Xinger

Ultra Low Profile 0404 Balun 50Ω to 200Ω Balanced

Description

The BD4859N50200A00 is a low cost, low profile sub-miniature unbalanced to
 balanced transformer designed for differential inputs and output locations on modern chipsets in an easy to use surface mount package covering 802.11a Uni-Band II \& III and the Japanese ISM band (4.9 GHz). The BD4859N50200A00 is ideal for high volume manufacturing and delivers higher performance than traditional ceramic baluns. The BD4859N50200A00 has an unbalanced port impedance of 50Ω and a 200Ω balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern integrated chipsets. The output ports have equal amplitude (-3 dB) with 180 degree phase differential. The BD4859N50200A00 is available on tape and reel for pick and place high volume manufacturing.

Detailed Electrical Specifications: Specifications subject to change without notice.

Features:	Parameter	ROOM $\left(25^{\circ} \mathrm{C}\right)$			Unit
		Min.	Typ.	Max	
- $4800-5900 \mathrm{MHz}$	Frequency	4800		5900	MHz
	Unbalanced Port Impedance		50		Ω
- Low Insertion Loss	Balanced Port Impedance		200		Ω
- 802.11a Uni-Band II \& III	Return Loss	18	23		dB
- Home Cordless Compliant	Insertion Loss*		0.4	0.5	dB
- Surface Mountable	Amplitude Balance		0.3	0.8	dB
- Tape \& Reel - Non-conductive Surface	Phase Balance		4	9	Degrees
- Non-conductive Surface - RoHS Compliant	CMRR		29		dB
	Power Handling	-55		1 +85	Watts

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at $+85^{\circ} \mathrm{C}$)

Outline Drawing

Anaren
What'll we think of next?*

USA/Canada
Toll Free:
(800) 411-6596

Europe:
+44 2392-232392

Typical Performance: 4700 MHz . to $\mathbf{6 0 0 0} \mathbf{~ M H z}$.

USA/Canada:
Toll Free:
(315) 432-8909
(800) 411-6596
+44 2392-232392

Wide Band Performance: 500 MHz. to 8500 MHz.

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of $17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

An example of the PCB footprint used in the testing of these parts is shown below. An example of a DC-biased footprint is also shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances

With No DC Bias	With DC Bias
Circuit Pattern Footprint Pad (s)	Circuit Pattern Footprint Pad (s)
Dimensions are in Inches [Millimeters] Mounting Footprint	Dimensions are in Inches [Millimeters] Mounting Footprint

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.

Function	Frequency	Package Dimensions	Unbalanced Impedance	Balanced Impedance + Coupling	Plating Finish	Codes
$\begin{aligned} & \hline B=\text { Balun } \\ & \mathrm{BD}=\text { Balun }+\mathrm{DC} \\ & \mathrm{~F}=\text { Filter } \\ & \mathrm{FB}=\text { Filter } / \text { Balun } \\ & \mathrm{C}=3 \mathrm{~dB} \text { Coupler } \\ & \mathrm{DC}=\text { Directional } \\ & \mathrm{J}=\text { RF Jumper } \\ & \mathrm{X}=\text { RF cross over } \end{aligned}$	$0110=100-1000 \mathrm{MHz}$ $0810=800-1000 \mathrm{MHz}$ $0922=950-2150 \mathrm{MHz}$ $0826=800-6200 \mathrm{MHz}$ $1222=1200-2200 \mathrm{MHz}$ $1416=1400-1600 \mathrm{MHz}$ $1722=1700-2200 \mathrm{MHz}$ $2326=2300-2600 \mathrm{MHz}$ $2425=2400-2500 \mathrm{MHz}$ $3150=3100-5000 \mathrm{MHz}$ $3436=3400-3600 \mathrm{MHz}$ $4859=4800-5900 \mathrm{MHz}$ $5153=5100-5300 \mathrm{MHz}$ $5159=5100-5900 \mathrm{MHz}$ $5759=5700-5900 \mathrm{MHz}$	$\begin{aligned} & A=150 \times 150 \mathrm{mils} \\ & C=120 \times 120 \mathrm{mils} \\ & (4 \mathrm{mmnsmm} \\ & \mathrm{C}=100 \times 80 \mathrm{mils} \\ & (2.5 \mathrm{~mm} \times 2 \mathrm{~mm}) \\ & \mathrm{J}=80 \times 50 \mathrm{mils} \\ & (2 \mathrm{~mm} \times 1.25 \mathrm{~mm}) \\ & \mathrm{L}=60 \times 30 \mathrm{mils} \\ & (1.5 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \\ & \mathrm{N}=40 \times 40 \mathrm{mils} \\ & (1 \mathrm{~mm} \times 1 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 50=500 \mathrm{hm} \\ & 75=75 \mathrm{hmm} \end{aligned}$	$\begin{aligned} & 25=25 \Omega \text { Balanced } \\ & 30=30 \Omega \text { Balanced } \\ & 50=50 \Omega \text { Balanced } \\ & 75=75 \Omega \text { Balanced } \\ & 100=100 \Omega \text { Balanced } \\ & 150=150 \Omega \text { Balanced } \\ & 200=200 \Omega \text { Balanced } \\ & 300=300 \Omega \text { Balanced } \\ & 400=400 \Omega \text { Balanced } \\ & 03=3 \mathrm{~dB} \text { Hybrid } \\ & 10=10 \mathrm{~dB} \text { Directional } \\ & 20=20 \mathrm{~dB} \text { Directional } \end{aligned}$	$\begin{aligned} & A=\text { Gold } \\ & P=\text { Tin-Lead } \end{aligned}$	

$\begin{array}{lr}\text { USA/Canada: } & \text { (315) 432-8909 } \\ \text { Toll Free: } & (800) 411-6596 \\ \text { Eurpe: } & +442392-232392\end{array}$
Europe:
+44 2392-232392

