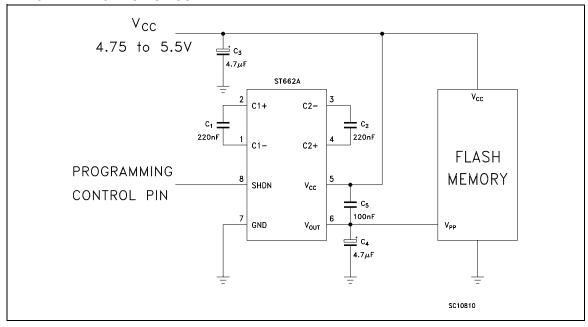

# DC-DC CONVERTER FROM 5V TO 12V, 0.03A FOR FLASH MEMORY PROGRAMMING SUPPLY

- OUTPUT VOLTAGE: 12V ± 5%
- SUPPLY VOLTAGE RANGE: 4.5V TO 5.5V
- GUARANTEED OUTPUT CURRENT UP TO 30mA
- VERY LOW QUIESCENT CURRENT: 100mA
- LOGIC CONTROLLED ELECTRONIC SHUTDOWN: 1µA
- JUST CAPACITORS NEEDED (NO INDUCTOR)


#### **DESCRIPTION**

The ST662A is a regulated charge pump DC-DC converter. It provides  $12V \pm 5\%$  output voltage to program byte-wide flash memory, and can supply 30mA output current from input as low as 4.75V.

A logic controlled shut down pin that interfaces directly with microprocessor reduces the supply current to only  $1\mu A$ .

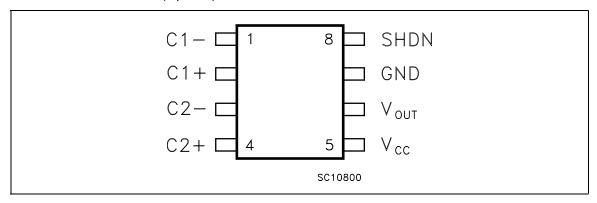


#### **TYPICAL APPLICATION CIRCUIT**



April 2004 1/13

#### **ABSOLUTE MAXIMUM RATINGS**


| Symbol           | Parameter                                                          | Value                        | Unit |
|------------------|--------------------------------------------------------------------|------------------------------|------|
| V <sub>CC</sub>  | DC Input Voltage to GND                                            | -0.3 to 6                    | V    |
| SHDN             | Shutdown Voltage                                                   | -0.3 to V <sub>CC</sub> +0.3 | V    |
| Io               | Output Current Continuous                                          | 50                           | mA   |
| P <sub>tot</sub> | Power Dissipation                                                  | 500                          | mW   |
| T <sub>op</sub>  | Operating Ambient Temperature Range(for AC SERIES) (for AB SERIES) | -0 to 70<br>-40 to 85        | °C   |
| T <sub>stg</sub> | Storage Temperature Range                                          | -40 to 150                   | °C   |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

#### **THERMAL DATA**

| Symbol                | Parameter                        | SO-8 | Unit |
|-----------------------|----------------------------------|------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case | 20   | °C/W |

#### **CONNECTION DIAGRAM** (top view)



#### **ORDERING CODES**

| TYPE    | DIP-8    | SO-8 (*) |
|---------|----------|----------|
| ST662AB | ST662ABN | ST662ABD |
| ST662AC | ST662ACN | ST662ACD |

(\*) AVAILABLE IN TAPE & REEL WITH "-TR" SUFFIX.

#### **PIN DESCRIPTION**

| PIN N° | Symbol           | Name and Function                                                                                              |
|--------|------------------|----------------------------------------------------------------------------------------------------------------|
| 1      | C1-              | Negative Terminal For The First Charge Pump Capacitor                                                          |
| 2      | C1+              | Positive Terminal For The First Charge Pump Capacitor                                                          |
| 3      | C2-              | Negative Terminal For The Second Charge Pump Capacitor                                                         |
| 4      | C2+              | Positive Terminal For The Second Charge Pump Capacitor                                                         |
| 5      | V <sub>CC</sub>  | Supply Voltage                                                                                                 |
| 6      | V <sub>OUT</sub> | 12V Output Voltage V <sub>OUT</sub> = V <sub>CC</sub> When in Shutdown Mode                                    |
| 7      | GND              | Ground                                                                                                         |
| 8      | SHDN             | Active High C-MOS logic level Shutdown Input. SHDN is internally pulled up to V <sub>CC</sub> .                |
|        |                  | Connect to GND for Normal Operation. In Shutdown mode the charge pumps are turned off and $V_{OUT}$ = $V_{CC}$ |

**ELECTRICAL CHARACTERISTICS** (refer to the test circuits,  $V_{CC} = 4.5V$  to 5.5V,  $T_A = T_{MIN}$  to  $T_{MAX}$ ,unless otherwise specified. Typical Value are referred at  $T_A = 25$ °C)

| Symbol          | Parameter                                           | Test Conditions                                | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------------------------------------|------------------------------------------------|------|------|------|------|
| Vo              | Output Voltage                                      | I <sub>O</sub> = 0 to 20 mA                    | 11.4 | 12   | 12.6 | V    |
|                 |                                                     | $I_O = 0$ to 30 mA, $V_{CC} = 4.75$ to 5.5 V   | 11.4 | 12   | 12.6 |      |
| I <sub>Q1</sub> | Quiescent Current                                   | NO LOAD, V <sub>SHDN</sub> = 0                 |      | 100  | 500  | μΑ   |
| I <sub>Q2</sub> | Shutdown Current                                    | NO LOAD, V <sub>SHDN</sub> = V <sub>CC</sub>   |      | 1    | 10   | μΑ   |
| I <sub>SH</sub> | Shutdown Pin Current                                | $V_{SHDN} = 0$ , $V_{CC} = 5V$                 | -50  | -12  | -5   | μΑ   |
|                 |                                                     | $V_{SHDN} = V_{CC} = 5V$                       |      | 0    |      | μΑ   |
| $V_{IL}$        | Shutdown Input Low Threshold                        |                                                |      |      | 0.4  | V    |
| V <sub>IH</sub> | Shutdown Input High Threshold                       |                                                | 2.4  |      |      | V    |
| f <sub>O</sub>  | Oscillator Frequency                                | $V_{CC} = 5 \text{ V},  I_{O} = 30 \text{ mA}$ |      | 400  |      | KHz  |
| ν               | Power Efficiency                                    | $V_{CC} = 5 \text{ V},  I_{O} = 30 \text{ mA}$ |      | 72   |      | %    |
| R <sub>SW</sub> | V <sub>CC</sub> - V <sub>OUT</sub> Switch Impedance | $V_{SHDN} = V_{CC} = 5V, I_{O} = 100 \mu A$    |      | 1    | 2    | ΚΩ   |

Figure 1 : Output Voltage vs Temperature

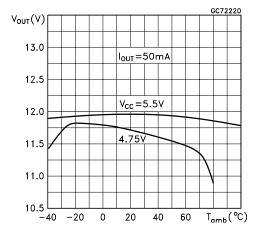



Figure 2 : Output Voltage vs Temperature

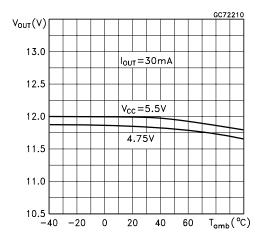



Figure 3 : Supply Current vs Temperature

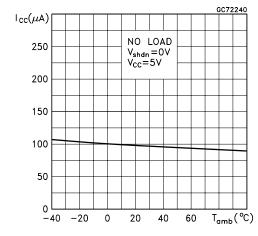



Figure 4: Supply Current vs Supply Voltage

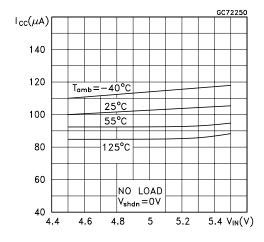



Figure 5: SHDN Pin Current vs Temperature

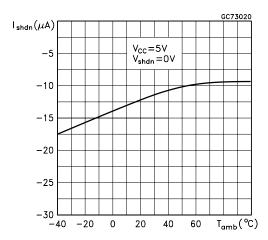



Figure 6 : Output Voltage vs Shutdown Input Voltage

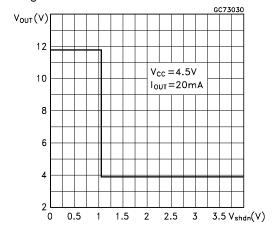
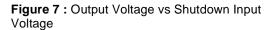




Figure 9 : Test Circuit



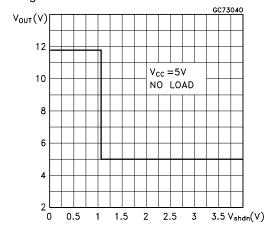
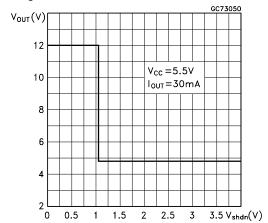
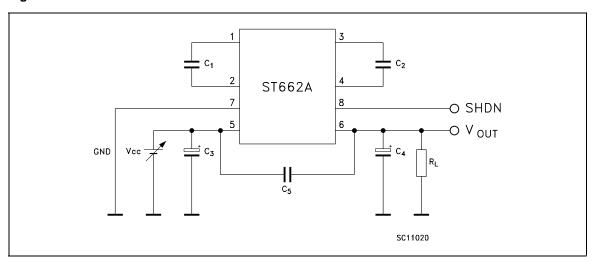





Figure 8 : Output Voltage vs Shutdown Input Voltage





#### **DESCRIPTION**

The ST662 is an IC developed to provide a 12V regulated output 30mA from voltage input as low as 4.75 without any inductors. It is useful for a wide range of applications and its performances makes it ideal for flash memory programming supply.

An evaluation kit is provided to facilitate the application. This include a single-side demo board designed for surface-mount components. The operating principle of ST662 (see fig. 10) is to charge C1 and C2 capacitor by closing the S1 switch (while S2 is opened) at the  $V_{CC}$  voltage. After S1 will be opened and S2 closed so that C1 and C2 capacitors are placed in series one to each other, and both are in series with  $V_{IN}$ . The sum of  $V_{C1}$  and  $V_{C2}$  and  $V_{I}$  is applied to the capacitor C4. This works as voltage triple. An amplifier error checks the output voltage and blocks the oscillator if the output voltage is greater than 12V. The shutdown pin is internally pulled to  $V_{CC}$ . When it is held low the output voltage rises to +12V. Fig.11 shows the transition time of the shut down pin when the  $V_{SHDN}$  goes from 5V to 0V. Input logic levels of this input are CMOS compatible Applying a logic high at this input, the  $V_{OUT}$  oscillator will be blocked and the  $V_{OUT}$  will reach the  $V_{I}$  value by D1. In this condition  $I_{CC}$  will be, low as 1 $\mu$ A. The fig.12 shows the transition time of the shut down pin when the  $V_{SHDN}$  goes from 0V to 5V.

Figure 10: Operating Principle Circuit

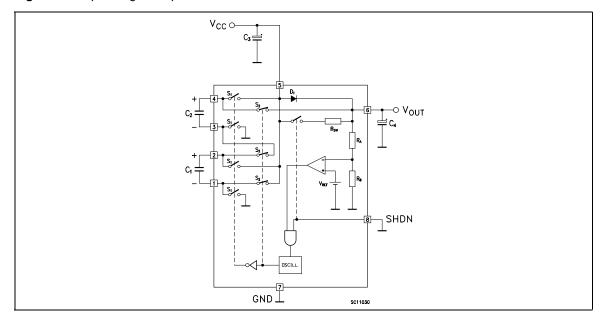



Figure 11: Exiting Shutdown

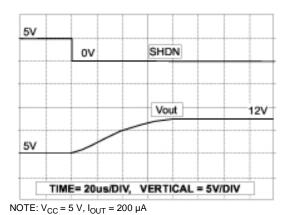
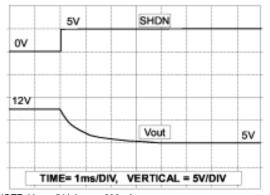




Figure 12: Entering Shutdown



NOTE:  $V_{CC}$  = 5 V,  $I_{OUT}$  = 200  $\mu A$ 

(T)

#### **APPLICATION CIRCUIT**

Based on fast charge/discharge of capacitors, this circuit involves high di/dt values limited only by  $R_{ON}$  of switches. This implies a critical layout design due to the need to minimize inductive paths and place capacitors as close as possible to the device.

A good layout design is strongly recommended for noise reason. For best performance, use very short connections to the capacitors and the values shown in table 1.

C3 and C4 must have low ESR in order to minimize the output ripple. Their values can be reduced to  $2\mu F$  and  $1\mu F$ , respectively, when using ceramic capacitors, but must be of  $10\mu F$  or larger if aluminium electrolytic are chosen.

C5 must be placed as close to the device as possible and could be omitted if very low output noise performance are not required.

Fig 13 and Fig 14 show, respectively, our EVALUATION kit layout and the relatively.

Figure 13: KIT Lay-out

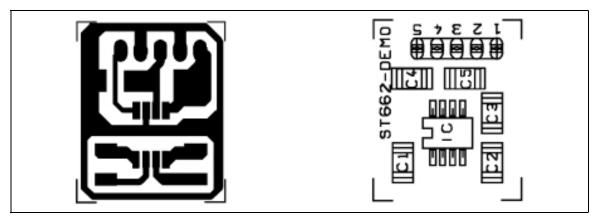
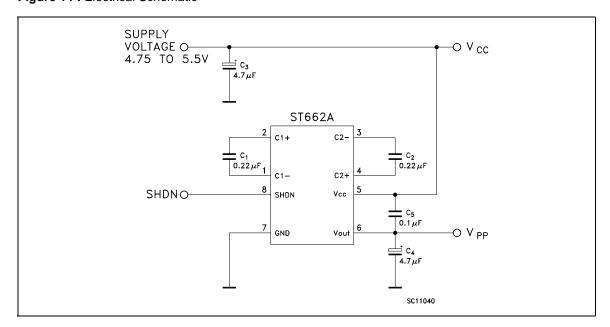




Figure 14: Electrical Schematic



**TABLE 1:** List of Components

| CAPACITOR      | TYPE                  | VALUE (µF) |
|----------------|-----------------------|------------|
| Charge Pump C1 | Ceramic               | 0.22       |
| Charge Pump C1 | Ceramic               | 0.22       |
| Input C3       | Electrolytic Tantalum | 4.7        |
| Output C4      | Electrolytic Tantalum | 4.7        |
| Decoupling C5  | Ceramic               | 0.1        |

#### **ST662A OUTPUT PERFORMANCE**

Figure 15 : Output Voltage vs Output Current

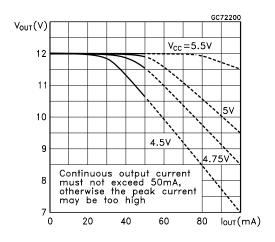



Figure 16: Efficiency vs Output Current

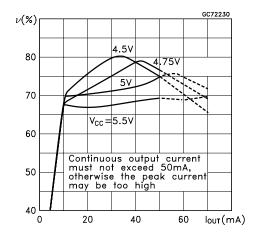
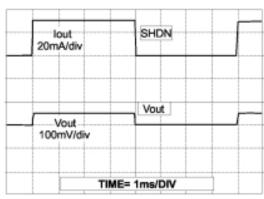
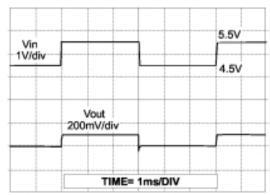





Figure 17: Load Transient Response

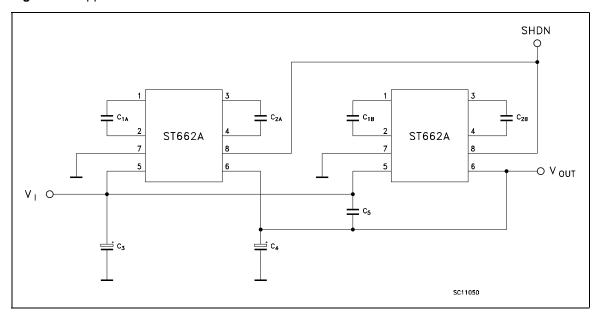


NOTE:  $V_{CC} = 5 \text{ V}$ ,  $I_{OUT} = 0 \text{ to } 30\text{mA}$ 

Figure 18: Load Transient Response



NOTE:  $V_{CC}$  = 4.5 to 5.5V,  $I_{OUT}$  = 30 mA


#### HOW TO INCREASE OUTPUT CURRENT OR OUTPUT VOLTAGE CAPABILITY

Current capability is limited by  $R_{ON}$  of internal switches. It is possible to increase it connecting in parallel two or more ST662A devices; each one of them can supply 30mA. The figure 19 shows the electric schematic. The capacitors  $C_3$ ,  $C_4$  and  $C_5$  must be placed very close to the ICs on the board. If this is not possible, you can place two different capacitors, each of them of half value, very close to the respective integrated circuit.

Fig. 21 show the Output Current capability of the proposed circuit.

If an output voltage greater than 12V is required, it's possible to realize the circuit of the following diagram (figure 20). The relevant Output Current capability is shown in figure 22 in which is shown the output voltage vs load current.

Figure 19: Application Circuit for Two ST662A in Parallel



**TABLE 2:** List of Components

| CAPACITOR | TYPE                  | VALUE (μF) |
|-----------|-----------------------|------------|
| C1A       | Ceramic               | 0.22       |
| C2A       | Ceramic               | 0.22       |
| C1B       | Ceramic               | 0.22       |
| C2B       | Ceramic               | 0.22       |
| C3        | Electrolytic Tantalum | 10         |
| C4        | Electrolytic Tantalum | 10         |
| C5        | Ceramic               | 0.22       |

Figure 20 : Application Circuit for Output Voltage greater than 12V

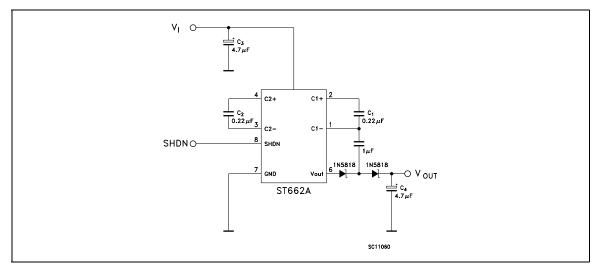
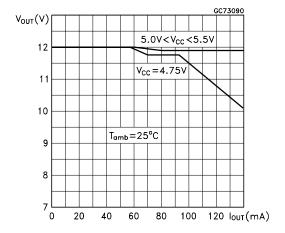
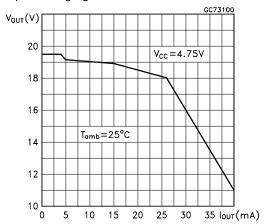
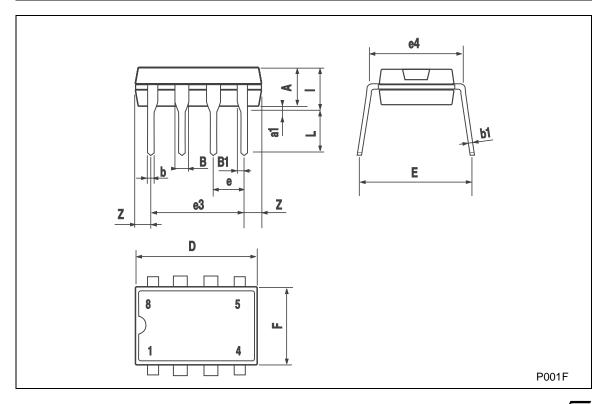
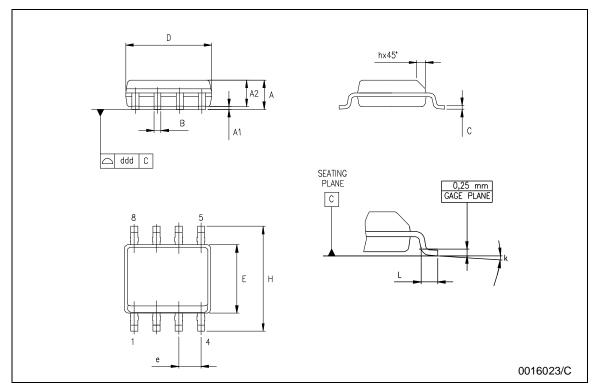





Figure 21 : Output Voltage for the Application with Two Device in Parallel



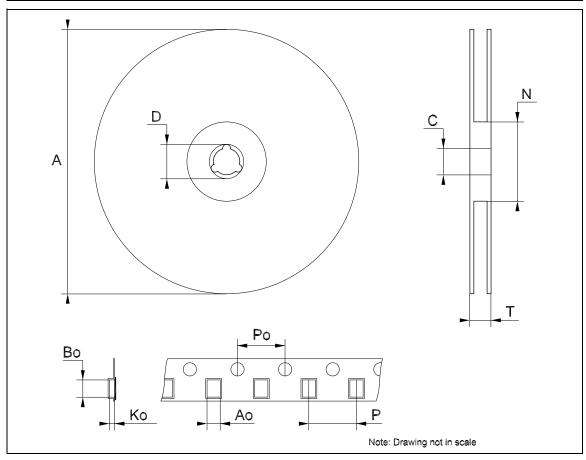

**Figure 22 :** Output Voltage for Application with Output Voltage greater than 12V




## Plastic DIP-8 MECHANICAL DATA

| DIM  |      | mm.  |      |       | inch  |       |
|------|------|------|------|-------|-------|-------|
| DIM. | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.  |
| Α    |      | 3.3  |      |       | 0.130 |       |
| a1   | 0.7  |      |      | 0.028 |       |       |
| В    | 1.39 |      | 1.65 | 0.055 |       | 0.065 |
| B1   | 0.91 |      | 1.04 | 0.036 |       | 0.041 |
| b    |      | 0.5  |      |       | 0.020 |       |
| b1   | 0.38 |      | 0.5  | 0.015 |       | 0.020 |
| D    |      |      | 9.8  |       |       | 0.386 |
| Е    |      | 8.8  |      |       | 0.346 |       |
| е    |      | 2.54 |      |       | 0.100 |       |
| e3   |      | 7.62 |      |       | 0.300 |       |
| e4   |      | 7.62 |      |       | 0.300 |       |
| F    |      |      | 7.1  |       |       | 0.280 |
| I    |      |      | 4.8  |       |       | 0.189 |
| L    |      | 3.3  |      |       | 0.130 |       |
| Z    | 0.44 |      | 1.6  | 0.017 |       | 0.063 |




### **SO-8 MECHANICAL DATA**

| DIM  |      | mm.  |       |       | inch  |       |
|------|------|------|-------|-------|-------|-------|
| DIM. | MIN. | TYP  | MAX.  | MIN.  | TYP.  | MAX.  |
| А    | 1.35 |      | 1.75  | 0.053 |       | 0.069 |
| A1   | 0.10 |      | 0.25  | 0.04  |       | 0.010 |
| A2   | 1.10 |      | 1.65  | 0.043 |       | 0.065 |
| В    | 0.33 |      | 0.51  | 0.013 |       | 0.020 |
| С    | 0.19 |      | 0.25  | 0.007 |       | 0.010 |
| D    | 4.80 |      | 5.00  | 0.189 |       | 0.197 |
| Е    | 3.80 |      | 4.00  | 0.150 |       | 0.157 |
| е    |      | 1.27 |       |       | 0.050 |       |
| Н    | 5.80 |      | 6.20  | 0.228 |       | 0.244 |
| h    | 0.25 |      | 0.50  | 0.010 |       | 0.020 |
| L    | 0.40 |      | 1.27  | 0.016 |       | 0.050 |
| k    |      | •    | 8° (1 | max.) | •     | •     |
| ddd  |      |      | 0.1   |       |       | 0.04  |



| Tape & | Reel SO-8 | <b>MECHANICAL</b> | DATA |
|--------|-----------|-------------------|------|
|--------|-----------|-------------------|------|

| DIM  |      | mm. |      |       | inch |        |
|------|------|-----|------|-------|------|--------|
| DIM. | MIN. | TYP | MAX. | MIN.  | TYP. | MAX.   |
| Α    |      |     | 330  |       |      | 12.992 |
| С    | 12.8 |     | 13.2 | 0.504 |      | 0.519  |
| D    | 20.2 |     |      | 0.795 |      |        |
| N    | 60   |     |      | 2.362 |      |        |
| Т    |      |     | 22.4 |       |      | 0.882  |
| Ao   | 8.1  |     | 8.5  | 0.319 |      | 0.335  |
| Во   | 5.5  |     | 5.9  | 0.216 |      | 0.232  |
| Ko   | 2.1  |     | 2.3  | 0.082 |      | 0.090  |
| Ро   | 3.9  |     | 4.1  | 0.153 |      | 0.161  |
| Р    | 7.9  |     | 8.1  | 0.311 |      | 0.319  |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

# © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

