Dual/Quad Low-Power 100MHz Gain-of-2 Stable Op Amp

élantec.

The EL2245 and EL2445 are dual and quad versions of the popular EL2045. They are high speed, low power, low cost monolithic operational amplifiers built on Elantec's proprietary complementary bipolar process. The EL2245 and EL2445 are gain-of-2 stable and feature a $275 \mathrm{~V} / \mu$ s slew rate and 100 MHz bandwidth at gain-of-2 while requiring only 5.2 mA of supply current per amplifier.

The power supply operating range of the EL2245 and EL2445 is from $\pm 18 \mathrm{~V}$ down to as little as $\pm 2 \mathrm{~V}$. For singlesupply operation, the EL2245 and EL2445 operate from 36 V down to as little as 2.5 V . The excellent power supply operating range of the EL2245 and EL2445 makes them an obvious choice for applications on a single +5 V or +3 V supply.

The EL2245 and EL2445 also feature an extremely wide output voltage swing of $\pm 13.6 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$. At $\pm 5 \mathrm{~V}$, output voltage swing is a wide $\pm 3.8 \mathrm{~V}$ with $R_{L}=500 \Omega$ and $\pm 3.2 \mathrm{~V}$ with $R_{L}=150 \Omega$. Furthermore, for single-supply operation at +5 V , output voltage swing is an excellent 0.3 V to 3.8 V with $\mathrm{R}_{\mathrm{L}}=500 \Omega$.

At a gain of +2 , the EL2245 and EL2445 have a -3 dB bandwidth of 100 MHz with a phase margin of 50°. Because of their conventional voltage-feedback topology, the EL2245 and EL2445 allow the use of reactive or non-linear elements in their feedback network. This versatility combined with low cost and 75 mA of output-current drive make the EL2245 and EL2445 an ideal choice for price-sensitive applications requiring low power and high speed.

Features

- 100MHz gain-bandwidth
- Gain-of-2 stable
- Low supply current (per amplifier) -5.2 mA at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Wide supply range -2.5 V to 36 V
- High slew rate $-275 \mathrm{~V} / \mu \mathrm{s}$
- Fast-settling -80ns to 0.1% for a 10 V step
- Low differential gain -0.02% at $A_{V}=+2, R_{L}=150 \Omega$
- Low differential phase -0.07° at $A_{V}=+2, R_{L}=150 \Omega$
- Wide output voltage swing $- \pm 13.6 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, $R_{L}=1 \mathrm{k} \Omega$

Applications

- Video amplifiers
- Single-supply amplifiers
- Active filters/integrators
- High speed signal processing
- ADC/DAC buffers
- Pulse/RF amplifiers
- Pin diode receivers
- Log amplifiers

Ordering Information

PART NUMBER	PACKAGE	 REEL	PKG. NO.
EL2245CN	8-Pin PDIP	-	MDP0031
EL2245CS	8-Pin SO	-	MDP0027
EL2245CS-T7	8-Pin SO	$7 "$	MDP0027
EL2245CS-T13	8-Pin SO	$13 "$	MDP0027
EL2445CN	14-Pin PDIP	-	MDP0031
EL2445CS	14-Pin SO (0.150")	-	MDP0027
EL2445CS-T7	14-Pin SO (0.150")	$7 "$	MDP0027
EL2445CS-T13	14-Pin SO (0.150")	$13^{\prime \prime}$	MDP0027

Pinouts

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Supply Voltage (VS) \qquad
\qquad
\qquad
Input Voltage (V_{IN}) \qquad
\qquad
Differential Input Voltage ($\mathrm{dV}_{\mathrm{IN}}$) .$\pm 10 \mathrm{~V}$
Continuous Output Current

Power Dissipation (P_{D}) . See Curves
Operating Temperature Range $\left(T_{A}\right) \ldots \ldots \ldots \ldots . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature (T_{J}) $+150^{\circ} \mathrm{C}$
Storage Temperature (TST)
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

> CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	TEMP	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		0.5	4.0	mV
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			6.0	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift	(Note 1)	All		10.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		2.8	8.2	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			9.2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		2.8		$\mu \mathrm{A}$
Ios	Input Offset Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		50	300	nA
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$			400	nA
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		50		nA
$\mathrm{TCl}_{\mathrm{OS}}$	Average Offset Current Drift	(Note 1)	All		0.3		$n A /{ }^{\circ} \mathrm{C}$
Avol	Open-loop Gain	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	1500	3000		V / V
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	1500			V/V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$		2500		V/V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	$25^{\circ} \mathrm{C}$		1750		V/V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	65	80		dB
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	60			dB
CMRR	Common-mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	70	90		dB
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	70			dB
CMIR	Common-mode Input Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		± 14.0		V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		± 4.2		V
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		4.2/0.1		V
V OUT	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	± 13.4	± 13.6		V
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	± 13.1			V
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$	± 12.0	± 13.4		V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$	± 3.4	± 3.8		V
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	$25^{\circ} \mathrm{C}$		± 3.2		V
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$	3.6/0.4	3.8/0.3		V
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	3.5/0.5			V
Isc	Output Short Circuit Current		$25^{\circ} \mathrm{C}$	40	75		mA
			$\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	35			mA

DC Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITION	TEMP	MIN	TYP	MAX	UNIT
IS	Supply Current (per amplifier)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, no load	$25^{\circ} \mathrm{C}$		5.2	7	mA
			$\mathrm{T}_{\text {MIN }}$			7.6	mA
			$\mathrm{T}_{\text {MAX }}$			7.6	mA
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, no load	$25^{\circ} \mathrm{C}$		5.0		mA
R_{IN}	Input Resistance	Differential	$25^{\circ} \mathrm{C}$		150		$\mathrm{k} \Omega$
		Common-mode	$25^{\circ} \mathrm{C}$		15		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$A_{V}=+1$ @ 10 MHz	$25^{\circ} \mathrm{C}$		1.0		pF
R OUT	Output Resistance	$A_{V}=+1$	$25^{\circ} \mathrm{C}$		50		$\mathrm{m} \Omega$
PSOR	Power-supply Operating Range	Dual-supply	$25^{\circ} \mathrm{C}$	± 2.0		± 18.0	V
		Single-supply	$25^{\circ} \mathrm{C}$	2.5		36.0	V

NOTE:

1. Measured from $T_{\text {MIN }}$ to $T_{\text {MAX }}$.

Closed-Loop AC Electrical Specifications $V_{S}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{L}=1 \mathrm{k} \Omega$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	TEMP	MIN	TYP	MAX	UNIT
BW	-3dB Bandwidth $\left(\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\mathrm{PP}}\right)$	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	$25^{\circ} \mathrm{C}$		100		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1$	$25^{\circ} \mathrm{C}$		75		MHz
		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+5$	$25^{\circ} \mathrm{C}$		20		MHz
		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+10$	$25^{\circ} \mathrm{C}$		10		MHz
		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+20$	$25^{\circ} \mathrm{C}$		5		MHz
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	$25^{\circ} \mathrm{C}$		75		MHz
GBWP	Gain-bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		200		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		150		MHz
PM	Phase Margin	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		50		-
CS	Channel Separation	$\mathrm{f}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		85		dB
SR	Slew Rate (Note 1)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	200	275		V/ $/ \mathrm{s}$
		$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$25^{\circ} \mathrm{C}$		200		V/us
FPBW	Full-power Bandwidth (Note 2)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	3.2	4.4		MHz
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		12.7		MHz
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise Time, Fall Time	0.1 V step	$25^{\circ} \mathrm{C}$		3.0		ns
OS	Overshoot	0.1 V step	$25^{\circ} \mathrm{C}$		20		\%
$\mathrm{t}_{\text {PD }}$	Propagation Delay		$25^{\circ} \mathrm{C}$		2.5		ns
ts	Settling to $+0.1 \%\left(\mathrm{~A}_{\mathrm{V}}=+1\right)$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, 10 \mathrm{~V}$ step	$25^{\circ} \mathrm{C}$		80		ns
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 5 \mathrm{~V}$ step	$25^{\circ} \mathrm{C}$		60		ns
dG	Differential Gain (Note 3)	NTSC/PAL	$25^{\circ} \mathrm{C}$		0.02		\%
dP	Differential Phase (Note 3)	NTSC/PAL	$25^{\circ} \mathrm{C}$		0.07		。
eN	Input Noise Voltage	10kHz	$25^{\circ} \mathrm{C}$		15.0		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
iN	Input Noise Current	10kHz	$25^{\circ} \mathrm{C}$		1.50		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES:

1. Slew rate is measured on rising edge.
2. For $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=20 \mathrm{~V}_{\mathrm{PP}}$. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}_{\mathrm{PP}}$. Full-power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /(2 \pi$ * Vpeak).
3. Video performance measured at $V_{S}= \pm 15 \mathrm{~V}, A_{V}=+2$ with 2 times normal video level across $R_{L}=150 \Omega$. This corresponds to standard video levels across a back-terminated 75Ω load. For other values of R_{L}, see curves.

Test Circuit

Typical Performance Curves

Typical Performance Curves (Continued)

INPUT COMMON-MODE VOLTAGE (V)

Gain-Bandwidth Product

LOAD RESISTANCE (Ω)

LOAD RESISTANCE (Ω)

Typical Performance Curves (Continued)

Typical Performance Curves (Continued)

Simplified Schematic (Per Amplifier)

Burn-In Circuit (Per Amplifier)

ALL PACKAGES USE THE SAME SCHEMATIC

Applications Information

Product Description

The EL2245 and EL2445 are dual and quad low-power wideband monolithic operational amplifiers built on Elantec's proprietary high-speed complementary bipolar process. The EL2245 and EL2445 use a classical voltage-feedback topology which allows them to be used in a variety of applications where current-feedback amplifiers are not appropriate because of restrictions placed upon the feedback element used with the amplifier. The conventional topology of the EL2245 and EL2445 allows, for example, a capacitor to be placed in the feedback path, making it an excellent choice for applications such as active filters, sample-and-holds, or integrators. Similarly, because of the ability to use diodes in the feedback network, the EL2245 and EL2445 are an excellent choice for applications such as fast log amplifiers.

Power Dissipation

With the wide power supply range and large output drive capability of the EL2245 and EL2445, it is possible to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified for the EL2245 and EL2445 to remain in the safe operating area. These parameters are related as follows:

$$
\mathrm{T}_{\mathrm{JMAX}}=\mathrm{T}_{\mathrm{MAX}}+\left(\Theta_{J A} \times \mathrm{PD}_{\mathrm{MAXTOTAL}}\right)
$$

where:
PD ${ }_{\text {MAXTOTAL }}$ is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$). PDmax for each amplifier can be calculated as follows:

$$
\mathrm{PD}_{\text {MAX }}=2 \times \mathrm{V}_{\text {S }} \times I_{\text {SMAX }}+\left(\mathrm{V}_{\text {S }}-\mathrm{V}_{\text {OUTMAX }}\right) \times \frac{\mathrm{V}_{\text {OUTMAX }}}{R_{\mathrm{L}}}
$$

where:
$\mathrm{T}_{\text {MAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
PD ${ }_{\text {MAX }}=$ Maximum power dissipation of each amplifier
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
ISMAX = Maximum supply current of each amplifier
VOUTMAX $=$ Maximum output voltage swing of the application
$R_{L}=$ Load resistance
To serve as a guide for the user, we can calculate maximum allowable supply voltages for the example of the video cabledriver below since we know that $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MAX}}=$ $85^{\circ} \mathrm{C}$, ISMAX $=7.6 \mathrm{~mA}$ per amplifier, and the package θ_{JAS} are shown in Table 1. If we assume (for this example) that we are driving a back-terminated video cable, then the maximum average value (over duty-cycle) of $\mathrm{V}_{\text {OUTMAX }}$ is 1.4 V , and $\mathrm{R}_{\mathrm{L}}=150 \Omega$, giving the results seen in Table 1.

TABLE 1.

PART	PACKAGE	$\Theta_{\text {JA }}$	MAX PDISS $@ T_{\text {MAX }}$	MAX V
DUALS				
EL2245CN	PDIP8	$100^{\circ} \mathrm{C} / \mathrm{W}$	$0.650 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 16.6 \mathrm{~V}$
EL2245CS	SO8	$160^{\circ} \mathrm{C} / \mathrm{W}$	$0.406 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 10.5 \mathrm{~V}$
QUADS				
EL2445CN	PDIP14	$81^{\circ} \mathrm{C} / \mathrm{W}$	$0.802 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 11.5 \mathrm{~V}$
EL2445CS	SO14	$120^{\circ} \mathrm{C} / \mathrm{W}$	$0.542 \mathrm{~W} @ 85^{\circ} \mathrm{C}$	$\pm 7.5 \mathrm{~V}$

Single-Supply Operation

The EL2245 and EL2445 have been designed to have a wide input and output voltage range. This design also makes the EL2245 and EL2445 an excellent choice for singlesupply operation. Using a single positive supply, the lower input voltage range is within 100 mV of ground $\left(R_{L}=500 \Omega\right)$, and the lower output voltage range is within 300 mV of ground. Upper input voltage range reaches 4.2 V , and output voltage range reaches 3.8 V with a 5 V supply and $R_{L}=500 \Omega$. This results in a 3.5 V output swing on a single 5 V supply. This wide output voltage range also allows singlesupply operation with a supply voltage as high as 36 V or as low as 2.5 V . On a single 2.5 V supply, the EL2245 and EL2445 still have 1V of output swing.

Gain-Bandwidth Product and the -3dB Bandwidth

The EL2245 and EL2445 have a bandwidth at gain-of-2 of 100 MHz while using only 5.2 mA of supply current per amplifier. For gains greater than 4, their closed-loop-3dB bandwidth is approximately equal to the gain-bandwidth product divided by the noise gain of the circuit. For gains less than 4, higher-order poles in the amplifiers' transfer
function contribute to even higher closed loop bandwidths. For example, the EL2245 and EL2445 have a -3dB bandwidth of 100 MHz at a gain of +2 , dropping to 20 MHz at a gain of +5 . It is important to note that the EL2245 and EL2445 have been designed so that this "extra" bandwidth in low-gain applications does not come at the expense of stability. As seen in the typical performance curves, the EL2245 and EL2445 in a gain of +2 only exhibit 1.0 dB of peaking with a $1 \mathrm{k} \Omega$ load.

Video Performance

An industry-standard method of measuring the video distortion of components such as the EL2245/ EL2445 is to measure the amount of differential gain (dG) and differential phase (dP) that they introduce. To make these measurements, a $0.286 \mathrm{~V}_{\mathrm{PP}}$ (40 IRE) signal is applied to the device with OV DC offset (O IRE) at either 3.58 MHz for NTSC or 4.43 MHz for PAL. A second measurement is then made at 0.714 V DC offset (100 IRE). Differential gain is a measure of the change in amplitude of the sine wave, and is measured in percent. Differential phase is a measure of the change in phase, and is measured in degrees.

For signal transmission and distribution, a back-terminated cable (75Ω in series at the drive end, and 75Ω to ground at the receiving end) is preferred since the impedance match at both ends will absorb any reflections. However, when double termination is used, the received signal is halved; therefore a gain of 2 configuration is typically used to compensate for the attenuation.

The EL2245 and EL2445 have been designed as an economical solution for applications requiring low video distortion. They have been thoroughly characterized for video performance in the topology described above, and the results have been included as typical dG and dP specifications and as typical performance curves. In a gain of +2 , driving 150Ω, with standard video test levels at the input, the EL2245 and EL2445 exhibit dG and dP of only 0.02% and 0.07° at NTSC and PAL. Because dG and dP can vary with different DC offsets, the video performance of the EL2245 and EL2445 has been characterized over the entire DC offset range from -0.714 V to +0.714 V . For more information, refer to the curves of dG and dP vs DC Input Offset.

Output Drive Capability

The EL2245 and EL2445 have been designed to drive low impedance loads. They can easily drive $6 \mathrm{~V}_{\mathrm{PP}}$ into a 150Ω load. This high output drive capability makes the EL2245 and EL2445 an ideal choice for RF, IF and video applications. Furthermore, the current drive of the EL2245 and EL2445 remains a minimum of 35 mA at low temperatures.

Printed-Circuit Layout

The EL2245 and EL2445 are well behaved, and easy to apply in most applications. However, a few simple
techniques will help assure rapid, high quality results. As with any high-frequency device, good PCB layout is necessary for optimum performance. Ground-plane construction is highly recommended, as is good power supply bypassing. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended for bypassing both supplies. Lead lengths should be as short as possible, and bypass capacitors should be as close to the device pins as possible. For good AC performance, parasitic capacitances should be kept to a minimum at both inputs and at the output. Resistor values should be kept under $5 \mathrm{k} \Omega$ because of the RC time constants associated with the parasitic capacitance. Metal-film and carbon resistors are both acceptable, use of wire-wound resistors is not recommended because of their parasitic inductance. Similarly, capacitors should be low-inductance for best performance.

The EL2245 and EL2445 Macromodel

This macromodel has been developed to assist the user in simulating the EL2245 and EL2445 with surrounding circuitry. It has been developed for the PSPICE simulator (copywritten by the Microsim Corporation), and may need to be rearranged for other simulators. It approximates $D C, A C$, and transient response for resistive loads, but does not accurately model capacitive loading. This model is slightly more complicated than the models used for low-frequency op-amps, but it is much more accurate for AC analysis.
The model does not simulate these characteristics accurately:

- Noise
- Settling time
- Non-linearities
- Temperature effects
- Manufacturing variations
- CMRR
- PSRR

EL2245 and EL2445 Macromodel

* Connections: +input
* | -input
*
*
*
*

$\begin{array}{llllll}\text { subckt M2245 } & 3 & 2 & 7 & 4 & 6\end{array}$
*

* Input stage
*

ie 7371 mA
r6 3637400
r7 3837400
rc1 430850
rc2 439850
q1 30336 qp q2 39238 qpa ediff 33039301.0 rdiff 3301 Meg
*

* Compensation Section
*

ga 0343301 m
rh 3402 Meg
ch 340 1.3pF
rc 3440 1K
cc 4001 pF
*

* Poles
*

ep 4104001
rpa 4142200
cpa 420 1pF
rpb 4243200
cpb 430 1pF

* Output Stage
*

ios1 7501.0 mA
ios2 5141.0 mA
q3 44350 qp
q4 74351 qn
q5 75052 qn
q6 45153 qp
ros1 52625
ros2 65325
*

* Power Supply Current
ips 742.7 mA
* Models
*

.model qn npn(is $=800 \mathrm{E}-18 \mathrm{bf}=200 \mathrm{tf}=0.2 \mathrm{nS})$.model qpa pnp(is $=864 \mathrm{E}-18 \mathrm{bf}=100 \mathrm{tf}=0.2 \mathrm{nS}$) .model qp pnp(is=800E-18 bf=125 tf=0.2nS) ends

EL2245 and EL2445 Macromodel (Continued)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

