2896	16.9344	22.5792	33.8688	N/A	N/A	N/A	5.6448MHz		
96.0kHz	12.2880	18.4320	24.5760	36.8640	N/A	N/A	N/A	6.1440MHz		
176.4kHz	22.5792	33.8688	N/A	N/A	N/A	N/A	N/A	11.2896MHz		
192.0kHz	24.5760	36.8640	N/A	N/A	N/A	N/A	N/A	12.2880MHz		

Table 9. System Clock Example (Manual Setting Mode @Serial Mode)

2. Auto Setting Mode (ACKS bit = "1")

MCLK frequency and the sampling speed are detected automatically (Table 10) and DFS1-0 bits are ignored. The MCLK frequency corresponding to each sampling speed should be provided (Table 11).

MC	CLK	Sampling Speed
115	52fs	Normal (fs≤32kHz)
512fs/256fs	768fs/384fs	Normal
256fs	384fs	Double
128fs	192fs	Quad

Table 10. Sampling Speed (Auto Setting Mode @Serial Mode)

LRCK	MCLK (MHz)							
fs	128fs	192fs	256fs	384fs	512fs	768fs	1152fs	Speed
32.0kHz	N/A	N/A	8.1920	12.2880	16.3840	24.5760	36.8640	
44.1kHz	N/A	N/A	11.2896	16.9344	22.5792	33.8688	N/A	Normal
48.0kHz	N/A	N/A	12.2880	18.4320	24.5760	36.8640	N/A	
88.2kHz	N/A	N/A	22.5792	33.8688	N/A	N/A	N/A	Double
96.0kHz	N/A	N/A	24.5760	36.8640	N/A	N/A	N/A	Double
176.4kHz	22.5792	33.8688	N/A	N/A	N/A	N/A	N/A	Ouad
192.0kHz	24.5760	36.8640	N/A	N/A	N/A	N/A	N/A	Quad

Table 11. System Clock Example (Auto Setting Mode @Serial Mode)

MCLK= 256fs/384fs supports sampling rate of $32kHz \sim 96kHz$ (Table 12). However, when the sampling rate is $32kHz \sim 48kHz$, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.

ACKS bit	MCLK	DR,S/N
0	256fs/384fs/512fs/768fs	114dB
1	256fs/384fs	111dB
1	512fs/768fs	114dB

Table 12. Relationship between MCLK Frequency and DR, S/N (fs = 44.1kHz)

[2] DSD Mode

The external clocks, which are required to operate the AK4480, are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency of MCLK is set by DCKS bit.

The AK4480 is automatically placed in reset state when MCLK is stopped during a normal operation, and the analog output becomes AVDD/2 (typ).

DCKS bit	MCLK Frequency	DCLK Frequency	
0	512fs	64fs	(default)
1	768fs	64fs	

Table 13. System Clock (DSD Mode)

■ Audio Interface Format

[1] PCM Mode

Data is shifted in via the SDATA pin using BICK and LRCK inputs. Eight data formats are supported and selected by the DIF2-0 pins (Parallel control mode) or DIF2-0 bits (Serial control mode) as shown in Table 14. In all formats the serial data is MSB-first, 2's compliment format and is latched on the rising edge of BICK. Mode 2 can be used for 20-bit and 16-bit MSB justified formats by zeroing the unused LSBs.

Mode	DIF2	DIF1	DIF0	Input Format	BICK	Figure	
0	0	0	0	16bit LSB justified	≥ 32fs	Figure 1	
1	0	0	1	20bit LSB justified	≥ 48fs	Figure 2	
2	0	1	0	24bit MSB justified	≥ 48fs	Figure 3	(default)
3	0	1	1	24bit I ² S Compatible	≥ 48fs	Figure 4	
4	1	0	0	24bit LSB justified	≥ 48fs	Figure 2	
5	1	0	1	32bit LSB justified	≥ 64fs	Figure 5	
6	1	1	0	32bit MSB justified	≥64fs	Figure 6	
7	1	1	1	32bit I ² S Compatible	≥ 64fs	Figure 7	

Table 14. Audio Interface Format



Figure 1. Mode 0 Timing

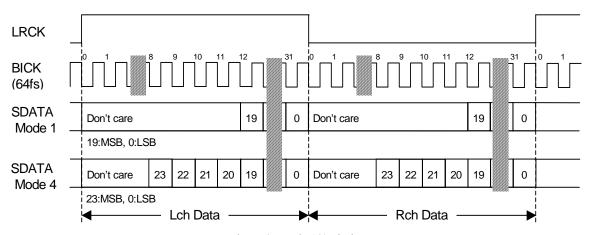


Figure 2. Mode 1/4 Timing

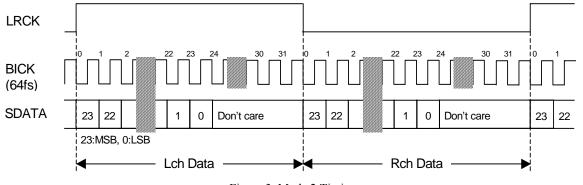


Figure 3. Mode 2 Timing

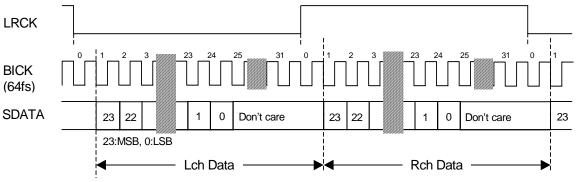


Figure 4. Mode 3 Timing

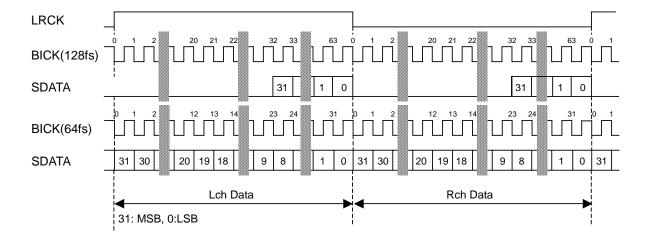


Figure 5. Mode 5 Timing

Downloaded from Elcodis.com electronic components distributor

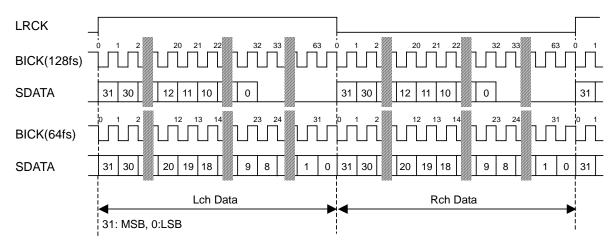


Figure 6. Mode 6 Timing

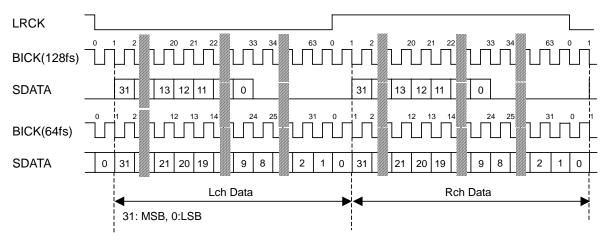


Figure 7. Mode 7 Timing

[2] DSD Mode

In case of DSD mode, DIF2-0 pins and DIF2-0 bits are ignored. The frequency of DCLK is fixed to 64fs. DCKB bit can invert the polarity of DCLK.

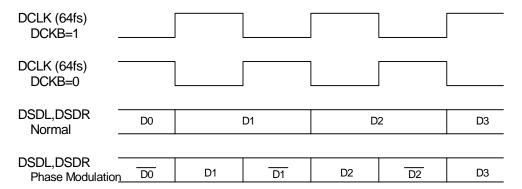


Figure 8. DSD Mode Timing

[3] External Digital Filter Mode (EX DF I/F Mode)

DW indicates the number of BCK in one WCK cycle. The audio data is input by MCLK, BCK and WCK from the DINL and DINR pins. Three formats are available (Table 16) by DIF2-0 bits setting. The data is latched on the rising edge of BCK. The BCK and MCLK clocks must be the same frequency and must not burst. BCK and MCLK frequencies for each sampling speed are shown in Table 15.

(default)

Sampling	MCLK&BCK [MHz]							ECS
Speed[kHz]	128fs	192fs	256fs	384fs	512fs	768fs		
44.1(30~54)	N/A	N/A	N/A	N/A	22.5792	33.8688	16fs	0
44.1(30~34)					32	48	DW	U
44.1(30~54)	N/A	N/A	11.2896	16.9344	N/A	33.8688	8fs	1
44.1(30~34)			32	48		96	DW	1
96(54~108)	N/A	N/A	24.576	36.864	N/A	N/A	8fs	0
90(34~108)			32	48			DW	U
96(54~108)	12.288	18.432	N/A	36.864	N/A	N/A	4fs	1
90(34~108)	32	48		96			DW	1
192(108~216)	24.576	36.864	N/A	N/A	N/A	N/A	4fs	0
192(106~210)	32	48					DW	U
192(108~216)	N/A	36.864	N/A	N/A	N/A	N/A	2fs	1
192(100~210)		96					DW	1

Table 15. System Clock Example (EX DF I/F mode) (N/A: Not available)

Mode	DIF2	DIF1	DIF0	Input Format	
0	0	0	0	16bit LSB justified	
1	0	0	1	N/A	
2	0	1	0	N/A	
3	0	1	1	N/A	
4	1	0	0	24bit LSB justified	
5	1	0	1	32bit LSB justified	(default)
6	1	1	0	N/A	
7	1	1	1	N/A	

Table 16. Audio Interface Format (EX DF I/F mode) (N/A: Not available)

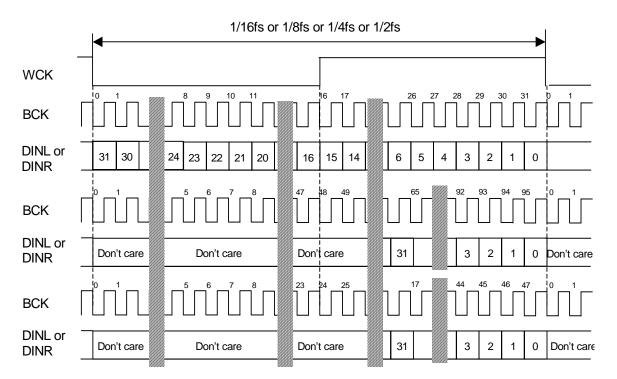


Figure 9. EX DF I/F Mode Timing

■ D/A Conversion Mode Switching Timing

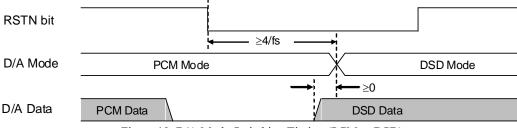


Figure 10. D/A Mode Switching Timing (PCM to DSD)

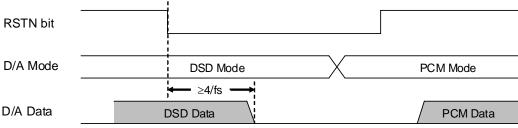


Figure 11. D/A Mode Switching Timing (DSD to PCM)

Note. The signal range is identified as $25\% \sim 75\%$ duty ratios in DSD mode. DSD signal must not go beyond this duty range at the SACD format book (Scarlet Book).

■ De-emphasis Filter

A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = $50/15\mu$ s). It is enabled and disabled with DEM1-0 pins or DEM1-0 bits. In case of 256fs/384fs and 128fs/192fs, the digital de-emphasis filter is always off. When DSD mode, DEM1-0 bits are ignored. The setting value is held even if PCM mode and DSD mode are switched.

DEM1	DEM0	Mode	
0	0	44.1kHz	
0	1	OFF	(default)
1	0	48kHz	
1	1	32kHz	

Table 17. De-emphasis Control

■ Output Volume (PCM and DSD)

The AK4480 includes channel independent digital output volume control (ATT) with 255 levels at linear step including MUTE. This volume control is in front of the DAC and it can attenuate the input data from 0dB to –48dB and mute. When changing output levels, transitions are executed in soft change; thus no switching noise occurs during these transitions.

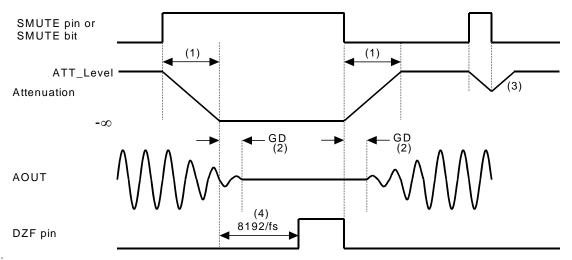
Sampling Speed	Transition Time						
Sampling Speed	1 Level	255 to 0					
Normal Speed Mode	4LRCK	1020LRCK					
Double Speed Mode	8LRCK	2040LRCK					
Quad Speed Mode	16LRCK	4080LRCK					
DSD Mode	4LRCK	1020LRCK					

Table 18. ATT Transition Time

■ Zero Detection (PCM and DSD)

The AK4480 has channel-independent zero detect function. When the input data at each channel is continuously zeros for 8192 LRCK cycles, the DZF pin of each channel goes to "H". The DZF pin of each channel immediately returns to "L" if the input data of each channel is not zero after becoming "H". When the RSTN bit is "0", the DZF pins of both channels become "H". The DZF pins of both channels become "L" in $4 \sim 5/\text{fs}$ after RSTN bit returns to "1". If DZFM bit is set to "1", the DZF pins of both channels go to "H" only when the input data for both channels are continuously zeros for 8192 LRCK cycles. The zero detect function can be disabled by setting the DZFE bit. In this case, DZF pins of both channels are always "L". The DZFB bit can invert the polarity of the DZF pin.

■ Mono Output (PSM, DSD, Ex DF I/F)


The AK4480 can select input/output for both output channels by setting the MONO bit and SELLR bit. This function is available for any audio format.

MONO bit	SELLR bit	Lch Out	Rch Out
0	0	Lch In	Rch In
0	1	Rch In	Lch In
1	0	Lch In	Lch In
1	1	Rch In	Rch In

Table 19. MONO Mode Output Select

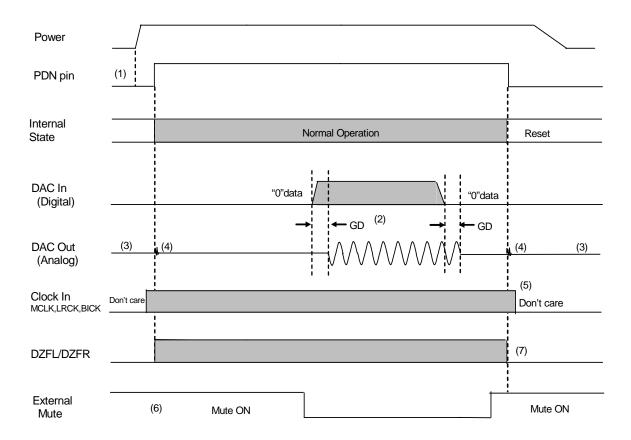
■ Soft Mute Operation (PCM and DSD)

The soft mute operation is performed at digital domain. When the SMUTE pin goes to "H" or the SMUTE bit set to "1", the output signal is attenuated by $-\infty$ during ATT_DATA × ATT transition time from the current ATT level. When the SMUTE pin is returned to "L" or the SMUTE bit is returned to "0", the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA × ATT transition time. If the soft mute is cancelled before attenuating $-\infty$ after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.

Notes:

- (1) ATT_DATA × ATT transition time. For example, this time is 1020LRCK cycles (1020/fs) at ATT_DATA=255 in Normal Speed Mode.
- (2) The analog output corresponding to the digital input has group delay (GD).
- (3) If the soft mute is cancelled before attenuating $-\infty$ after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle.
- (4) When the input data for each channel is continuously zeros for 8192 LRCK cycles, the DZF pin for each channel goes to "H". The DZF pin immediately returns to "L" if input data are not zero.

Figure 12. Soft Mute Function


■ System Reset

The AK4480 should be reset once by bringing the PDN pin = "L" upon power-up. The analog block exits power-down mode by MCLK input and the digital block exits power-down mode after the internal counter counts MCLK for 4/fs.

■ Power ON/OFF timing

The AK4480 is placed in power-down mode by bringing the PDN pin "L" and the registers are initialized. The analog outputs are floating (Hi-Z). As some click noise occurs at the edge of the PDN signal, the analog output should be muted externally if the click noise influences system application.

The AK4480 can be reset by setting RSTN bit to "0". In this case, the registers are not initialized and the corresponding analog outputs become AVDD/2 (typ). As some click noise occurs at the edge of RSTN signal, the analog output should be muted externally if the click noise influences system application.

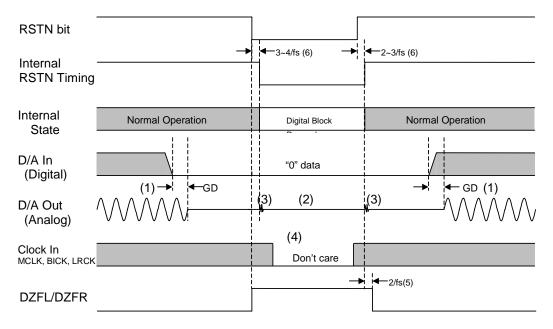
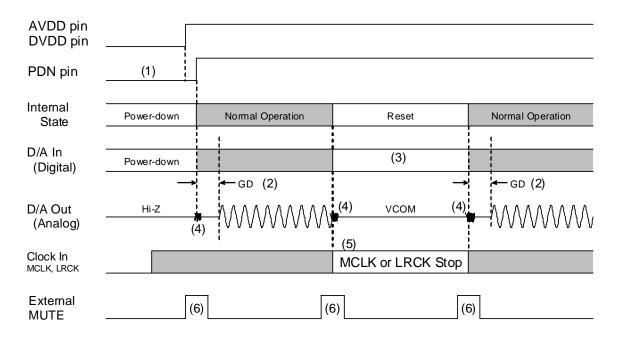

- (1) After AVDD and DVDD are powered-up, the PDN pin should be "L" for 150ns.
- (2) The analog output corresponding to digital input has group delay (GD).
- (3) Analog outputs are floating (Hi-Z) in power-down mode.
- (4) Click noise occurs at the edge of PDN signal. This noise is output even if "0" data is input.
- (5) MCLK, BICK and LRCK clocks can be stopped in power-down mode (PDN pin="L").
- (6) Mute the analog output externally if click noise (3) adversely affect system performance. The timing example is shown in this figure.
- (7) DZFL/R pins are "L" in the power-down mode (PDN pin = "L"). (DZFB bit = "0")

Figure 13. Power-down/up Sequence Example

■ Reset Function

(1) RESET by RSTN bit = "0"

When RSTN bit = "0", the AK4480's digital section is powered down but the internal register values are not initialized. The analog outputs become VCML/R voltage and DZF pins of both channels become "H". Figure 14 shows the example of reset by RSTN bit.



- (1) The analog output corresponding to digital input has group delay (GD).
- (2) The analog outputs are VCOM voltage when RSTN bit = "0".
- (3) Click noise occurs at the edges ("↑ ↓") of the internal timing of RSTN bit. This noise is output even if "0" data is input.
- (4) The DZF pins become "H" when the RSTN bit is set to "0", and return to "L" in 2/fs after the RSTN bit is changed to "1".
- (5) There is a delay, $3 \sim 4/\text{fs}$ from RSTN bit "0" to the internal RSTN bit "0", and $2 \sim 3/\text{fs}$ from RSTN bit "1" to the internal RSTN bit "1".
- (6) Mute the analog output externally if click noise (3) or Hi-z output (2) influences system applications. The timing example is shown in this figure.

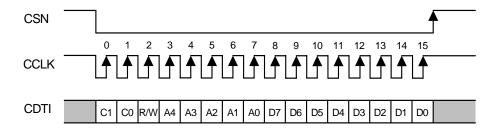
Figure 14. Reset Sequence Example 1

(2) RESET by MCLK or LRCK/WCK stop

The AK4480 is automatically placed in reset state when MCLK or LRCK is stopped during PCM mode (RSTN pin ="H"), and the analog outputs become AVDD/2 (typ). When MCLK and LRCK are input again, the AK4480 exit reset state and starts the operation. Zero detect function is not available when MCLK or LRCK is stopped. The AK4480 is set to reset state automatically and the analog outputs become Hi-Z when MCLK is stopped in DSD mode, and when MCLK or WCK is stopped in external digital filter mode.

- (1) After AVDD and DVDD are powered-up, the PDN pin should be "L" for 150ns.
- (2) The analog output corresponding to digital input has group delay (GD).
- (3) The digital data can be stopped. Click noise after MCLK or LRCK/WCK is input again can be reduced by inputting "0" data during this period.
- (4) Click noise occurs within $3 \sim 4$ LRCK cycles from rising edge (\uparrow) of PDN signal or MCLK inputs. This noise is output even if "0" data is input.
- (5) MCLK, BICK and LRCK/WCK clocks can be stopped in reset mode (MCLK or LRCK/WCK stopped).
- (6) Mute the analog output externally if click noise (4) influences system applications. The timing example is shown in this figure.

Figure 15. Reset sequence example 2


■ Register Control Interface

Functions of the AK4480 can be controlled in parallel control mode (by pins) and serial control mode (by registers). In parallel control mode, the register setting is ignored, and in serial control mode the pin settings are ignored. When the state of the PSN pin is changed, the AK4480 should be reset by the PDN pin. The serial control interface is enabled by the PSN pin = "L". Internal registers may be written to through3-wire μP interface pins: CSN, CCLK and CDTI. The data on this interface consists of Chip address (2-bits, C1/0), Read/Write (1-bit; fixed to "1"), Register address (MSB first, 5-bits) and Control data (MSB first, 8-bits). The AK4480 latches the data on the rising edge of CCLK, so data should be clocked in on the falling edge. The writing of data is valid when CSN "↑". The clock speed of CCLK is 5MHz (max).

Function	Parallel Control Mode	Serial Control Mode
Audio Format	Y	Y
Auto Setting Mode	-	Y
De-emphasis	Y	Y
SMUTE	Y	Y
DSD Mode	-	Y
EX DF I/F	-	Y
Zero Detection	-	Y
Sharp Roll Off Filter	Y	Y
Slow Roll Off Filter	-	Y
Minimum delay Filter	Y	Y
Digital Attenuator	-	Y

Table 20. Function List (Y: Available, -: Not available)

Setting the PDN pin to "L" resets the registers to their default values. In serial control mode, the internal timing circuit is reset by the RSTN bit, but the registers are not initialized.

C1-C0: Chip Address (C1 bit =CAD1 pin, C0 bit =CAD0 pin)

R/W: READ/WRITE (Fixed to "1", Write only)

A4-A0: Register Address D7-D0: Control Data

Figure 16. Control I/F Timing

- * The AK4480 does not support the read command.
- * When the AK4480 is in power down mode (PDN pin = "L") or the MCLK is not provided, a writing into the control registers is prohibited.
- * The control data can not be written when the CCLK rising edge is 15 times and less or 17 times and more during CSN is "L".

Function List

Function	Default	Address	Bit	PCM	DSD	Ex DF I/F
Attenuation Level	0dB	03H 04H	ATT7-0	Y	Y	-
External Digital Filter I/F Mode	Disable	00H	EXDF	Y	-	Y
Ex DF I/F mode clock setting	16fs(fs=44.1kHz)	00H	ESC	-	-	Y
Audio Data Interface Modes	24bit MSB justified	00H	DIF2-0	Y	-	Y
Data Zero Detect Enable	Disable	01H	DZFE	Y	Y	-
Data Zero Detect Mode	Separated	01H	DZFM	Y	Y	
Minimum delay Filter Enable	Sharp roll-off filter	01H	SD	Y	-	-
De-emphasis Response	OFF	01H	DEM1-0	Y	-	-
Soft Mute Enable	Normal Operation	01H	SMUTE	Y	Y	-
DSD/PCM Mode Select	PCM mode	02H	DP	Y	Y	-
Master Clock Frequency Select at DSD mode	512fs	02H	DCKS	-	Y	-
MONO mode Stereo mode select	Stereo	02H	MONO	Y	Y	Y
Inverting Enable of DZF	"H" active	02H	DZFB	Y	Y	-
The data selection of L channel and R channel	R channel	02H	SELLR	Y	Y	Y

(Y: Available, -: Not available)

Table 21. Function List

■ Register Map

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Control 1	ACKS	EXDF	ECS	0	DIF2	DIF1	DIF0	RSTN
01H	Control 2	DZFE	DZFM	SD	DFS1	DFS0	DEM1	DEM0	SMUTE
02H	Control 3	DP	0	DCKS	DCKB	MONO	DZFB	SELLR	SLOW
03H	Lch ATT	ATT7	ATT6	ATT5	ATT4	ATT3	ATT2	ATT1	ATT0
04H	Rch ATT	ATT7	ATT6	ATT5	ATT4	ATT3	ATT2	ATT1	ATT0
05H	Control 4	INVL	INVR	0	0	0	0	0	0

Notes:

Data must not be written into addresses from 06H to 1FH.

When the PDN pin goes to "L", the registers are initialized to their default values.

When RSTN bit is set to "0", only the internal timing is reset, and the registers are not initialized to their default values.

When the state of the PSN pin is changed, the AK4480 should be reset by the PDN pin.

■ Register Definitions

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Control 1	ACKS	EXDF	ECS	0	DIF2	DIF1	DIF0	RSTN
	Default	0	0	0	0	0	1	0	1

RSTN: Internal Timing Reset

0: Reset. All registers are not initialized.

1: Normal Operation (default)

When internal clocks are changed, the AK4480 should be reset by the PDN pin or RSTN bit.

DIF2-0: Audio Data Interface Modes (Table 14)

Initial value is "010" (Mode 2: 24-bit MSB justified).

ECS: Ex DF I/F mode clock setting (Table 15)

0: BCK 32fs setting. MCLK, BCK are 512fs, 256fs and 128fs (default)

1: No BCK 32fs setting. MCLK, BCK are 768fs, 384fs and 192fs.

EXDF: External Digital Filter I/F Mode (PCM only)

0: Disable: Internal Digital Filter mode (default)

1: Enable: External Digital Filter mode

ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM only)

0: Disable: Manual Setting Mode (default)

1: Enable: Auto Setting Mode

When ACKS bit is "1", sampling frequency and MCLK frequency is detected automatically.

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
01H Control 2	DZFE	DZFM	SD	DFS1	DFS0	DEM1	DEM0	SMUTE
Default	0	0	1	0	0	0	1	0

SMUTE: Soft Mute Enable

0: Normal Operation (default)1: DAC outputs soft-muted.

DEM1-0: De-emphasis Response (Table 17)

Initial value is "01" (OFF).

SD: Minimum delay Filter Enable

0: Sharp roll-off filter (default)

1: Minimum delay filter

SD	SLOW	Mode
0	0	Sharp roll-off filter
0	1	Slow roll-off filter
1	0	Minimum delay filter
1	1	Reserved

(default)

Table 22. Digital Filter setting

DFS1-0: Sampling Speed Control (Table 8)

The default is "00" (Normal Speed). A click noise occurs when switching DFS1-0 bits.

DZFM: Data Zero Detect Mode

0: Channel Separated Mode (default)

1: Channel ANDed Mode

If the DZFM bit is set to "1", the DZF pins of both channels become "H" only when the input data at both channels are continuously zeros for 8192 LRCK cycles.

DZFE: Data Zero Detect Enable

0: Disable (default)

1: Enable

Zero detect function can be disabled by DZFE bit "0". In this case, the DZF pins of both channels are always "L".

Downloaded from Elcodis.com electronic components distributor

Addr	Register Name	D7		D6	-	D5		D4	:	D3	:	D2		D1	D	0
02H	Control 3	DP	:	0	:	DCKS	:	DCKB	:	MONO	:	DZFB	;	SELLR	SLC)W
	Default	0	i	0	i	0	:	0	:	0	:	0	į	0	0)

SLOW: Slow Roll-off Filter Enable

0: (default)

1: Slow roll-off filter

SELLR: The data selection of L channel and R channel, when MONO mode

0: All channel output R channel data, when MONO mode. (default)

1: All channel output L channel data, when MONO mode.

In Mono mode, Rch's date is output to both channels by setting SELLR bit = "0", and Lch's data is output to both channels by setting SELLR bit = "1". In Stereo mode, the output data of L and R channels are switched their output ports by setting SELLR bit = "1". (Table 19)

DZFB: Inverting Enable of DZF

0: DZF pin goes "H" at Zero Detection (default)

1: DZF pin goes "L" at Zero Detection

DZFB setting is valid regardless of the DZFE bit setting.

MONO: MONO mode Stereo mode select

0: Stereo mode (default)

1: MONO mode

When MONO bit is "1", MONO mode is enabled.

DCKB: Polarity of DCLK (DSD Only)

0: DSD data is output from DCLK falling edge. (default)

1: DSD data is output from DCLK rising edge.

DCKS: Master Clock Frequency Select at DSD mode (DSD only)

0: 512fs (default)

1: 768fs

DP: DSD/PCM Mode Select

0: PCM Mode (default)

1: DSD Mode

When D/P bit is changed, the AK4480 should be reset by RSTN bit.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
03H	Lch ATT	ATT7	ATT6	ATT5	ATT4	ATT3	ATT2	ATT1	ATT0
04H	Rch ATT	ATT7	ATT6	ATT5	ATT4	ATT3	ATT2	ATT1	ATT0
	Default		1	1	1	1	1	1	1

ATT7-0: Attenuation Level

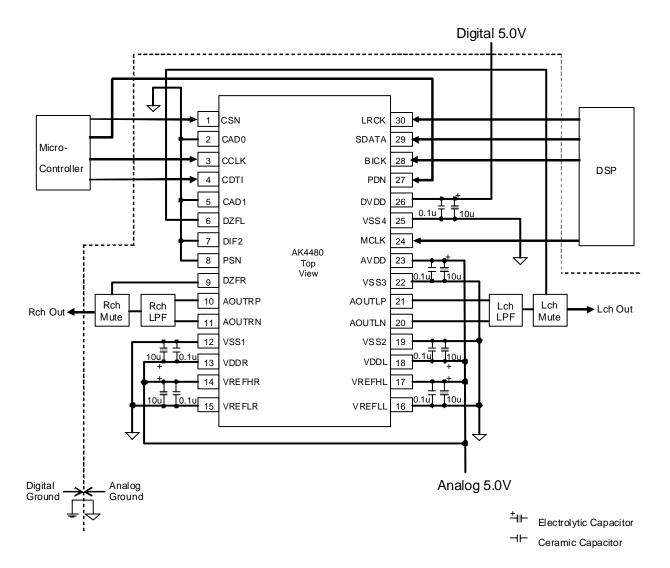
 $ATT = 20 \log_{10}(ATT_DATA / 255) [dB]$

FFH: 0dB (default)

00H: Mute

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
05H Control 4	INVL	INVR	0	0	0	0	0	0
Default	0	0	0	0	0	0	0	0

AOUTR Output Phase Invert 0: Disable (default) 1: Enable INVR:


AOUTL Output Phase Invert INVL:

0: Disable (default)

1: Enable

SYSTEM DESIGN

Figure 17 shows the system connection diagram. Figure 19, Figure 20 and Figure 21 show the analog output circuit examples. An evaluation board (AKD4480) demonstrates the optimum layout, power supply arrangements and measurement results.

- Power lines of AVDD and DVDD should be distributed separately from regulators with keeping low impedance.
- VSS1/2/3/4 must be connected to the same analog ground plane.
- When AOUT drives a capacitive load, some resistance should be added in series between AOUT and the capacitive load.
- All input pins except pull-down/pull-up pins should not be allowed to float.

Figure 17. Typical Connection Diagram (AVDD=5V, DVDD=5V, Serial Control Mode)

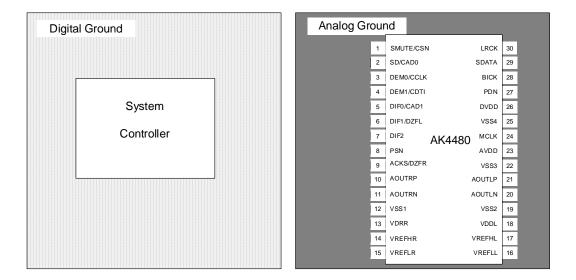


Figure 18. Ground Layout

1. Grounding and Power Supply Decoupling

To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD, VDDL/R and DVDD respectively. AVDD and VDDL/R are supplied from analog supply in system and DVDD is supplied from digital supply in system. Power lines of AVDD, VDDL/R and DVDD should be distributed separately from regulators with keeping low impedance. The power up sequence between AVDD, VDDL/R and DVDD is not critical. **VSS1-4 must be connected to the same analog ground plane.** Decoupling capacitors for high frequency should be placed as near as possible to the supply pin.

2. Voltage Reference

The differential voltage between VREFHL/R and VREFLL/R sets the analog output range. The VREFHL/R pin is normally connected to AVDD, and the VREFLL/R pin is normally connected to VSS1/2/3. VREFHL/R and VREFLL/R should be connected with a $0.1\mu F$ ceramic capacitor as near as possible to the pin to eliminate the effects of high frequency noise. No load current may be drawn from VCML/R pin. All signals, especially clocks, should be kept away from the VREFHL/R and VREFLL/R pins in order to avoid unwanted noise coupling into the AK4480.

3. Analog Outputs

The analog outputs are full differential outputs and 2.4Vpp (typ, VREFHL/R – VREFLL/R = 5V) centered around AVDD/2. The differential outputs are summed externally, $V_{AOUT} = (AOUT+) - (AOUT-)$ between AOUT+ and AOUT-. If the summing gain is 1, the output range is 5.6Vpp (typ, VREFHL/R – VREFLL/R = 5V). The bias voltage of the external summing circuit is supplied externally. The input data format is 2's complement. The output voltage (V_{AOUT}) is a positive full scale for 7FFFFFH (@24bit) and a negative full scale for 800000H (@24bit). The ideal V_{AOUT} is 0V for 000000H(@24bit).

The internal switched-capacitor filters attenuate the noise generated by the delta-sigma modulator beyond the audio passband. Figure 19 shows an example of external LPF circuit summing the differential outputs by an op-amp. Figure 20 shows an example of differential outputs and LPF circuit example by three op-amps.

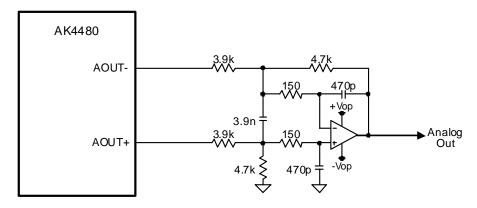


Figure 19. External LPF Circuit Example 1 for PCM (fc = 99.0kHz, Q=0.680)

Frequency Response	Gain
20kHz	-0.036dB
40kHz	-0.225dB
80kHz	-1.855dB

Table 23. Frequency Response of External LPF Circuit Example 1 for PCM

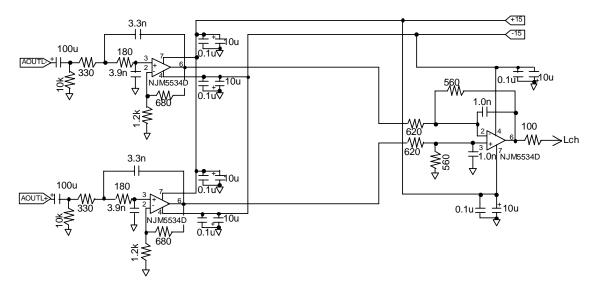


Figure 20. External LPF Circuit Example 2 for PCM

		1st Stage	2 nd Stage	Total
Cut-off Frequency		182kHz 284kHz		-
Q		0.637	-	-
Gain		+3.9dB	-0.88dB	+3.02dB
Frequency Response	20kHz	-0.025	-0.021	-0.046dB
	40kHz	-0.106	-0.085	-0.191dB
	80kHz	-0.517	-0.331	-0.848dB

Table 24. Frequency Response of External LPF Circuit Example 2 for PCM

It is recommended in SACD format book (the Scarlet Book) that the filter response at SACD playback is an analog low pass filter with a cut-off frequency of maximum 50kHz and a slope of minimum -30dB/Oct. The AK4480 can achieve this filter response by combination of the internal filter (Table 25) and an external filter (Figure 21).

Frequency	Gain
20kHz	-0.4dB
50kHz	-2.8dB
100kHz	-15.5dB

Table 25. Internal Filter Response at DSD Mode

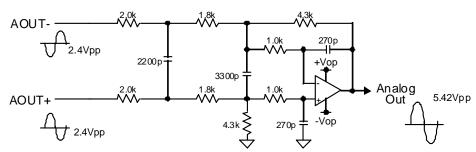
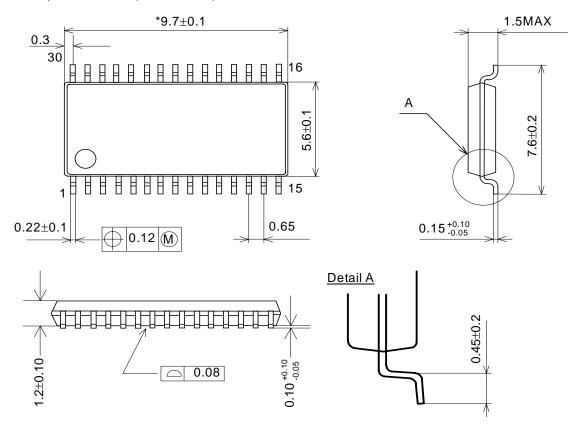


Figure 21. External 3rd Order LPF Circuit Example for DSD


Frequency	Gain
20kHz	-0.05dB
50kHz	-0.51dB
100kHz	-16.8dB

DC gain = 1.07dB

Table 26. 3rd Order LPF (Figure 21) Response

PACKAGE

30pin VSOP (Unit: mm)

NOTE: Dimension "*" does not include mold flash.

■ Material & Lead finish

Package molding compound: Epoxy, Halogen (bromine and chlorine) free

Lead frame material: Cu

Lead frame surface treatment: Solder (Pb free) plate

MARKING

- 1) Pin #1 indication
- 2) AKM Logo
- 3) Date Code: XXXXXXX(7 digits)
- 4) Marking Code: AK4480
- 5) Audio 4 pro Logo

REVISION HISTORY

Date (Y/M/D)	Revision	Reason	Page	Contents
10/01/28	00	First Edition		
10/02/17	01	Error	3, 4	Pin No.9 was changed.
		Correction		TST2/DZFR pin \rightarrow ACKS/DZFR pin
			17	OPERATION OVERVIEW
				■ System Clock/[1] PCM Mode
				(1) Parallel Mode, 1. Manual Setting Mode
				Descriptions about the DFS0 pin were deleted.
				Table 3 was deleted.
			18	Table 4 and descriptions were added.
				2. Auto Setting Mode
				Descriptions about the DFS0 pin were deleted.
			20	(2) Serial Mode, 2. Auto Setting Mode
				Table 12: ACKS pin \rightarrow ACKS bit
11/11/01	02	Error	36	■ Register Definitions
		Correction		The description of SELLR was changed.
12/01/12	03	Error	34	■ Register Map
		Correction		Write prohibited address: "05H to 1FH" \rightarrow "06H to 1FH"

Downloaded from Elcodis.com electronic components distributor

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.
 When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
 approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
 or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1)} in any safety, life support, or
 other hazard related device or system_{Note2)}, and AKM assumes no responsibility for such use, except for the use
 approved with the express written consent by Representative Director of AKM. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

MS1146-E-03 2012/01