High Current-High Power OPERATIONAL AMPLIFIER

FEATURES

- WIDE SUPPLY RANGE: $\pm 10 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$
- HIGH OUTPUT CURRENT: 5A Peak
- CLASS A/B OUTPUT STAGE:

Low Distortion

- SMALL TO-3 PACKAGE

DESCRIPTION
The OPA511 is a high voltage, high current operational amplifier designed to drive a wide variety of resistive and reactive loads. Its complementary class A / B output stage provides superior performance in applications requiring freedom from cross-over distortion. User-set current limit circuitry provides protection to the amplifier and load in fault conditions.
The OPA511 employs a laser-trimmed monolithic integrated circuit to bias the output transistors,

APPLICATIONS

- SERVO AMPLIFIER
- MOTOR DRIVER
- SYNCRO EXCITATION
- AUDIO AMPLIFIER
- TEST PIN DRIVER
providing excellent low-level signal fidelity and high output voltage swing. The reduced internal parts count made possible with this bias IC improves performance and reliability.
This hybrid integrated circuit is housed in a hermetically sealed TO-3 package and all circuitry is electrically isolated from the case. This allows direct mounting to a chassis or heat sink without cumbersome insulating hardware and provides optimum heat transfer.

International Airport Industrial Park - Mailing Address: PO Box 11400 - Tucson, AZ 85734 - Street Address: 6730 S. Tucson Blvd. . Tucson, AZ 85706 Tel: (520) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP . Telex: 066-6491 - FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

At $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 28 \mathrm{VDC}$ unless otherwise noted.

NOTES: (1) $+\mathrm{V}_{\mathrm{s}}$ and $-\mathrm{V}_{\mathrm{s}}$ denote the positive and negative supply voltage respectively. Total V_{s} is measured from $+\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}$. (2) $\mathrm{SOA}=\mathrm{Safe}$ Operating Area. (3) Rating applies if the output current alternates between both output transistors at a rate faster than 60 Hz .

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION

MODEL	PACKAGE	TEMPERATURE RANGE
OPA511AM	TO-3	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONFIGURATION

MECHANICAL

TYPICAL PERFORMANCE CURVES

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 28 \mathrm{VDC}$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 28 \mathrm{VDC}$ unless otherwise noted.

APPLICATIONS INFORMATION

POWER SUPPLIES

Specifications for the OPA511 are based on a nominal operating voltage $\pm 28 \mathrm{~V}$. A single power supply or unbalanced supplies may be used so long as the maximum total operating voltage (total of $+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{s}}$) is not greater than 68 V .

CURRENT LIMITS

Current limit resistors must be provided for proper operation. Independent positive and negative current limit values may be selected by choice of $\mathrm{R}_{\mathrm{cL}++}$ and R_{CL}, respectively. Resistor values are calculated by:

$$
\mathrm{R}_{\mathrm{CL}}=0.65 / \mathrm{I}_{\mathrm{LIM}}(\mathrm{amps})-0.01
$$

This is the nominal current limit value at room temperature. The maximum output current decreases at high temperature as shown in the typical performance curve. Most wirewound resistors are satisfactory, but some highly inductive types may cause loop stability problems. Be sure to evaluate performance with the actual resistors to be used in production.

FIGURE 1. Safe Operating Area.

HEAT SINKING

Power amplifiers are rated by case temperature (not ambient temperature). The maximum allowable power dissipation is a function of the case temperature as shown in the power derating curve. Load characteristics, signal conditions, and power supply voltage determine the power dissipated by the amplifier. The case temperature will be determined by the heat sinking conditions. Sufficient heat sinking must be provided to keep the case temperature within safe bounds given the power dissipated and ambient temperature. See Application Note AN-83 for further details.

SAFE OPERATING AREA (SOA)

The safe area plot provides a comprehensive summary of the power handling limitations of a power amplifier, including maximum current, voltage and power as well as the secondary breakdown region (see Figure 1). It shows the allowable output current as a function of the power supply to output voltage differential (voltage across the conducting power device). See Application Note AN-123 for details on SOA.

