December 1996

National Semiconductor

LMC272 CMOS Dual Low Cost Rail to Rail Output Operational Amplifier

General Description

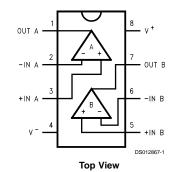
The LMC272 is a CMOS dual operational amplifier with rail-to-rail output swing and an input common voltage range that extends below the negative supply. Other performance characteristics include low voltage operation, low bias current, excellent channel-to-channel isolation, good bandwidth performance and a competitive price.

These devices are available in MSOP package which is about half the size of a SO-8 device. This enables the designer to fit the device in extremely small applications.

The LMC272C is a direct replacement for TLC272C with performance which meets or exceeds the TLC272C's guaranteed limits in the commercial temperature range when operating from a supply of 2.7V to 15V (see Electrical Characteristics table for details).

These features make this cost effective device ideal for new designs as well as for upgrading existing designs. Applications include hand-held analytic instruments, transducer amplifiers, sample and hold circuits, etc.

Features


(Typical unless otherwise noted) $V_S = 5V$, $T_A = 25^{\circ}C$

- Output Swing to within 60 mV of supply rail (10 kΩ load)
- High voltage gain: 90 dB
- Unity gain-bandwidth: 2.0 MHz
- Wide supply voltage: 2.7V to 15V
- Characterized for: 2.7V, 5V, 10V
- Low supply current: 0.975 mA/amplifier
- Input voltage range: -0.3V to 4.2V

Applications

- Portable instruments
- Upgrade for TLC272C and TS272C
- Photodetector preamplifiers
- D/A converters
- Filters

Connection Diagram

Ordering Information

Package	Ordering	NSC Drawing	Package	Supplied as
	Information	Number	Marking	
8-pin Molded DIP	LMC272CN	N08E	LMC272CN	Rails
8-pin SO-8	LMC272CM	M08A	LMC272CM	Rails
	LMC272CMX	M08A	LMC272CM	2.5k Tape and Reel
MSOP	LMC272CMM	MUA08A	A07	Rails
	LMC272CMMX	MUA08A	A07	3k Tape and Reel

© 1999 National Semiconductor Corporation DS012867

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2 kV
Differential Input Voltage	±Supply Voltages
Voltage at Input/Output Pin	(V ⁺)+0.3V, (V ⁻)–0.3V
Supply Voltage (V ⁺ – V ⁻):	16V
Current at Input Pin (Note 10)	±5 mA
Current at Output Pin (Note 3) (Note 7)	±30 mA
Lead Temperature	
(soldering, 10 sec.)	260°C

 Storage Temp. Range
 -65°C to +150°C

 Junction Temperature (Note 4)
 150°C

 Operating Ratings(Note 1)
 150°C

Supply Voltage	$2.5V \le V_S \le 15V$
Junction Temperature Range	
LMC272C	$0^{\circ}C \le T_{J} \le +70^{\circ}C$
Thermal Resistance (θ_{JA})	
N Package, 8-pin Molded DIP	115° C/W
M Package, 8-pin Surface Mount	177° C/W
MSOP Package	235° C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 2.7V, V⁻ = 0V, V_{CM} = V_O = V⁺/2, R_L to ground, and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit (Note 6)	Units
V _{os}	Input Offset Voltage	V_{O} = 1.4V, R_{S} = 50, V_{CM} = 0V, R_{L} = 10k	1.40	7 9	mV max
TCV _{os}	Temp. Coefficient of Input Offset Voltage	$T_A = 0^{\circ}C$ to $70^{\circ}C$	3.9		µV/°C
I _B	Input Bias Current		1	64	pA max
l _{os}	Input Offset Current		0.5	32	pA max
CMRR	Common Mode Rejection Ratio	$V_{CM} = -0.2V$ to 1.2V	77	65 60	dB min
PSRR	Power Supply Rejection Ratio	V+ = 2.7V to 5V, $V_0 = 1.4V$	75	65 60	dB min
V _{CM}	Input Common-Mode Voltage Range	CMRR ≥ 50 dB	1.7 -0.3	1.5 1.2 -0.2 -0.2	V min V max
A _V	Large Signal Voltage Gain	$V_{O} = 0.25V$ to 2.45V, $R_{L} = 10k$	88		dB
Vo	Output Swing	$R_L = 10 k\Omega, V_{ID} = 100 mV$ (Note 11) $V_{ID} = -100 mV$	2.64	2.55	V min mV
		(Note 11)	0	20 25	max
I _{sc}	Output Short Circuit Current	Sourcing, V _{ID} = 100 mV (Note 11)	3.7		mA
		Sinking, V _{ID} = -100 mV (Note 11)	2.5		mA
Is	Total Supply Current		1.60	2.5 3.0	mA max

			Тур	LMC272C	
Symbol	Parameter	Conditions	(Note 5)	Limit (Note 6)	Units
SR	Slew Rate (Note 8)	$A_{V} = +1, R_{L} = 10 \text{ k}\Omega,$			
		$VI = 1 V_{PP}, C_{L} = 20 pF$ (Note 12)	1.7		V/µs
GBW	Unity Gain Frequency	VI = 10 mV _{PP} , C _L = 20 pF (Note 12)	1.9		MHz
φ _m	Phase Margin	VI = 10 mV _{PP} , C_{L} = 20 pF (Note 12)	39		Deg
e _n	Input-Referred Voltage Noise	f = 1 kHz, $R_S = 20\Omega$	27		<u>nV</u> √Hz
İn	Input-Referred Current Noise	f = 1 kHz	0.0015		$\frac{pA}{\sqrt{Hz}}$
f _{max}	Full Power Bandwidth	$V_{\rm S}$ = 10V, $C_{\rm L}$ = 20 pF, $R_{\rm L}$ = 20 k Ω	120		kHz
	Amp-to-Amp Isolation	(Note 9)	150		dB
THD	Total Harmonic Distortion	$A_{V} = +1, V_{IN} = 0.7V_{PP}$ f = 1 kHz	0.035		%

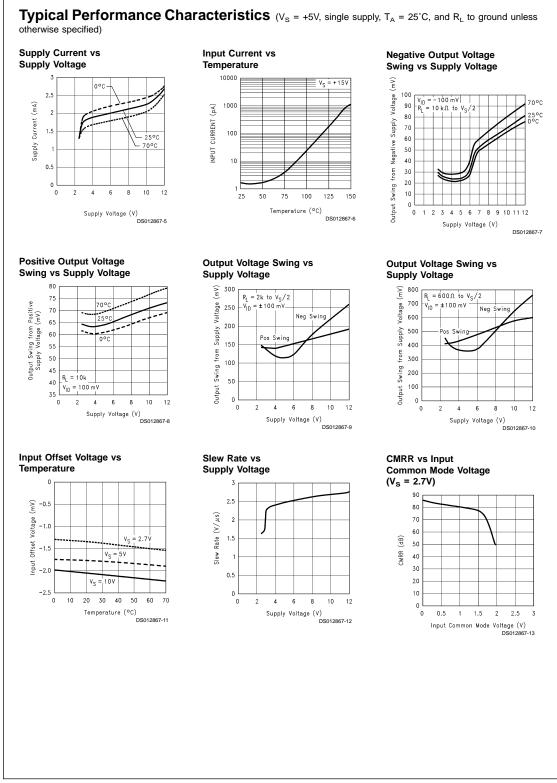
Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit (Note 6)	Units
V _{os}	Input Offset Voltage	$V_{O} = 1.4V, R_{S} = 50,$ $R_{L} = 10k, V_{CM} = 0V$	1.75	7 9	mV max
TCV _{os}	Temp. Coefficient of Input Offset Voltage	$T_A = 0^\circ C \text{ to } 70^\circ C$	3.3		µV/°C
В	Input Bias Current		1	64	pA max
os	Input Offset Current		0.5	32	pA max
CMRR	Common Mode Rejection Ratio	$V_{CM} = -0.2V \text{ to } 3.5V$	77	65 60	dB min
PSRR	Power Supply Rejection Ratio	V+ = 5V to 10V, V_0 = 1.4V	88	65 60	dB min
/ _{CM}	Input Common-Mode Voltage Range	CMRR ≥ 50 dB	4.2	4 3.5	V min
			-0.3	-0.2 - 0.2	V max
A_{V}	Large Signal Voltage Gain	$V_{O} = 0.25V$ to 2V, $R_{L} = 10k$	90	80 72	dB min
V _o	Output Swing	$R_{L} = 10 \text{ k}\Omega, V_{ID} = 100 \text{ mV}$ (Note 11)	4.94	4.85 4.75	V min
		V _{ID} = -100 mV (Note 11)	0	20 25	mV max
SC	Output Short Circuit Current	Sourcing, V _{ID} = 100 mV (Note 11)	16		mA
		Sinking, $V_{ID} = -100 \text{ mV}$ (Note 11)	16		mA
S			1.95	3.2 3.6	mA max

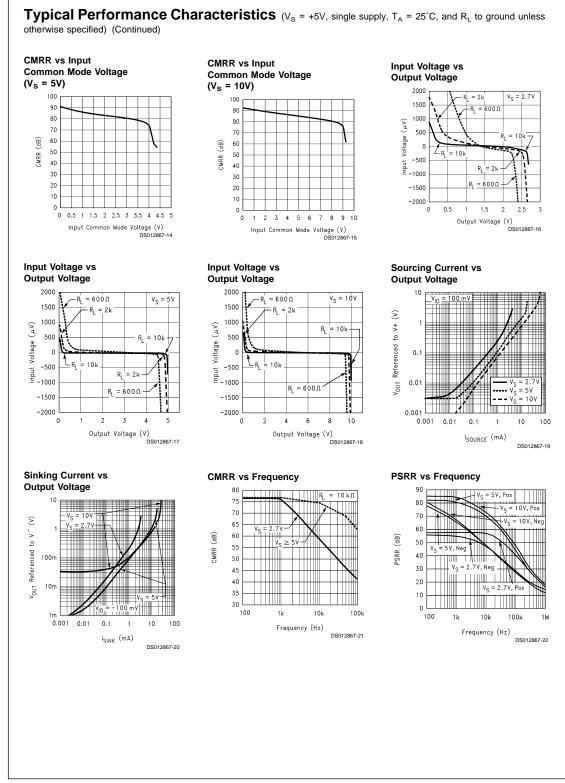
www.national.com

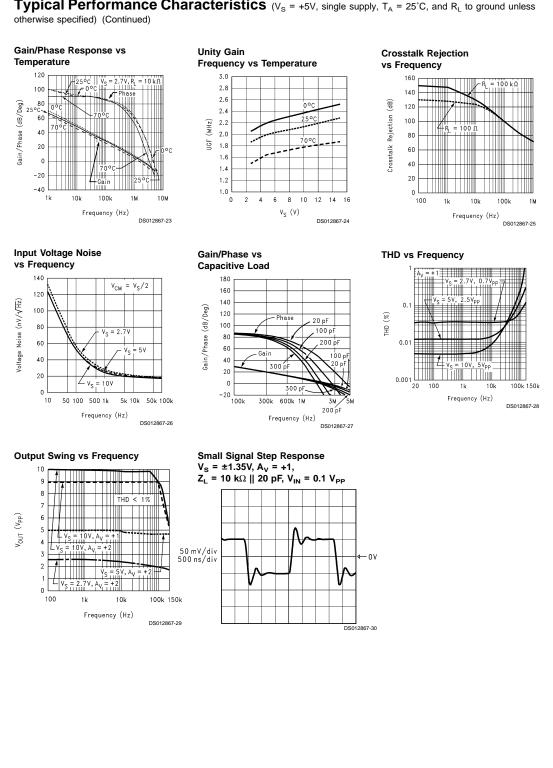
4

· ·

Rate (Note 8)	$A_V = +1, R_L = 10 k\Omega,$ VI = 1 V _{PP} , C _L = 20 pF (Note 12)	2.5		V/µs
	$A_V = +1, R_L = 10 k\Omega,$ VI = 2.5 V _{PP} , C _L = 20 pF (Note 12)	2.5		
Gain Frequency	VI = 10 mV, C _L = 20 pF (Note 12)	2.0		MHz
e Margin	VI = 10 mV, C _L = 20 pF (Note 12)	43		Deg
	$f = 1 \text{ kHz}, R_S = 20\Omega$	25		nV √Hz
	f = 1 kHz	0.0015		$\frac{pA}{\sqrt{Hz}}$
Power Bandwidth	$V_{\rm S}$ = 10V, $C_{\rm L}$ = 20 pF, $R_{\rm L}$ = 20 k Ω	120		kHz
· · · · · · · · · · · · · · · · · · ·	(Note 9)	150		dB
	$A_V = +1$, $V_{IN} = 2.5 V_{PP}$ f = 1 kHz	0.015		%
	se Margin t-Referred age Noise t-Referred ent Noise Power Bandwidth -to-Amp Isolation I Harmonic ortion	(Note 12)Se Margin $VI = 10 \text{ mV}, C_L = 20 \text{ pF}$ (Note 12)t-Referred $f = 1 \text{ kHz}, R_S = 20\Omega$ age Noise $f = 1 \text{ kHz}$ t-Referred $f = 1 \text{ kHz}$ ent Noise $Power \text{ Bandwidth}$ $V_S = 10V, C_L = 20 \text{ pF}, R_L = 20 \text{ k}\Omega$ -to-Amp Isolation(Note 9)I Harmonic $A_V = +1, V_{IN} = 2.5 V_{PP}$	(Note 12)Se Margin $VI = 10 \text{ mV}, C_L = 20 \text{ pF}$ 43(Note 12)(Note 12)25t-Referred $f = 1 \text{ kHz}, R_S = 20\Omega$ 25age Noise $f = 1 \text{ kHz}$ 0.0015t-Referred $f = 1 \text{ kHz}$ 0.0015ent Noise $V_S = 10V, C_L = 20 \text{ pF}, R_L = 20 \text{ k}\Omega$ 120Power Bandwidth $V_S = 10V, C_L = 20 \text{ pF}, R_L = 20 \text{ k}\Omega$ 150I Harmonic $A_V = +1, V_{IN} = 2.5 V_{PP}$ 0.015	

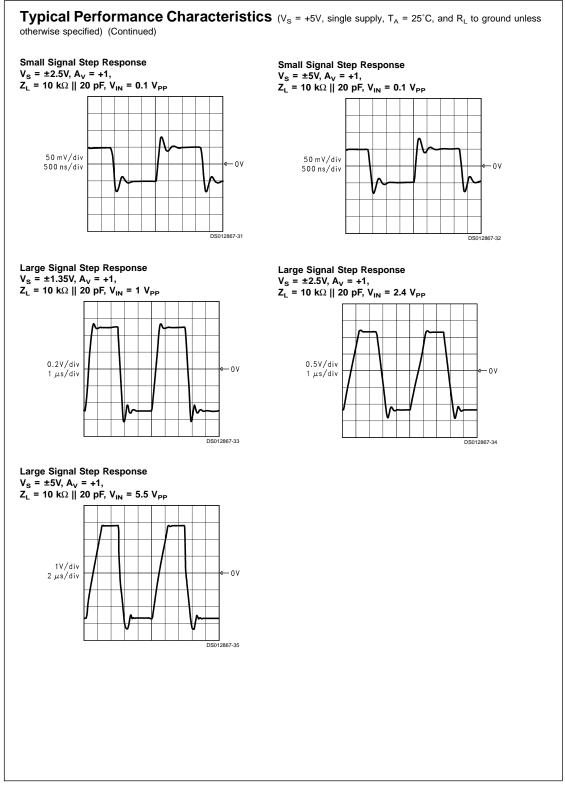

Offset Voltage Coefficient of Offset Voltage Bias Current Offset Current on Mode ion Ratio	$V_{O} = 1.4V, R_{S} = 50,$ $R_{L} = 10k, V_{CM} = 0V$ $T_{A} = 0^{\circ}C \text{ to } 70^{\circ}C$ $V_{CM} = -0.2V \text{ to } 8.5V$	2.1 3.6 1 0.5	(Note 6) 7 9 64 32	mV max μV/°C pA max pA
Offset Voltage Bias Current Offset Current on Mode	$T_A = 0^{\circ}C$ to $70^{\circ}C$	1	64	µV/°C pA max
Offset Voltage Bias Current Offset Current on Mode		1		pA max
Offset Current on Mode	V _{CM} = -0.2V to 8.5V			max
on Mode	V _{CM} = -0.2V to 8.5V	0.5	32	
on Mode	V _{CM} = -0.2V to 8.5V	0.5	32	рА
	V _{CM} = -0.2V to 8.5V			
	$V_{CM} = -0.2V \ 10 \ 0.5V$	77	CE.	max
ion ratio		77	65 60	dB
Supply	$V_{+} = 5V \text{ to } 10V, V_{O} = 1.4V$	88	65	min dB
	$v_{\rm T} = 5v 10 10v, v_{\rm O} = 1.4v$	00		шы min
	CMRR > 50 dB	9.2		V
		3.2	-	min
s range		-0.3		V
		0.0		max
Signal Voltage	$V_{0} = 1V$ to 6V. R ₁ = 10k	95		dB
			78	min
Swing	$R_1 = 10 \text{ k}\Omega, V_{1D} = 100 \text{ mV}$	9.93	9.85	V
Vo Output Swing	(Note 11)		9.75	min
	$V_{ID} = -100 \text{ mV}$	33	45	mV
	(Note 11)		50	max
	Sourcing, V _{ID} = 100 mV	55		mA
it				
	Sinking, $V_{ID} = -100 \text{ mV}$ (Note 11)	25		mA
Supply Current		2.25	3.6	mA
			4.0	max
	ion Ratio Common-Mode e Range Signal Voltage : Swing : Short Circuit it Supply Current	Common-Mode CMRR ≥ 50 dB e Range V _O = 1V to 6V, R _L = 10k Signal Voltage V _O = 1V to 6V, R _L = 10k s Swing R _L = 10 kΩ, V _{ID} = 100 mV (Note 11) V _{ID} = -100 mV (Note 11) s Short Circuit tt Sourcing, V _{ID} = 100 mV (Note 11) Sinking, V _{ID} = -100 mV (Note 11)	Common-Mode e Range CMRR ≥ 50 dB 9.2 Signal Voltage V _O = 1V to 6V, R _L = 10k 95 Signal Voltage V _O = 1V to 6V, R _L = 10k 95 Swing R _L = 10 kΩ, V _{ID} = 100 mV 9.93 (Note 11) V _{ID} = -100 mV 33 (Note 11) Sourcing, V _{ID} = 100 mV 55 (Note 11) Sinking, V _{ID} = -100 mV 25	Common-Mode e Range CMRR $\geq 50 \text{ dB}$ 9.2 9 e Range -0.3 -0.2 Signal Voltage V _O = 1V to 6V, R _L = 10k 95 85 Swing R _L = 10 kΩ, V _{ID} = 100 mV 9.93 9.85 (Note 11) 9.75 9 V _{ID} = -100 mV 33 45 (Note 11) 50 50 is Short Circuit Sourcing, V _{ID} = 100 mV 55 (Note 11) 55 50 Sinking, V _{ID} = -100 mV 25 (Note 11) 2.25 3.6

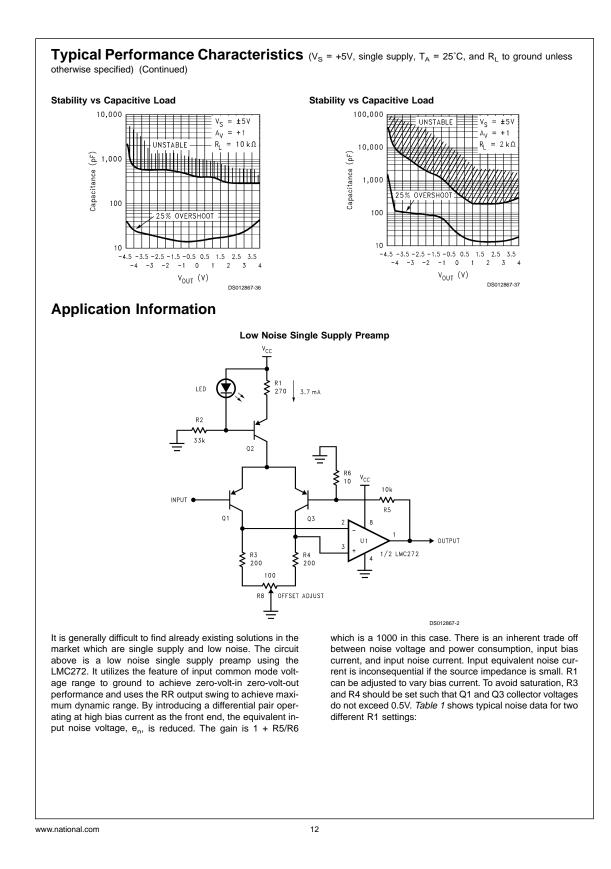

www.national.com


6

· ·

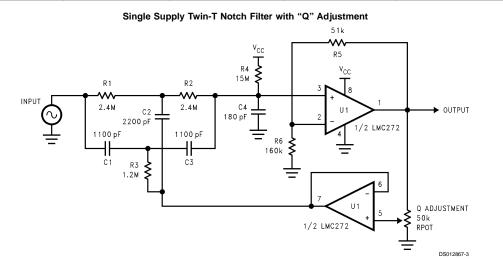
Symbol	Parameter	Conditions	Typ (Note 5)	LMC272C Limit (Note 6)	Units
SR	Slew Rate (Note 8)	$A_V = +1, R_L = 10 k\Omega,$ VI = 1 V _{PP} , C _L = 20 pF (Note 12)	2.65		V/µs
		$A_V = +1, R_L = 10 k\Omega,$ VI = 5.5 V _{PP} , C _L = 20 pF (Note 12)	2.65		
GBW	Unity Gain Frequency	VI = 10 mV, C _L = 20 pF (Note 12)	2.1		MHz
þ _m	Phase Margin	VI = 10 mV, C _L = 20 pF (Note 12)	44		Deg
P _n	Input-Referred Voltage Noise	$f = 1 \text{ kHz}, R_S = 20\Omega$	25		<u>nV</u> √Hz
n	Input-Referred Current Noise	f = 1 kHz	0.0015		$\frac{pA}{\sqrt{Hz}}$
max	Full Power Bandwidth	$C_{L} = 20 \text{ pF}, R_{L} = 20 \text{ k}\Omega$	120		kHz
	Amp-to-Amp Isolation	(Note 9)	150		dB
THD	Total Harmonic Distortion	$A_V = +1, V_{IN} = 5 V_{PP}$ f = 1 kHz	0.005		%
tended to be Note 2: Hun Note 3: App maximum all Note 4: The $-T_{\rm A}/\theta_{\rm JA}$. All Note 5: Typi Note 6: All li Note 7: Do n Note 6: Slev Note 9: Inpu Note 10: Lin Note 11: $V_{\rm IE}$	functional, but specific performance is nan body model, 1.5 k Ω in series with 1 lies to both single-supply and split-sup owed junction temperature of 150°C. O maximum power dissipation is a functio numbers apply for packages soldered cal Values represent the most likely pa mits are guaranteed by testing or statis not short circuit output to V+, when V+ vate is the slower of the rising and fal t referred, V+ = 10V and R _L = 100 k Ω niting input pin current is only necessar	ply operation. Continuous short circuit operati utput currents in excess of ± 30 mA over long n of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowad directly into a PC board. rametric norm. stical analysis. is greater than 13V or reliability will be adverse	s and the test conditions on at elevated ambient term may adversely affe ble power dissipation at a sely affected. inth 1 kHz to produce abo imum input voltage ratin	, see the Electrical char temperature can result i cct reliability. any ambient temperature any 10 V _{PP} output.	acteristics. n exceeding t





Typical Performance Characteristics ($V_s = +5V$, single supply, $T_A = 25^{\circ}C$, and R_L to ground unless

www.national.com



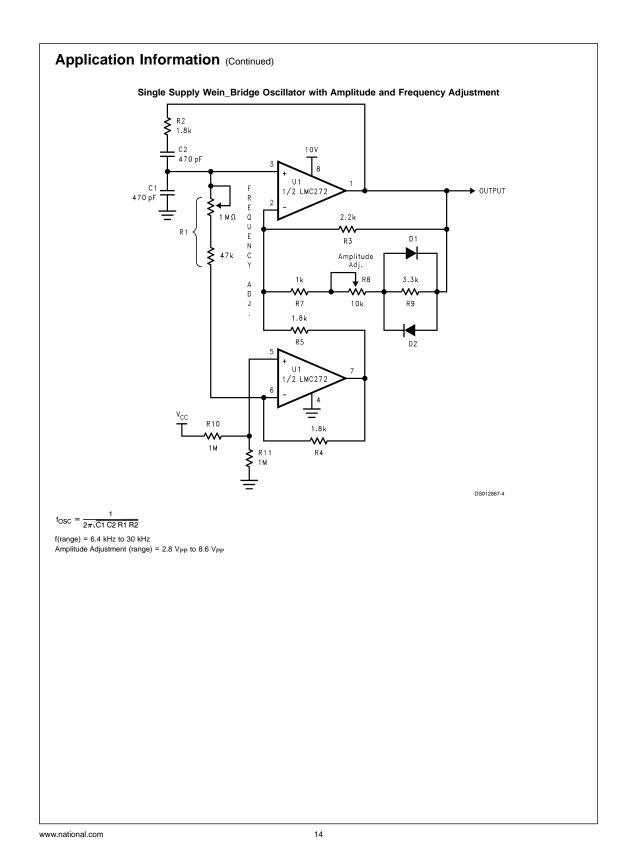
Application Information (Continued)

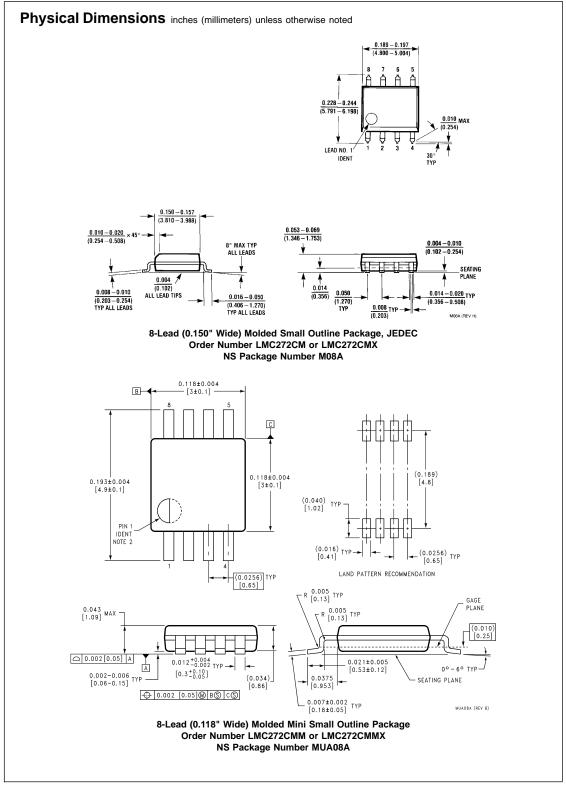
.

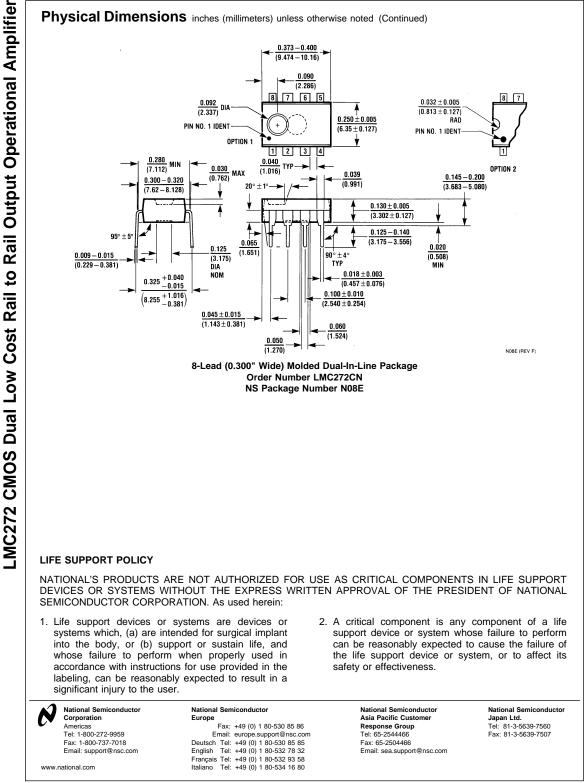
TABLE 1. Equivalent Input Noise Voltage, e_n , for Two Different Values of R1					
Ω	mA		nV/√Hz		
R1	I _c (Q1, 3)	e _n (100 Hz)	e _n (1 kHz)	e _n (10 kHz)	
270	1.85	3.2	2.0	1.7	
1000	0.50	5.3	2.4	1.9	

Here is another application for the LMC272. This is a single supply notch filter set for 60 Hz using the component values shown, but the frequency can be changed using the equations below. The main feature of this circuit is its ability to adjust the filter selectivity (Q) using RPOT. You can trade off notch depth for Q. Table 2 shows data for two different settings. The LMC272 lends itself nicely to general purpose applications like this because it is very well behaved and easy to use. This filter can operate from 2.7V to 15V supplies. Component value matching is important to achieve good results. Here R4 is used to set the input to within the common mode range of the device to allow maximum swing on the non-inverting input (pin 3). Since R1, R2, and R4 form a voltage divider at low frequencies, C4 is added to introduce a high frequency attenuation in conjunction with C1, and C3. R5 and R6 were picked to set the pass band gain to 0 dB.

R = R1 = R2 = 2R3 C = C1 = C3 = C2/2


$$f(notch) = \frac{1}{2\pi RC}; C4 = \frac{R \cdot C}{R4}, Q = \frac{f(notch)}{BW}$$


TABLE 2. Filter Selectivity (Q) vs Notch Depth


	(dB)
Q	Notch Depth
0.3	40
6	17

www.national.com

Downloaded from Elcodis.com electronic components distributor

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.