

A Schlumberger Company

μΑ727 Temperature-Controlled **Differential Preamplifier**

Special Function Products

Description

The μ A727 is a monolithic, fixed gain, Differential Input/Output Preamplifier, constructed with the Fairchild Planar epitaxial process, mounted in a high thermal resistance package, and held at constant temperature by active regulator circuitry. The high gain and low-standby dissipation of the regulator circuit give tight temperature control over a wide ambient temperature range. The device is intended for use as a self-contained input stage in very low drift do amplifiers, replacing complex chopper-stabilized amplifiers in such applications as thermo-couple bridges, strain-gauge transducers, and a/d converters.

- VERY LOW OFFSET DRIFTS
- HIGH INPUT IMPEDANCE 300 MΩ
- WIDE COMMON MODE RANGE CMRR = 100 dB

Absolute Maximum Ratings

Operating Temperature Range

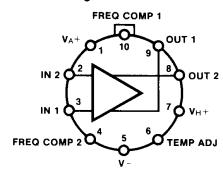
Military (µA727) -55°C to +125°C

Commercial (µA727C) -20°C to +85°C -65°C to +150°C

± 15 V

Storage Temperature Range

Pin Temperature (Soldering, 60 s) 300°C 500 mW

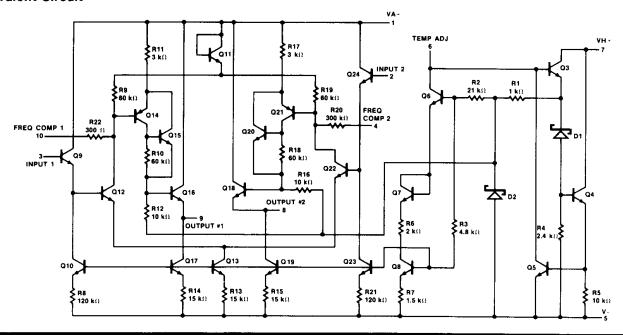

Internal Power Dissipation

Supply Voltage

(Amplifier and Heater) ± 18 V Differential Input Voltage ± 10 V

Common Mode Input Voltage

Connection Diagram 10-Pin Metal Package



(Top View)

Order Information

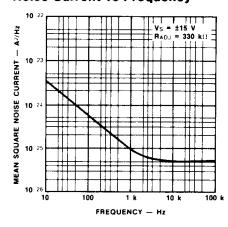
Type	Package	Code	Part No.
μΑ727	Metal	5U	μΑ̈́727ΗΜ
μA727C	Metal	5U	μΑ727HC

Equivalent Circuit

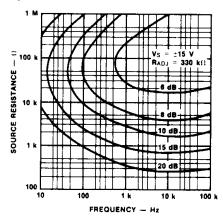
 μ A727 Electrical Characteristics -55 °C \leq T_A \leq +125 °C, V_H+ = +15 V, V- = -15 V, R_{ADJ} = 330 kΩ, unless otherwise specified.

Characteristic	Condition	Min	Тур	Max	Unit
Input Offset Voltage	$R_{S} \leq 50 \Omega$		2.0	10	mV
Input Offset Current			2.5	15	nA
Input Bias Current			12	40	nA
mpat Blad Garrent	$R_S \le 50 \Omega$, $+25^{\circ}C \le T_A \le +125^{\circ}C$		0.6	1.5	μV/°C
Input Offset Voltage Drift	$R_S \le 50 \Omega$, $-55^{\circ}C \le T_A \le +25^{\circ}C$		0.6	1.5	μV/°C
	$+25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$		2.0		pA/°C
Input Offset Current Drift	-55° C \leq T _A \leq $+25^{\circ}$ C		2.0		pA/°C
Input Bias Current Drift	-55 °C \leq T _A \leq +125°C		15		pA/°C
Differential Input Resistance			300		ΜΩ
Common-Mode Input Resistance			1000		ΜΩ
Input Voltage Range		± 12	± 13		V
Supply Voltage Rejection Ratio	$R_S \leq 100 \text{ k}\Omega$		80		μV/V
Common-Mode Rejection Ratio	$R_S \leq 100 \text{ k}\Omega$	80	100		dB
Output Resistance			1.0	4.0	kΩ
Output Common-Mode Voltage		-6.0	-5.0	-4.0	٧
Differential Output Voltage Swing		±5.0	±7.0	± 10	V
Output Sink Current		10	30	80	μΑ
Differential Load Rejection			5.0	10	$\mu V / \mu A$
Differential Voltage Gain		60	100	250	
Low Frequency Noise	BW = 10 Hz to 500 Hz, $R_{\rm S} \leq$ 50 Ω		3.0		μV_{rms}
Long Term Drift	$R_{S} \leq 50 \Omega$		5.0		μV / week
Amplifier Supply Current	T _A = +25°C		1.0	2.0	mA
Heater Supply Current	T _A = +25°C		10	15	mA

 μ A727C Electrical Characteristics $-20\,^{\circ}$ C \leq T_A \leq +85 $^{\circ}$ C, V_H+ = V_A+ = +15 V, V- = -15 V, R_{ADJ} = 1 MΩ, unless otherwise specified.

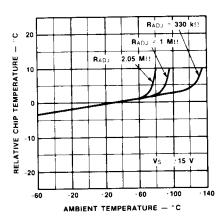

Characteristic	Condition	Min	Тур	Max	Unit
Input Offset Voltage	$R_{S} \leq 50 \Omega$		2.0	10	mV
Input Offset Current			2.5	25	nA
Input Bias Current			12	75	nA
Input Offset Voltage Drift	$R_{S} \leq 50 \Omega$		0.6	3.0	μV/°C
Input Offset Current Drift			2.0		pA/°C
Input Bias Current Drift			15		pA/°C
Differential Input Resistance			300	1	MΩ
Common Mode Input Resistance			1000		МΩ
Input Voltage Range		± 12	± 13	1	V
Supply Voltage Rejection Ratio	$R_S \leq 100 \text{ k}\Omega$		80		μV/V
Common Mode Rejection Ratio	$R_S \leq 100 \text{ k}\Omega$	70	100		dB
Output Resistance			1.0	4.0	kΩ
Output Common Mode Voltage		-7.0	-5.0	-4.0	V
Differential Output Voltage Swing		±3.0	± 7.0	± 10	V
Output Sink Current		10	30	80	μΑ
Differential Load Rejection			5.0	15	μV/μΑ
Differential Voltage Gain		50	100	250	
Low Frequency Noise	BW = 10 Hz to 500 Hz, R _S \leq 50 Ω		3.0		μV_{rms}
Long Term Drift	$R_{S} \leq 50 \Omega$		5.0		μV/week
Amplifier Supply Current	$T_A = +25$ °C		1.0	2.0	mA
Heater Supply Current	$T_A = +25$ °C		10	15	mA

Typical Performance Curves

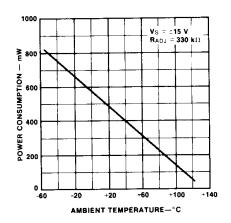

Noise Voltage vs Frequency

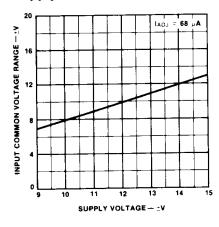
Noise Current vs Frequency

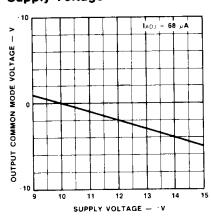

Spot Noise Contours

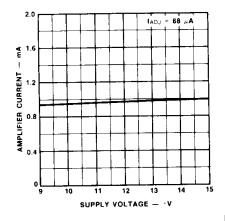

9

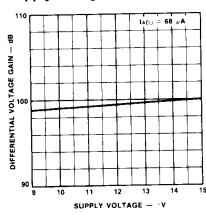
Typical Performance Curves (Cont.)

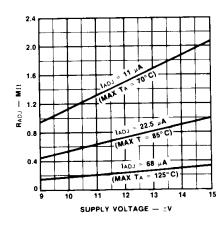

Recommended R_{ADJ} vs Maximum Ambient Temperature

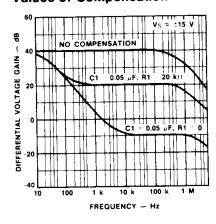

Relative Chip Temperature vs Ambient Temperature


Power Consumption vs Ambient Temperature


Input Common-Mode Voltage Range vs Supply Voltage


Output Common-Mode Voltage vs Supply Voltage


Amplifier Current vs Supply Voltage


Differential Voltage Gain vs Supply Voltage

Required R_{ADJ} for Constant I_{ADJ} vs Supply Voltage

Open Loop Frequency Response for Various Values of Compensation

