Xinger

Ultra Small Low Profile 0603 Balun 50Ω to 100Ω Balanced

Description

The BD4859L50100A00 is an ultra-small low profile balanced to unbalanced transformer designed for differential inputs and output locations on next generation wireless chipsets in an easy to use surface mount package covering 802.11a UniBand II and Uni-Band III and the Japanese ISM band (4.9GHz). The BD4859L50100A00 is ideal for high volume manufacturing and is higher performance than traditional ceramic baluns. The BD4859L50100A00 has an unbalanced port impedance of 50Ω and a 100Ω balanced port impedance. This transformation enables single ended signals to be applied to differential ports on modern integrated chipsets. The output ports have equal amplitude (-3dB) with 180 degree phase differential. The BD4859L50100A00 is available on tape and reel for pick and place high volume manufacturing.

Detailed Electrical Specifications: Specifications subject to change without notice.

Features:	Parameter	ROOM ($25^{\circ} \mathrm{C}$)			Unit
		Min.	Typ.	Max	
- $4800-5900 \mathrm{MHz}$	Frequency	4800		5900	MHz
	Unbalanced Port Impedance		50		Ω
- Covers 802.11a Uni-Band II \& III	Balanced Port Impedance		100		Ω
- Low Insertion Loss	Return Loss	9.2	13		dB
- Input to Output DC Isolation	Insertion Loss*		0.8	1.1	dB
- Surface Mountable	Amplitude Balance		0.4	1.1	dB
- Tape \& Reel	Phase Balance		3	8	Degrees
- RoHS Compliant	CMRR		30		dB
	Power Handling			2	Watts
	Operating Temperature	-55		+85	${ }^{\circ} \mathrm{C}$

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at $+85^{\circ} \mathrm{C}$)

Outline Drawing
 Place Manufacturing.

USA/Canada:
(315) 432-8909

Toll Free:
(800) 411-6596

Europe: $\quad+44$ 2392-232392

Typical Broadband Performance: 500 MHz . to 8000 MHz .

USA/Canada:
(315) 432-8909
(800) 411-6596
+44 2392-232392

Available on Tape and

 Reel for Pick and Place Manufacturing.
Typical Performance: 4700 MHz . to 6000 MHz .

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of $17 \mathrm{ppm} / /^{\circ} \mathrm{C}$.

An example of the PCB footprint used in the testing of these parts is shown below. An example of a DC-biased footprint is also shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

No Bias Footprint

DC Bias Footprint

USA/Canada:
Toll Free:
Europe:
(315) 432-8909
(800) 411-6596
+44 2392-232392

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.

Function	Frequency	Package Dimensions	Unbalanced Impedance	Balanced Impedance + Coupling	Plating Finish	Codes
$\begin{array}{\|l} \hline \mathrm{B}=\text { Balun } \\ \mathrm{BD}=\mathrm{Balun}+\mathrm{DC} \\ \mathrm{~F}=\text { Filter } \\ \mathrm{FB}=\text { Filter } / \text { Balun } \\ \mathrm{C}=3 \mathrm{~dB} \text { Coupler } \\ \mathrm{DC}=\text { Directional } \\ \mathrm{J}=\mathrm{RF} \text { Jumper } \\ \mathrm{X}=\text { RF cross over } \end{array}$	$0110=100-1000 \mathrm{MHz}$ $0810=800-1000 \mathrm{MHz}$ $0922=950-2150 \mathrm{MHz}$ $0826=800-6200 \mathrm{MHz}$ $1222=1200-2200 \mathrm{MHz}$ $1416=1400-1600 \mathrm{MHz}$ $1722=1700-2200 \mathrm{MHz}$ $2326=2300-2600 \mathrm{MHz}$ $2425=2400-2500 \mathrm{MHz}$ $3150=3100-5000 \mathrm{MHz}$ $3436=3400-3600 \mathrm{MHz}$ $4859=4800-5900 \mathrm{MHz}$ $5153=5100-5300 \mathrm{MHz}$ $5159=5100-5900 \mathrm{MHz}$ $5759=5700-5900 \mathrm{MHz}$	$\begin{aligned} & \mathrm{A}=150 \times 150 \mathrm{mils} \\ & (4 \mathrm{~mm} \times 4 \mathrm{~mm}) \\ & \mathrm{C}=120 \times 120 \mathrm{mils} \\ & \mathrm{E}=10 \mathrm{~mm} \times 3 \mathrm{~mm}) \\ & (2.5 \mathrm{~mm} \times 20 \mathrm{~mm}) \\ & \mathrm{J}=80 \times 50 \mathrm{mmils} \\ & (2 \mathrm{~mm} \times 1.25 \mathrm{~mm}) \\ & \mathrm{L}=60 \times 30 \mathrm{mils} \\ & (1.5 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \\ & \mathrm{N}=40 \times 40 \mathrm{mils} \\ & (1 \mathrm{~mm} \times 1 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 50=500 \mathrm{hm} \\ & 75=750 \mathrm{hm} \end{aligned}$	$\begin{aligned} & 25=25 \Omega \text { Balanced } \\ & 30=30 \Omega \text { Balanced } \\ & 50=50 \Omega \text { Balanced } \\ & 75=75 \Omega \text { Balanced } \\ & 100=100 \Omega \text { Balanced } \\ & 150=150 \Omega \text { Balanced } \\ & 200=200 \Omega \text { Balanced } \\ & 300=300 \Omega \text { Balanced } \\ & 400=400 \Omega \text { Balanced } \\ & 03=3 \mathrm{~dB} \text { Hybrid } \\ & 10=10 \mathrm{~dB} \text { Directional } \\ & 20=20 \mathrm{~dB} \text { Directional } \end{aligned}$	$\begin{aligned} & A=\text { Gold } \\ & P=\text { Tin-Lead } \end{aligned}$	

