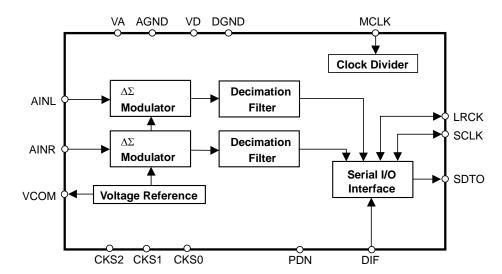


AK5357 24Bit 96kHz ΔΣ **ADC**

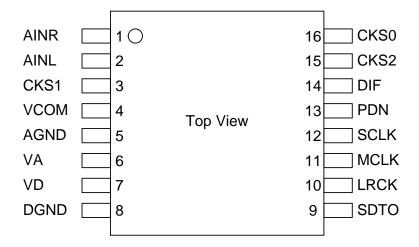
GENERAL DESCRIPTION


The AK5357 is a stereo A/D Converter with wide sampling rate of 4kHz \sim 96kHz and is suitable for multimedia audio system. The AK5357 achieves high accuracy and low cost by using Enhanced dual bit $\Delta\Sigma$ techniques. The AK5357 requires no external components because the analog inputs are single-ended. The audio interface has two formats (MSB justified, I²S) and can correspond to many systems like Karaoke, surround.

FEATURES

- \square Stereo $\Delta\Sigma$ ADC
- ☐ On-Chip Digital Anti-Alias Filtering
- ☐ Single-ended Input
- ☐ Digital HPF for DC-Offset cancel
- □ S/(N+D): 88dB@5V, 86dB@3V for 48kHz
 □ DR: 102dB@5V, 100dB@3V for 48kHz
 □ S/N: 102dB@5V, 100dB@3V for 48kHz
- ☐ Sampling Rate Ranging from 4kHz to 96kHz
- ☐ Master Clock:

256fs/384fs/512fs/768fs (4kHz ~ 48kHz) 256fs/384fs (4kHz ~ 96kHz)


- ☐ Input level: TTL/CMOS selectable
- ☐ Master / Slave Mode
- ☐ Audio Interface: 24bit MSB justified / I²S selectable
- ☐ Power Supply: 2.7 ~ 5.5V
- □ Ta = $-40 \sim 85^{\circ}$ C (VT), $-20 \sim 85^{\circ}$ C (ET)
- ☐ Small 16pin TSSOP Package
- ☐ AK5381 Pin-compatible

■ Ordering Guide

 $\begin{array}{lll} AK5357ET & -20 \sim +85^{\circ}C & 16pin \ TSSOP \ (0.65mm \ pitch) \\ AK5357VT & -40 \sim +85^{\circ}C & 16pin \ TSSOP \ (0.65mm \ pitch) \\ AKD5357 & Evaluation \ Board \ for \ AK5357 \end{array}$

■ Pin Layout

■ Compatibility with AK5353 and AK5381

	AK5353	AK5381	AK5357
S/(N+D)	/(N+D) 84dB		88dB
DR	96dB	106dB	102dB
Master Mode	Not Available	Available	Available
HPF OFF	Not Available	Available	Available
TTL Level Mode	4kHz to 96kHz	4kHz to 48kHz	4kHz to 96kHz
VIH@TTL Level Mode	2.2V	2.4V	2.2V
VA (Analog Supply)	2.7 to 5.5V@fs=48kHz 4.5 to 5.5V@fs=96kHz	4.5 to 5.5V@fs=48/96kHz	2.7 to 5.5V@fs=48/96kHz
VD (Digital Supply)	4.5 to 5.5V@fs=96kHz	3.0 to 5.5V@fs=96kHz	2.7 to 5.5V@fs=96kHz
Pin #3	Pin #3 VREF		CKS1
Pin #15	n #15 TTL		CKS2
Pin #16	TST	CKS0	CKS0

PIN / FUNCTION

No.	Pin Name	I/O	Function				
1	AINR	I	Rch Analog Input Pin				
2	AINL	I	Lch Analog Input Pin				
3	CKS1	I	Mode Select 1 Pin				
4	4 I VCOM I O I		Common Voltage Output Pin, VA/2 Bias voltage of ADC input.				
5	AGND	-	Analog Ground Pin				
6	VA	1	Analog Power Supply Pin, 2.7 ~ 5.5V				
7	VD	-	Digital Power Supply Pin, 2.7 ~ 5.5V				
8	DGND	1	Digital Ground Pin				
9	SDTO	0	Audio Serial Data Output Pin				
	5210	Ŭ	"L" Output at Power-down mode.				
10	LRCK	I/O	Output Channel Clock Pin				
		., 0	"L" Output in Master Mode at Power-down mode.				
11	MCLK	I	Master Clock Input Pin				
12	SCLK	I/O	Audio Serial Data Clock Pin				
12	BCLK	1/ ()	"L" Output in Master Mode at Power-down mode.				
13	PDN	I	Power Down Mode Pin				
13	13 PDN I		"H": Power up, "L": Power down				
14	DIF	I	Audio Interface Format Pin				
14	DII	1	"H": 24bit I ² S Compatible, "L": 24bit MSB justified				
15	CKS2	I	Mode Select 2 Pin				
16	CKS0	I	Mode Select 0 Pin				

Note: All digital input pins should not be left floating.

■ Handling of Unused Pin

The unused input pins should be processed appropriately as below.

Classification	Pin Name	Setting
Analog	AINL	This pin should be open.
Analog	AINR	This pin should be open.

	ABSC	LUTE MAXIM	UM RATIN	GS		
(AGND, DGND=0V	7; Note 1)					
Parameter			Symbol	min	max	Units
Power Supplies:	Analog		VA	-0.3	6.0	V
	Digital		VD	-0.3	6.0	V
	AGND – DGND (1	Note 1)	ΔGND	-	0.3	V
Input Current, Any	Pin Except Supplies		IIN	-	±10	mA
Analog Input Volta	ige (AINL, AINR, CKS1 j	pins)	VINA	-0.3	VA+0.3	V
Digital Input Voltag	ge (All digital input pins ex	(cept CKS1 pin)	VIND	-0.3	VD+0.3	V
Ambient Temperature (powered applied) AK5357ET			Ta	-20	85	°C
		AK5357VT	Ta	-40	85	°C
Storage Temperatu	re		Tstg	-65	150	°C

Note 1. All voltages with respect to ground.

Note 2. AGND and DGND must be connected to the same analog ground plane.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

	RECOMMENDED OPERATING CONDITIONS										
(AGND, DGND=0V; Note 1)											
Parameter	Parameter Symbol min typ max Units										
Power Supplies	Analog	VA	2.7	5.0	5.5	V					
(Note 3)	Digital	VD	2.7	5.0	VA	V					

Note 1. All voltages with respect to ground.

Note 3. The power up sequence between VA and VD is not critical.

WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

ANALOG CHARACTERISTICS

(Ta=25°C; VA=VD=5.0V; AGND=DGND=0V; fs=48kHz, 96kHz; SCLK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=20Hz ~ 20kHz at fs=48kHz, 40Hz ~ 40kHz at fs=96kHz; unless otherwise specified)

Parameter		112 at 15—40K112, 40112 · 4	min	typ	max	Units
ADC Analog Input Ch	aracteristics:					
Resolution					24	Bits
Input Voltage	(Note 4)	VA=5V	2.7	3.0	3.3	Vpp
		VA=3V	-	1.8	-	Vpp
S/(N+D) (-1dBFS)	VA=5V	fs=48kHz	78	88		dB
S/(N+D) (-1dDF3)		fs=96kHz	-	86		dB
	VA=3V	fs=48kHz	-	86		dB
		fs=96kHz	-	84		dB
DR (-60dBFS)	VA=5V	fs=48kHz, A-weighted	94	102		dB
		fs=96kHz	88	97		dB
	VA=3V	fs=48kHz, A-weighted	-	100		dB
		fs=96kHz	-	95		dB
S/N	VA=5V	fs=48kHz, A-weighted	94	102		dB
		fs=96kHz	88	97		dB
	VA=3V	fs=48kHz, A-weighted	-	100		dB
		fs=96kHz		95		dB
Input Resistance		fs=48kHz	13	20		kΩ
T . 1 . 1 T . 1 . 1		fs=96kHz	9	14		kΩ
Interchannel Isolation	. 1		90	110	0.5	dB
Interchannel Gain Mism	atch			0.1	0.5	dB
Gain Drift		07 . 5		100	-	ppm/°C
Power Supply Rejection	l .	(Note 5)	-	50		dB
Power Supplies						
Power Supply Current						
Normal Operation	(PDN pin =	'H")				
VA	. •			11	17	mA
VD	(fs=48kHz)	(Note 6)		3	5	mA
VD	(fs=96kHz)	(Note 7)		6	9	mA
Power down mode		, , ,				111/3
	e (FDN pin =	L) (Note 8)		10	100	
VA+VD				10	100	μΑ

Note 4. This value is the full scale (0dB) of the input voltage. Input voltage is proportional to VA voltage. Vin = 0.6 x VA (Vpp).

Note 5. PSR is applied to VA and VD with 1kHz, 50mVpp.

Note 6. VD=2mA@3V

Note 7. VD=4mA@3V

Note 8. All digital input pins are held VD or DGND.

Downloaded from Elcodis.com electronic components distributor

FILTER CHARACTERISTICS (fs=48kHz)

 $(Ta=Tmin \sim Tmax; VA, VD=2.7 \sim 5.5V)$

Parameter			Symbol	min	typ	max	Units
ADC Digital Fil	lter (Decimation	n LPF):					
Passband	(Note 9)	±0.1dB	PB	0		18.9	kHz
		-0.2dB		-	20.0	-	kHz
		-3.0dB		-	23.0	-	kHz
Stopband			SB	28			kHz
Passband Ripple	:		PR			±0.04	dB
Stopband Attenu	ation		SA	68			dB
Group Delay Dis	stortion		ΔGD		0		μs
Group Delay		(Note 10)	GD		16		1/fs
ADC Digital Fil	ter (HPF):						
Frequency Respo	onse (Note 9)	-3dB	FR		1.0		Hz
		-0.1dB			6.5		Hz

FILTER CHARACTERISTICS (fs=96kHz)

 $(Ta=Tmin \sim Tmax; VA, VD=2.7 \sim 5.5V)$

Parameter			Symbol	min	typ	max	Units
ADC Digital Filter (D	Decimation	n LPF):					
Passband	(Note 9)	±0.1dB	PB	0		37.8	kHz
		-0.2dB		-	40.0	-	kHz
		-3.0dB		-	46.0	-	kHz
Stopband			SB	56			kHz
Passband Ripple			PR			±0.04	dB
Stopband Attenuation			SA	68			dB
Group Delay Distortio	n		ΔGD		0		μs
Group Delay		(Note 10)	GD		16		1/fs
ADC Digital Filter (H	HPF):						
Frequency Response	(Note 9)	-3dB	FR		2.0		Hz
- · · · ·		-0.1dB			13.0		Hz

Note 9. The passband and stopband frequencies scale with fs. For example, PB=18.9kHz@ ± 0.1 dB is 0.39375 \times fs.

Note 10. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 24bit data both channels to the ADC output register for ADC.

DC CHARACTERISTICS (CMOS Level Mode)

 $(Ta=Tmin \sim Tmax; VA, VD=2.7 \sim 5.5V)$

Parameter		Symbol	min	typ	max	Units
High-Level Input Voltage		VIH	70% VD	-	-	V
Low-Level Input Voltage		VIL	-	-	30% VD	V
High-Level Output Voltage	(Iout=-1mA)	VOH	VD-0.5	-	-	V
Low-Level Output Voltage	(Iout=1mA)	VOL	-	-	0.5	V
Input Leakage Current	_	Iin	-	_	±10	μΑ

DC CHARACTERISTICS (TTL Level Mode)

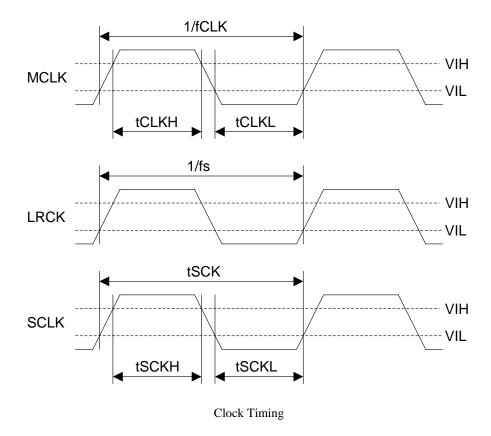
 $(Ta=Tmin \sim Tmax; VA, VD=4.5 \sim 5.5V)$

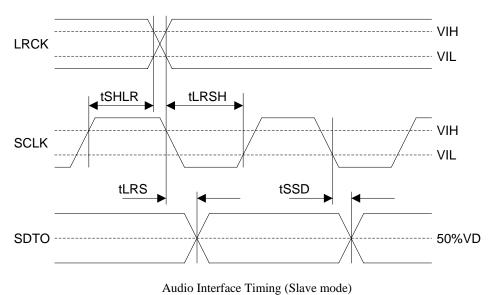
Parameter		Symbol	min	typ	max	Units
High-Level Input Voltage	(CKS2-0 pins)	VIH	70%VD	-	-	V
(All pins exc	cept CKS2-0 pins)	VIH	2.2	-	-	V
Low-Level Input Voltage	(CKS2-0 pins)	VIL	-	-	30% VD	V
(All pins exc	cept CKS2-0 pins)	VIL	-	-	0.8	V
High-Level Output Voltage	(Iout=-1mA)	VOH	VD-0.5	-	-	V
Low-Level Output Voltage	(Iout=1mA)	VOL	-	-	0.5	V
Input Leakage Current		Iin	-	Ī	±10	μΑ

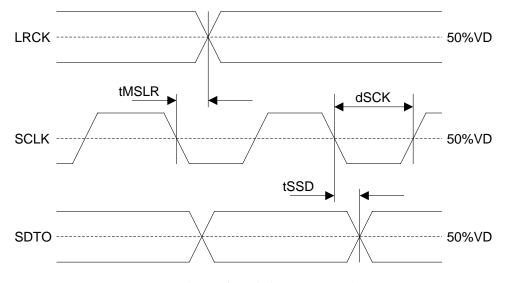
SWITCHING CHARACTERISTICS

 $(Ta=Tmin \sim Tmax; VA, VD=2.7 \sim 5.5V; C_L=20pF)$

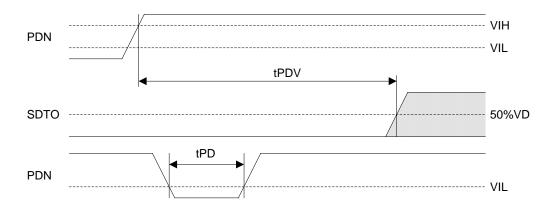
Parameter Parameter	Parameter		min	typ	max	Units
Master Clock Timing						
Frequency		fCLK	1.024		36.864	MHz
Pulse Width Low		tCLKL	0.4/fCLK			ns
Pulse Width High		tCLKH	0.4/fCLK			ns
LRCK Frequency		fs	4		96	kHz
Duty Cycle S	Slave mode		45		55	%
1	Master mode			50		%
Audio Interface Timing						
Slave mode						
SCLK Period		tSCK	160			ns
SCLK Pulse Width Lov	V	tSCKL	65			ns
Pulse Width Hig	h	tSCKH	65			ns
LRCK Edge to SCLK "	↑" (Note 11)	tLRSH	30			ns
SCLK "↑" to LRCK Ed	ge (Note 11)	tSHLR	30			ns
LRCK to SDTO (MSB)	(Except I ² S mode)	tLRS			35	ns
SCLK "↓" to SDTO		tSSD			35	ns
Master mode						
SCLK Frequency		fSCK		64fs		Hz
SCLK Duty		dSCK		50		%
SCLK "↓" to LRCK	tMSLR	-20		20	ns	
SCLK "↓" to SDTO		tSSD	-20		35	ns
Reset Timing						
PDN Pulse Width (Note 12)		tPD	150			ns
PDN "↑" to SDTO valid at	Slave Mode (Note 13)	tPDV		4132		1/fs
PDN "↑" to SDTO valid at	Master Mode (Note 13)	tPDV		4129		1/fs


Note 11. SCLK rising edge must not occur at the same time as LRCK edge.


Downloaded from Elcodis.com electronic components distributor


Note 12. The AK5357 can be reset by bringing the PDN pin = "L".

Note 13. This cycle is the number of LRCK rising edges from the PDN pin = "H".


■ Timing Diagram

Audio Interface Timing (Master mode)

Power Down & Reset Timing

OPERATION OVERVIEW

■ System Clock

MCLK (256fs/384fs/512fs), SCLK and LRCK (fs) clocks are required in slave mode. The LRCK clock input must be synchronized with MCLK, however the phase is not critical. Table 1 shows the relationship of typical sampling frequency and the system clock frequency. MCLK frequency, SCLK frequency, HPF (ON or OFF), the input level (CMOS or TTL) and master/slave are selected by CKS2-0 pins as shown in Table 2.

All external clocks (MCLK, SCLK and LRCK) must be present unless PDN pin = "L". If these clocks are not provided, the AK5357 may draw excess current due to its use of internal dynamically refreshed logic. If the external clocks are not present, place the AK5357 in power-down mode (PDN pin = "L"). In master mode, the master clock (MCLK) must be provided unless PDN pin = "L".

fs	MCLK						
18	256fs	384fs	512fs	768fs			
32kHz	8.192MHz	12.288MHz	16.384MHz	24.576MHz			
44.1kHz	11.2896MHz	16.9344MHz	22.5792MHz	33.8688MHz			
48kHz	12.288MHz	18.432MHz	24.576MHz	36.864MHz			
96kHz	24.576MHz	36.864MHz	N/A	N/A			

Table 1. System Clock Example

CKS2	CKS1	CKS0	Input Level	HPF	Master/Slave	MCLK	SCLK
L	L	L	CMOS	ON	Slave	256/384fs (~ 96kHz) 512/768fs (~ 48kHz)	≥ 48fs or 32fs
L	L	Н	CMOS	OFF	Slave	256/384fs (~ 96kHz) 512/768fs (~ 48kHz)	≥ 48fs or 32fs
L	Н	L	CMOS	ON	Master	256fs (~ 96kHz)	64fs
L	Н	Н	CMOS	ON	Master	512fs (~ 48kHz)	64fs
Н	L	L	TTL	ON	Slave	256/384fs (~ 96kHz) 512/768fs (~ 48kHz)	≥ 48fs or 32fs
Н	L	Н	Reserved				
Н	Н	L	CMOS	ON	Master	384fs (~ 96kHz)	64fs
Н	Н	Н	CMOS	ON	Master	768fs (~ 48kHz)	64fs

Table 2. Mode Select

Note: SDTO outputs 16bit data at SCLK=32fs.

■ Audio Interface Format

Two kinds of data formats can be chosen with the DIF pin (Table 3). In both modes, the serial data is in MSB first, 2's compliment format. The SDTO is clocked out on the falling edge of SCLK. The audio interface supports both master and slave modes. In master mode, SCLK and LRCK are output with the SCLK frequency fixed to 64fs and the LRCK frequency fixed to 1fs.

ı	Mode	DIF pin	SDTO	LRCK	SCLK	Figure
1	0	L	24bit, MSB justified	H/L	≥ 48fs or 32fs	Figure 1
	1	Н	24bit, I ² S Compatible	L/H	\geq 48fs or 32fs	Figure 2

Table 3. Audio Interface Format

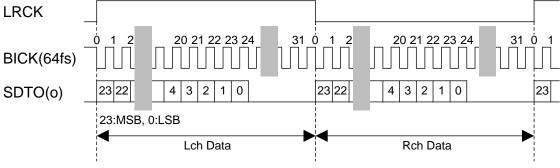


Figure 1. Mode 0 Timing

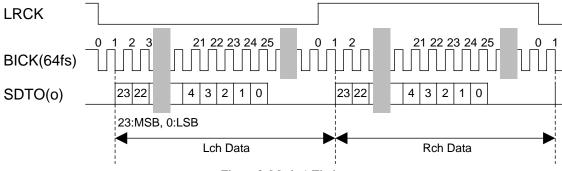
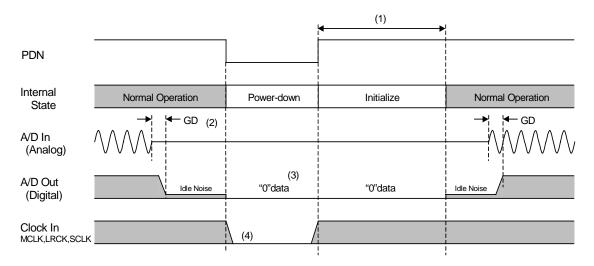


Figure 2. Mode 1 Timing


■ Digital High Pass Filter

The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz (@fs=48kHz) and scales with sampling rate (fs).

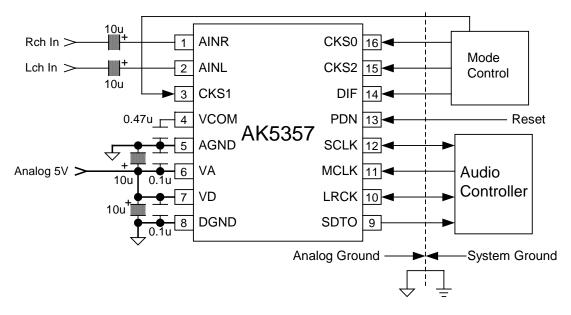
HPF is controlled by CKS2-0 pins (Table 2). If HPF setting (ON/OFF) is changed at operating, click noise occurs by changing DC offset. It is recommended that HPF setting is changed at PDN pin = "L".

■ Power down

The AK5357 is placed in the power-down mode by bringing PDN pin "L" and the digital filter is also reset at the same time. This reset should always be done after power-up. In the power-down mode, the VCOM are AGND level. An analog initialization cycle starts after exiting the power-down mode. Therefore, the output data SDTO becomes available after 4129 cycles of LRCK clock in master mode or 4132 cycles of LRCK clock in slave mode. During initialization, the ADC digital data outputs of both channels are forced to a 2's complement "0". The ADC outputs settle in the data corresponding to the input signals after the end of initialization (Settling approximately takes the group delay time).

Notes:

- (1) 4132/fs in slave mode and 4129/fs in master mode.
- (2) Digital output corresponding to analog input has the group delay (GD).
- (3) A/D output is "0" data at the power-down state.
- (4) When the external clocks (MCLK, SCLK, LRCK) are stopped, the AK5357 should be in the power-down state.


Figure 3. Power-down/up sequence example

■ System Reset

The AK5357 should be reset once by bringing PDN pin "L" after power-up. In slave mode, the internal timing starts clocking by the rising edge (falling edge at mode 1) of LRCK after exiting from reset and power down state by MCLK. The AK5357 is power down state until LRCK is input. In master mode, the internal timing starts when MCLK is input.

SYSTEM DESIGN

Figure 4 shows the system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results.

Note:

- AGND and DGND of the AK5357 should be distributed separately from the ground of external digital devices (MPU, DSP etc.).
- All digital input pins should not be left floating.
- The CKS1 pin should be connected to VA or AGND.

Figure 4. Typical Connection Diagram

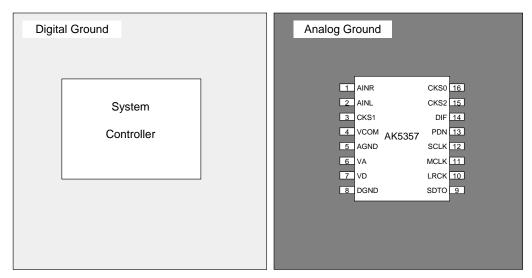


Figure 5. Ground Layout

Note:

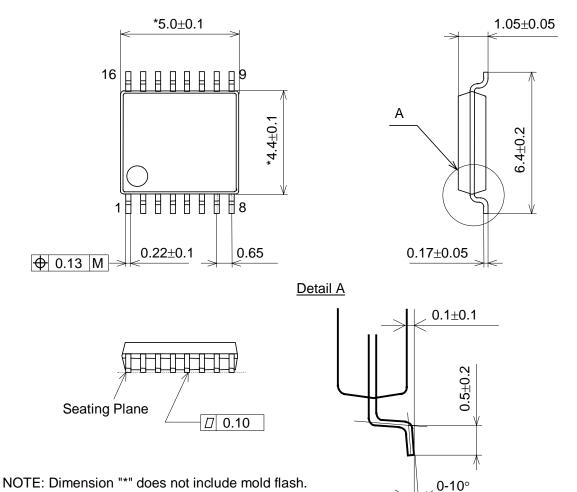
- AGND and DGND must be connected to the same analog ground plane.

1. Grounding and Power Supply Decoupling

The AK5357 requires careful attention to power supply and grounding arrangements. Alternatively if VA and VD are supplied separately, the power up sequence is not critical. **AGND and DGND of the AK5357 must be connected to analog ground plane.** System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK5357 as possible, with the small value ceramic capacitor being the nearest.

2. Voltage Reference

The voltage input to VA sets the analog input range. VCOM are 50% VA and normally connected to AGND with a 0.1μ F ceramic capacitor. A ceramic capacitor 0.47μ F attached to VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from these pins. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK5357.

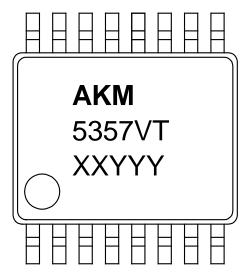

3. Analog Inputs

The ADC inputs are single-ended and internally biased to the common voltage (50% VA) with 20k Ω (typ@fs=48kHz) resistance. The input signal range scales with the supply voltage and nominally 0.6xVA Vpp (typ). The ADC output data format is 2's complement. The DC offset is removed by the internal HPF.

The AK5357 samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples of 64fs. The AK5357 includes an anti-aliasing filter (RC filter) to attenuate a noise around 64fs.

PACKAGE

16pin TSSOP (Unit: mm)

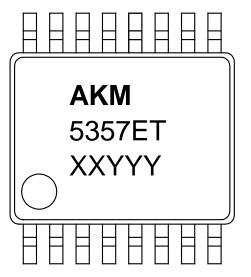


■ Material & Lead finish

Package molding compound: Epoxy Lead frame material: Cu

Lead frame surface treatment: Solder (Pb free) plate

MARKING (AK5357VT)


1) Pin #1 indication

3)

2) Date Code: XXYYY (5 digits)

XX: Lot# YYY: Date Code Marketing Code: 5357VT

MARKING (AK5357ET)

4) Pin #1 indication

5) Date Code: XXYYY (5 digits)

XX: Lot# YYY: Date Code Marketing Code : 5357ET

Revision History					
Date (YY/MM/DD)	Revision	Reason	Page	Contents	
04/2/24	00	First Edition			
06/01/11	01	Spec Addition	P.2	Ordering Guide	
				AK5357ET was added.	
			P.18	MARKING	
				AK5357ET was added.	

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
 - a. A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- b. A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.