feATURES

- 220MHz Gain-Bandwidth Product
- 1500V/us Slew Rate
- 6.5 mA Supply Current per Amplifier
- Space Saving MSOP and SSOP Packages
- Ultra Small SOT-23 and Leadless DFN Packages
- Programmable Current Option
- $6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ Input Noise Voltage
- Unity-Gain Stable
- 1.5 mV Maximum Input Offset Voltage
- $8 \mu \mathrm{~A}$ Maximum Input Bias Current
- 800nA Maximum Input Offset Current
- 50mA Minimum Output Current, $\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}$
- $\pm 3.5 \mathrm{~V}$ Minimum Input CMR, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
- Specified at $\pm 5 \mathrm{~V}$, Single 5 V Supplies
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIOOS

- Wideband Amplifiers
- Buffers
- Active Filters
- Video and RF Amplification
- Communication Receivers
- Cable Drivers
- Data Acquisition Systems

DESCRIPTIOn

The LT ${ }^{\circledR 1815 / L T 1816 / L T 1817 ~ a r e ~ l o w ~ p o w e r, ~ h i g h ~ s p e e d, ~}$ very high slew rate operational amplifiers with excellent DC performance. The LT1815/LT1816/LT1817 feature higher bandwidth and slew rate, much lower input offset voltage and lower noise and distortion than other devices with comparable supply current. A programmable current option (LT1815 and LT1816A) allows power savings and flexibility by operating at reduced supply current and speed. The circuit topology is a voltage feedback amplifier with the slewing characteristics of a current feedback amplifier.
The output drives a 100Ω load to $\pm 3.8 \mathrm{~V}$ with $\pm 5 \mathrm{~V}$ supplies. On a single 5V supply, the output swings from 1 V to 4 V with a 100Ω load connected to 2.5 V . Harmonic distortion is -70 dB for a 5 MHz , $2 \mathrm{~V}_{\text {p.p output driving a }}$ 100Ω load in a gain of -1 .
The LT1815/LT1816/LT1817 are manufactured on Linear Technology's advanced low voltage complementary bipolar process and are available in a variety of SOT-23, SO, MSOP, SSOP and leadless DFN packages.

[^0]TYPICAL APPLICATION
Programmable Current Amplifier Switches from Low Power Mode to Full Speed Mode

LT1815
 LT1816/LT1817

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Total Supply Voltage (V^{+}to V^{-}) \qquad 12.6 V Differential Input Voltage
(Transient Only, Note 2) \qquad $\pm 6 \mathrm{~V}$
Input Voltage \qquad $\pm V_{S}$ Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 8) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$Maximum Junction Temperature$150^{\circ} \mathrm{C}$
(DD Package) $125^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
(DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

[^1]*The temperature grades are identified by a label on the shipping container.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply vere the tull operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (Note 8). $\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the ISET pin must be connected to V^{-}through 75Ω or less, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITSmVmVmV
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & \text { (Note 4) } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		0.2	$\begin{gathered} 1.5 \\ 2.0 \\ 3.0 \\ \hline \end{gathered}$	
	Input Offset Voltage (Low Power Mode) (Note 10)	LT1815S6/LT1816A, 40k Ω Between I SET and V^{-} $\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		2	$\begin{gathered} \hline 7 \\ 9 \\ 10 \end{gathered}$	mV mV mV
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage Drift	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \text { (Note 7) } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \text { (Note } 7 \text {) } \end{aligned}$	\bullet		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		60	$\begin{gathered} 800 \\ 1000 \\ 1200 \end{gathered}$	nA nA nA
I_{B}	Input Bias Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		-2	$\begin{gathered} \pm 8 \\ \pm 10 \\ \pm 12 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$			6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\underline{i_{n}}$	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$			1.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$V_{C M}= \pm 3.5 \mathrm{~V}$ Differential		1.5	$\begin{gathered} 5 \\ 750 \end{gathered}$		$M \Omega$ $\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				2		pF
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	\bullet	$\begin{aligned} & \pm 3.5 \\ & \pm 3.5 \end{aligned}$	± 4.2		V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} \mathrm{V}_{\mathrm{CM}} & = \pm 3.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 75 \\ & 73 \\ & 72 \end{aligned}$	85		dB dB $d B$
	Minimum Supply Voltage	Guaranteed by PSRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	\bullet		± 1.25	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	V
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V} \text { to } \pm 5.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 78 \\ & 76 \\ & 75 \end{aligned}$	97		dB dB dB
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 3 V, R_{L}=100 \Omega, \text { LT1816/LT1817 } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 82 \\ & 81 \\ & 80 \end{aligned}$	100		dB dB dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} \mathrm{V}_{\text {OUT }} & = \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 0.8 \end{aligned}$	3		V / mV V / mV V / mV
		$\begin{aligned} \mathrm{V}_{\text {OUT }} & = \pm 3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ \mathrm{~T}_{A} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 0.7 \\ & 0.5 \\ & 0.4 \end{aligned}$	2.5		V / mV V / mV V / mV
$V_{\text {OUT }}$	Maximum Output Swing	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =500 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ T_{A} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ T_{A} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \pm 3.8 \\ & \pm 3.7 \\ & \pm 3.6 \end{aligned}$	± 4.1		V
		$\begin{aligned} & R_{L}=100 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \pm 3.50 \\ & \pm 3.25 \\ & \pm 3.15 \end{aligned}$	± 3.8		V V

ELECTRICALCHPRACTERISTCS The \bullet denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8). $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the ISET pin must be connected to V^{-}through 75Ω or less, unless otherwise noted.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8). $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, 0 V ; $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the $I_{\text {SET }}$ pin must be connected to V^{-}through 75Ω or less, unless otherwise noted.

ELECTRICAL CHARACTERISTICS The o denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8). $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, 0 V ; $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the ISET pin must be connected to V^{-}through 75Ω or less, unless otherwise noted.

ELECTRICAL CHARACTERISTICS The • denotes the speciifications which apply over the full operating

 temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$ (Note 8). $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V unless otherwise noted. For the programmable current option (LT1815S6 or LT1816A), the ISET pin must be connected to V^{-}through 75Ω or less, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\text {SET }}$ | $I_{\text {SET }}$ Pin Current (Note 10) | LT1815S6/LT1816A $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | \bullet | $\begin{aligned} & -150 \\ & -175 \\ & -200 \end{aligned}$ | -100 | | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Differential inputs of $\pm 6 \mathrm{~V}$ are appropriate for transient operation only, such as during slewing. Large sustained differential inputs can cause excessive power dissipation and may damage the part.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift.
Note 5: Slew rate is measured between $\pm 2 \mathrm{~V}$ at the output with $\pm 3 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies and $2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ at the output with a $3 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ input for single 5 V supplies.
Note 6: Full-power bandwidth is calculated from the slew rate:
$F P B W=S R / 2 \pi V_{p}$.

Note 8: The LT1815C/LT1816C/LT1817C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and are designed, characterized and expected to meet the extended temperature limits, but are not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT1815I/LT1816I/LT1817I are guaranteed to meet the extended temperature limits.
Note 9: Thermal resistance (θ_{JA}) varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. If desired, the thermal resistance can be substantially reduced by connecting Pin 2 of the SOT-23, Pin 4 of the S0-8 and MS8, Pin 5 of the MS10 or the underside metal of the DD package to a large metal area.
Note 10: A resistor of 40 k or less is required between the $\mathrm{I}_{\text {SET }}$ and V^{-}pins of the LT1815S6 and the LT1816AMS. See the applications section for information on selecting a suitable resistor.

Note 7: This parameter is not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

181567 F03

Gain Bandwidth Product vs Programming Resistor

181567 F02

181567 G24

Distortion vs Frequency, $A_{V}=2$

Slew Rate vs Temperature

Distortion vs Frequency, $A_{V}=-1$

Differential Gain and Phase vs Supply Voltage

Distortion vs Frequency, $A_{V}=1$

TYPICAL PGRFORMANCE CHARACTERISTICS

Small-Signal Transient,
$A_{V}=1$

Large-Signal Transient, $A_{V}=1, V_{S}= \pm 5 \mathrm{~V}$

APPLICATIONS InFORMATION

Layout and Passive Components

As with all high speed amplifiers, the LT1815/LT1816/ LT1817 require some attention to board layout. A ground plane is recommended and trace lengths should be minimized, especially on the negative input lead.
Low ESL/ESR bypass capacitors should be placed directly at the positive and negative supply ($0.01 \mu \mathrm{~F}$ ceramics are recommended). For high drive current applications, additional $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalums should be added.

The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. If feedback resistors greater than 1 k are used, a parallel capacitor of value:

$$
\mathrm{C}_{\mathrm{F}}>\mathrm{R}_{\mathrm{G}} \cdot \mathrm{C}_{\mathrm{CN}} / \mathrm{R}_{\mathrm{F}}
$$

should be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is 1 and a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}. An example would be an I-to-V converter.

Input Considerations

The inputs of the LT1815/LT1816/LT1817 amplifiers are connected to the base of an NPN and PNP bipolar transistor in parallel. The base currents are of opposite polarity and provide first-order bias current cancellation. Due to variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current, however, does not depend on beta matching and is tightly controlled. Therefore, the use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized. For example, with a 100Ω source resistance at each input, the 800nA maximum offset current results in only $80 \mu \mathrm{~V}$ of extra offset, while without balance the $8 \mu \mathrm{~A}$ maximum input bias current could result in a 0.8 mV offset contribution.

The inputs can withstand differential input voltages of up to 6 V without damage and without needing clamping or series resistance for protection. This differential input voltage generates a large internal current (up to 80 mA),
which results in the high slew rate. In normal transient closed-loop operation, this does not increase power dissipation significantly because of the low duty cycle of the transient inputs. Sustained differential inputs, however, will result in excessive power dissipation and therefore this device should not be used as a comparator.

Capacitive Loading

The LT1815/LT1816/LT1817 are optimized for high bandwidth and low distortion applications. They can drive a capacitive load of 10 pF in a unity-gain configuration and more with higher gain. When driving a larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability.

Slew Rate

The slew rate of the LT1815/LT1816/LT1817 is proportional to the differential input voltage. Therefore, highest slew rates are seen in the lowest gain configurations. For example, a 5 V output step in a gain of 10 has a 0.5 V input step, whereas in unity gain there is a 5 V input step. The LT1815/LT1816/ LT1817 are tested for a slew rate in a gain of -1 . Lower slew rates occur in higher gain configurations.

Programmable Supply Current (LT1815/LT1816A)

In order to operate the LT1815S6 or LT1816A at full speed (and full supply current), connect the $I_{\text {SET }}$ pin to the negative supply through a resistance of 75Ω or less.
To adjust or program the supply current and speed of the LT1815S6 or LT1816A, connectan external resistor (RSET) between the $I_{\text {SET }}$ pin and the negative supply as shown in Figure 1. The amplifiers are fully functional with $0 \leq R_{\text {SET }}$ $\leq 40 \mathrm{k}$. Figures 2 and 3 show how the gain bandwidth and supply current vary with the value of the programming resistor R ${ }_{\text {SET }}$. In addition, the Electrical Characteristics section of the data sheet specifies maximum supply current and offset voltage, as well as minimum gain bandwidth and output current at the maximum $\mathrm{R}_{\text {SET }}$ value of 40 k .

APPLICATIONS InFORMATION

Figure 1. Programming Resistor Between $\mathrm{I}_{\text {SET }}$ and V^{-}

Figure 2. Gain Bandwidth Product vs R SET Programming Resistor

Figure 3. Supply Current vs $\mathrm{R}_{\text {SET }}$ Programming Resistor

Power Dissipation

The LT1815/LT1816/LT1817 combine high speed and large output drive in small packages. It is possible to exceed the maximum junction temperature specification $\left(150^{\circ} \mathrm{C}\right)$ under certain conditions. Maximum junction temperature (T_{J}) is calculated from the ambient temperature $\left(T_{A}\right)$, power dissipation per amplifier $\left(\mathrm{P}_{\mathrm{D}}\right)$ and number of amplifiers (n) as follows:

$$
T_{J}=T_{A}+\left(n \bullet P_{D} \bullet \theta_{J A}\right)
$$

Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current. The worstcase load induced power occurs when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ the supply voltage). Therefore $P_{\text {DMAX }}$ is:

$$
\begin{aligned}
& P_{\text {DMAX }}=\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \cdot\left(\mathrm{I}_{\text {SMAX }}\right)+\left(\mathrm{V}^{+} / 2\right)^{2} / \mathrm{R}_{\mathrm{L}} \text { or } \\
& P_{\text {Dmax }}=\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \cdot(\text { Ismax })+\left(\mathrm{V}^{+}-\mathrm{V}_{\text {Omax }}\right) \cdot \\
& \text { (} V_{\text {omax }} / R_{L} \text {) }
\end{aligned}
$$

Example: LT1816IS8 at $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$

$$
\begin{aligned}
& \mathrm{P}_{\text {DMAX }}=(10 \mathrm{~V}) \cdot(11.5 \mathrm{~mA})+(2.5 \mathrm{~V})^{2} / 100 \Omega=178 \mathrm{~mW} \\
& \mathrm{~T}_{\text {JMAX }}=85^{\circ} \mathrm{C}+(2 \cdot 178 \mathrm{~mW}) \cdot\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=138^{\circ} \mathrm{C}
\end{aligned}
$$

Circuit Operation

The LT1815/LT1816/LT1817 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. Complementary NPN and PNP emitter followers buffer the inputs and drive an internal resistor. The input voltage appears across the resistor, generating current that is mirrored into the high impedance node.

Complementary followers form an output stage that buffers the gain node from the load. The input resistor, input stage transconductance and the capacitor on the high impedance node determine the bandwidth. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input step. Highest slew rates are therefore seen in the lowest gain configurations.

LT1815

LT1816/LT1817
SImPLIFIGD SCHEMATIC (one amplifier)

TYPICAL APPLICATIONS

Two Op Amp Instrumentation Amplifier

$\mathrm{GAIN}=\left[\frac{\mathrm{R} 4}{\mathrm{R} 3}\right]\left[1+\left(\frac{1}{2}\right)\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+\frac{\mathrm{R} 3}{\mathrm{R} 4}\right)+\frac{(\mathrm{R} 2+\mathrm{R} 3)}{\mathrm{R} 5}\right]=102$
TRIM R5 FOR GAIN
TRIM R1 FOR COMMON MODE REJECTION
181567 TA03 $B W=2 \mathrm{MHz}$

TYPICAL APPLICATIONS

Photodiode Transimpedance Amplifier

4MHz, 4th Order Butterworth Filter

S5 Package
5-Lead Plastic SOT-23
(Reference LTC DWG \# 05-08-1633)
(Reference LTC DWG \# 05-08-1635)

2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)

ATTENTION: ORIGINAL SOT23-5L PACKAGE.
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23 PACKAGE, DRAWING \# 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE

S6 Package
6-Lead Plastic SOT-23
(Reference LTC DWG \# 05-08-1634)
(Reference LTC DWG \# 05-08-1636)

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698)

BOTTOM VIEW-EXPOSED PAD

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 variation OF (WEED-1) 2. ALL DIMENSIONS ARE IN MILLIMETERS
2. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE 4. EXPOSED PAD SHALL BE SOLDER PLATED

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

2. DRAWING NOT TO SCALE
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102 mm (.004") MAX

MS10 Package
10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

S Package

14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

1. CONTROLLING DIMENSION: INCHES
2. DIMENSIONS ARE IN $\frac{\text { INCHES }}{\text { (MILLIMETERS }}$
3. DRAWING NOT TO SCALE GN16 (SSOP) 0502
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010 " (0.254 mm) PER SIDE

LT1815
 LT1816/LT1817

TYPICAL APPLICATIONS

Bandpass Filter with Independently Settable Gain, Q and f_{C}
455kHz Filter Frequency Response

Differential DSL Receiver

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1363/LT1364/LT1365	Single/Dual/Quad 70MHz, 1V/ns, C-Load ${ }^{\text {TM }}$ Op Amp	Wide Supply Range: $\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
LT1395/LT1396/LT1397	Single/Dual/Quad 400MHz Current Feedback Amplifier	4.6mA Supply Current, $800 \mathrm{~V} / \mu \mathrm{s}, 80 \mathrm{~mA}$ Output Current
LT1806/LT1807	Single/Dual 325MHz, 140V/ $/$ s Rail-to-Rail I/0 Op Amp	Low Noise: $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1809/LT1810	Single/Dual 180MHz, 350V/ μ s Rail-to-Rail I/0 Op Amp	Low Distortion: 90dBc at 5MHz
LT1812/LT1813/LT1814	Single/Dual/Quad 3mA, 100MHz, 750V/us Op Amp	Low Power: $3.6 \mathrm{~mA} \mathrm{Max} \mathrm{at} \pm 5 \mathrm{~V}$

C-Load is a trademark of Linear Technology Corporation.

[^0]: $\mathbf{\triangle T}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^1]: Consult LTC Marketing for parts specified with wider operating temperature ranges.

