MITSUBISHI MICROCOMPUTERS 4282 Group

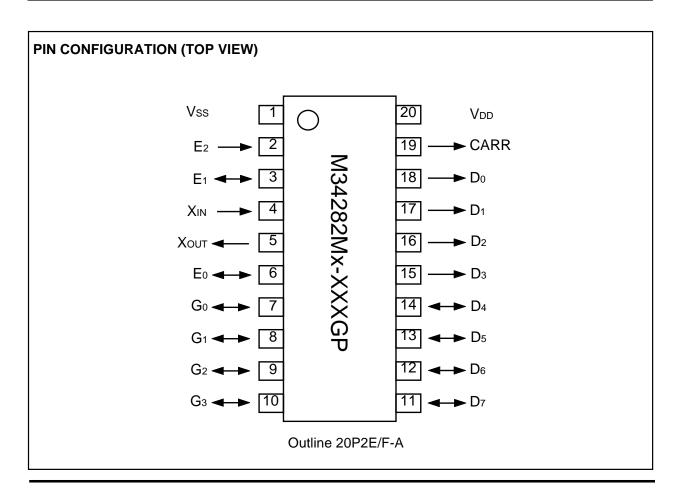
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

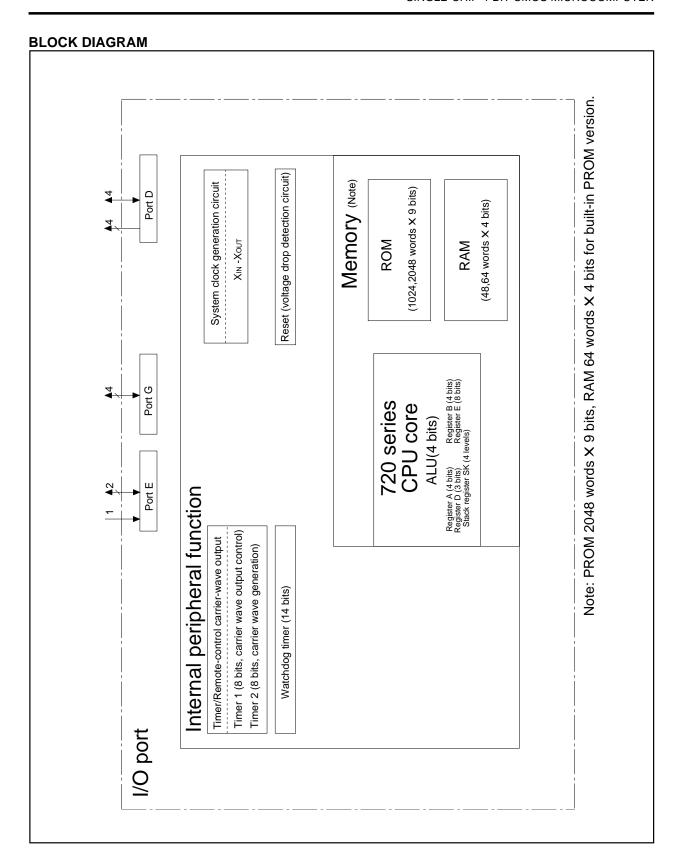
The 4282 Group enables fabrication of 8×7 key matrix and has the followin timers;

- an 8-bit timer which can be used to set each carrier wave and has two reload register
- an 8-bit timer which can be used to auto-control and has a reload register.

FEATURES


- (This has two reload registers and carrier wave output function)

 Logic operation function (XOR, OR, AND)
- · RAM back-up function
- Key-on wakeup function (ports D4-D7, E0-E2, G0-G3) 11
- Oscillation circuit Ceramic resonance
- · Watchdog timer
- · Power-on reset circuit


APPLICATION

Various remote control transmitters

Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34282M1-XXXGP	1024 words	48 words	20P2E/F-A	Mask ROM
M34282M2-XXXGP	2048 words	64 words	20P2E/F-A	Mask ROM
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM

PERFORMANCE OVERVIEW

Pa	aramete	r	Function			
Number of bas	ic instru	ctions	68			
Minimum instruction execution time		ecution time	8.0 μ s (f(XiN) = 4.0 MHz, system clock = f(XiN)/8, Vdd = 3 V)			
Memory sizes ROM M34282M2/E2			048 words X 9 bits			
		M34282M1	1024 words X 9 bits			
	RAM	M34282M2/E2	64 words X 4 bits			
		M34282M1	48 words X 4 bits			
Input/Output	D0-D3	Output	Four independent output ports			
ports	D4-D7	I/O	Four independent I/O ports with the pull-down function			
	E0-E2	Input	3-bit input port with the pull-down function			
	E0, E1 Output		2-bit output port (E ₀ , E ₁)			
	G0-G3 I/O 4-bit		4-bit I/O port with the pull-down function			
	CARR	Output	1-bit output port; CMOS output			
Timer	Timer 1		8-bit timer with a reload register			
	Timer 2	2	8-bit timer with two reload registers			
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)			
Device structur	re		CMOS silicon gate			
Package			20-pin plastic molded SSOP (20P2E/F-A)			
Operating temp	perature	range	−20 °C to 85 °C			
Supply voltage			1.8 V to 3.6 V			
Power	Active	mode	400 μΑ			
dissipation			$(f(X_{IN}) = 4.0 \text{ MHz}, \text{ system clock} = f(X_{IN})/8, V_{DD} = 3 \text{ V})$			
(typical value)	RAM b	ack-up mode	0.1 μ A (at room temperature, VDD = 3 V)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator
Хоит	System clock output	Output	between pins XIN and XOUT. The feedback resistor is built-in between pins XIN and XOUT.
D0-D3	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is P-channel open-drain.
D4-D7	I/O port D	I/O	1-bit I/O port. For input use, set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. The output structure is P-channel open-drain.
E0-E2	I/O port E	Output	2-bit (E ₀ , E ₁) output port. The output structure is P-channel open-drain.
		Input	3-bit input port. For input use (E ₀ , E ₁), set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. Port E ₂ has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.
Go-G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. When the built-in pull-down transistor is turned on, the keyon wakeup function using "H" level sense and pull-down transistor become valid.
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).
E ₂	Open or connect to Vss pin.
G0-G3	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).

Notes 1: Ports D4–D7: Set the bit 2 (PU02) of the pull-down control register PU1 to "0" by software and turn the pull-down transistor OFF

2: Set the corresponding bits of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "1" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "1" by software.
 Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vpp at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/	Output structure	Control	Control	Control	Remark
		Output	- Catput off actard	bits	instructions	registers	. tomant
Port D	D0-D3	Output	P-channel open-drain	1 bit	SD		
		(4)			RD		
					CLD		
	D4-D7	I/O			SD	PU1	Pull-down function and
		(4)			RD		key-on wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and
	E ₁	(2)		2 bits	IAE		key-on wakeup function
				Input:			(programmable)
	E ₂	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA	PU0	Pull-down function and
		(4)			IAG		key-on wakeup function
							(programmable)
Port CARR	CARR	Output	CMOS	1 bit	SCAR		
		(1)			RCAR		

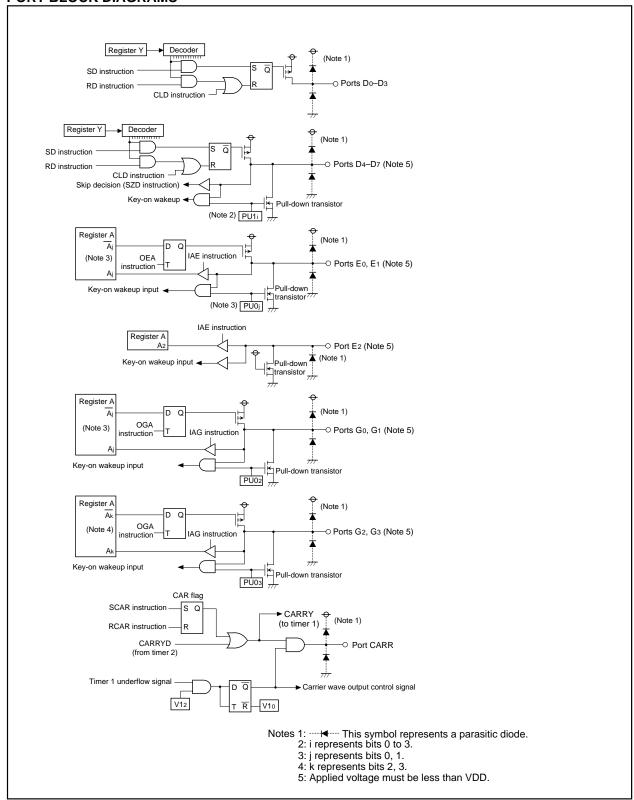
DEFINITION OF CLOCK AND CYCLE

• System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock
When not using	f(XIN)/8	f(XIN)/32
When using	f(XIN)	f(XIN)/4

• Instruction clock (INSTCK)


The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A_0 is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

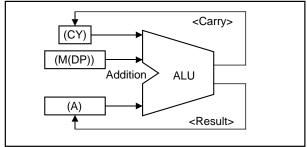


Fig. 1 AMC instruction execution example

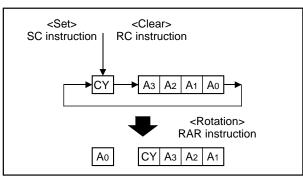


Fig. 2 RAR instruction execution example

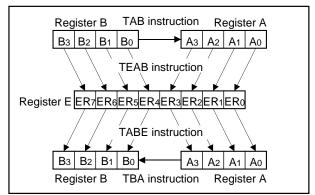


Fig. 3 Registers A, B and register E

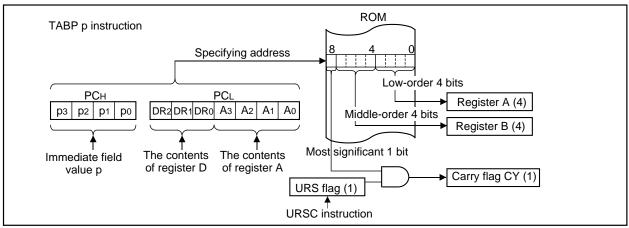


Fig. 4 TABP p instruction execution example

(5) Most significant ROM code reference enable flag (URS)

URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

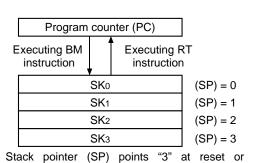

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

stack pointer (SP) points "3" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used ((SP) = 3), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

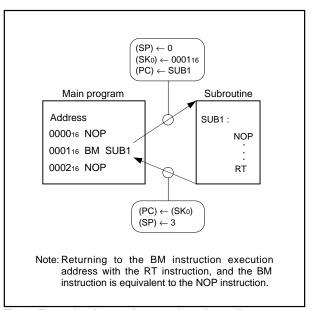


Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

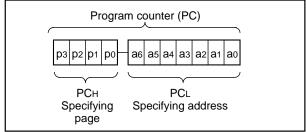


Fig. 7 Program counter (PC) structure

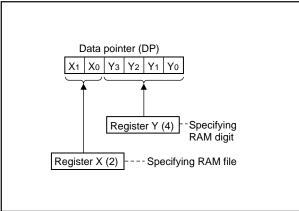


Fig. 8 Data pointer (DP) structure

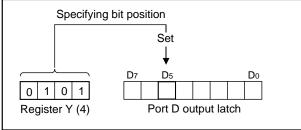


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages
M34282M2/E2	2048 words	16 (0 to 15)
M34282M1	1024 words	8 (0 to 7)

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP p instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 11 shows the RAM map.

Table 2 RAM size

Product	RAM size				
M34282M2/E2	64 words X 4 bits (256 bits)				
M34282M1	48 words X 4 bits (192 bits)				

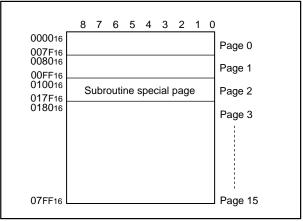


Fig. 10 ROM map of M34282M2/E2

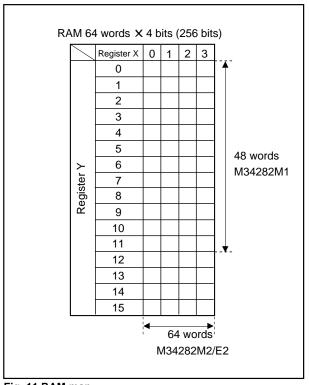


Fig. 11 RAM map

TIMERS

The 4282 Group has the programmable timer.

• Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

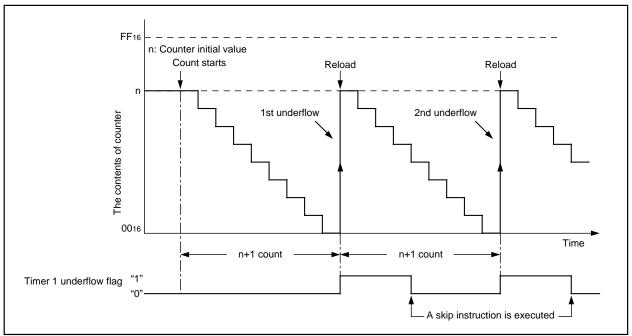


Fig. 12 Auto-reload function

The 4282 Group timer consists of the following circuit.

- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers V1 and V2.

Each timer function is described below.

Table 3 Function related timer

Circuit	Ctructure	Count course	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Ose of output signal	register
Timer 1	8-bit programmable	Carrier wave output (CARRY)	1 to 256	Carrier wave output control	V1
	binary down counter	Bit 5 of watchdog timer			
Timer 2	8-bit programmable	• f(XIN)	1 to 256	Carrier wave output	V2
	binary down counter	• f(X _{IN})/2			
14-bit timer	14-bit fixed frequency	Instruction clock	16384	Watchdog timer	
				Timer 1 count source	

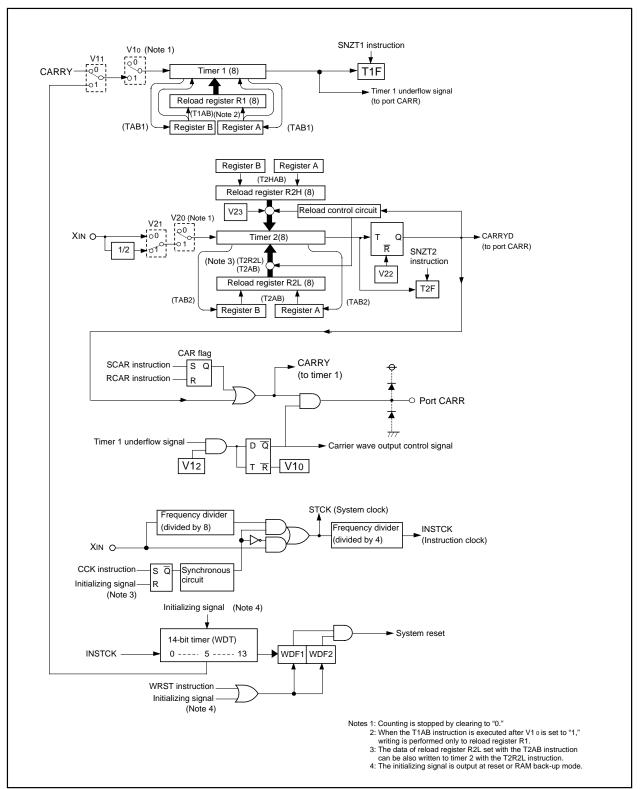


Fig. 13 Timers structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 4 Control registers related to timer

	Timer control register V1		t reset : 0002	at RAM back-up : 0002	W
\/1	V12 Carrier wave output auto-control bit		Auto-control output by timer 1 is invalid		
"			Auto-control output	by timer 1 is valid	
\/1	Times 1 count course coloction hit	0	Carrier wave output	t (CARRY)	
VI	V1 ₁ Timer 1 count source selection bit		Bit 5 of watchdog ti	mer (WDT)	
\/1	Timer 1 control bit	0	Stop (Timer 1 state	retained)	
V1	o Timer i control bit	1	Operating		

	Timer control register V1		reset: 00002	at RAM back-up : 00002	W	
V13	\/4 \ Q		To expand "H" inte	To expand "H" interval is invalid		
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	rval is valid (when V22=1 selected)		
\//.	V4 Operation and the first transfer to the first transfer transfer to the first transfer tra		Carrier wave generation function invalid			
V12	Carrier wave generation function control bit	1	Carrier wave gener	ration function valid		
\/4	Time of Control of the Control of th	0	f(XIN)			
V1 ₁	Timer 2 count source selection bit	1	f(XIN)/2			
\/4.	Time and O a control in it	0	Stop (Timer 2 state	retained)		
V10	Timer 2 control bit	1	Operating			

Note: "W" represents write enabled.

(1) Control registers related to timer

Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

Timer control register V2
 Register V2 controls the timer 2 count source and the carrier
 wave generation function by timer. Set the contents of this
 register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers.

- · Count source
 - Stop timer 1 or timer 2 counting to change its count source.
- Watchdog timer
 - Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Timer 1 count operation
 - When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 256 μs (at the minimum instruction execution time : 8 μs) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- Stop of timer 2
 - Avoid a timing when timer 2 underflows to stop timer 2.
- Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 - When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1,
- $\ensuremath{\text{@}}$ select the count source with the bit 1 of register V1, and
- 3 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

When the bit 2 of register V1 is set to "1," the carrier wave output enable/disable interval of port CARR is alternately generated each timer 1 underflows (Figure 14).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8-bit binary down counter with the timer 2 reload registers (R2H and R2L).

Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.

The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.

Timer 2 starts counting after the following process;

- ① set data in timer 2,
- 2 select the count source with the bit 1 of register V2, and
- ③ select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave "H" interval expansion by bit 3), and
- 4 set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed;

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 underflow flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

When the carrier wave generation function is valid (V22="1"), the carrier wave which has the "L" interval set to the reload register R2L and "H" interval set to the reload register R2H can be output (Figure 15).

After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set

to "1". Then, the "H" interval data of carrier wave is reloaded from the reload register R2H, and count continues.

When timer underflows again after auto-reload, the T2F flag is set to "1". And then, the "L" interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.

When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;

- When to expand "H" interval is invalid (V23 = "0"), Count source X (n+1), n = 0 to 255
- When to expand "H" interval is valid (V23 = "1"), Count source X (n+1.5), n = 1 to 255

When a value set in reload register R2L is m, "L" interval of carrier wave is as follows;

Count source X (m+1), m = 0 to 255

Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to "1" when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).

Flags T1F and T2F are cleared to "0" when the next instruction is skipped with a skip instruction.

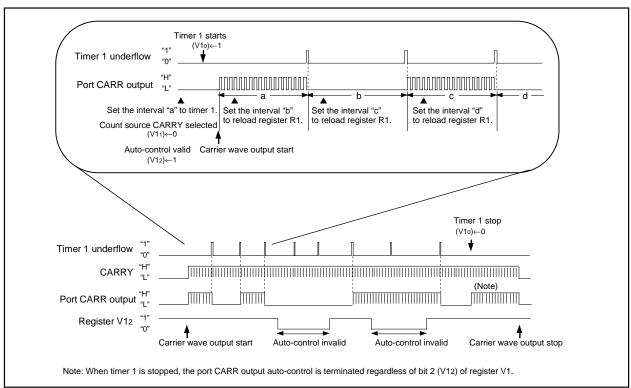


Fig. 14 Port CARR output control by timer 1

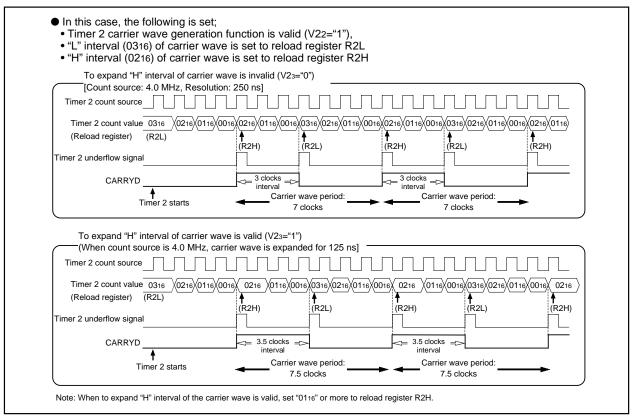


Fig. 15 Carrier wave generation example by timer 2

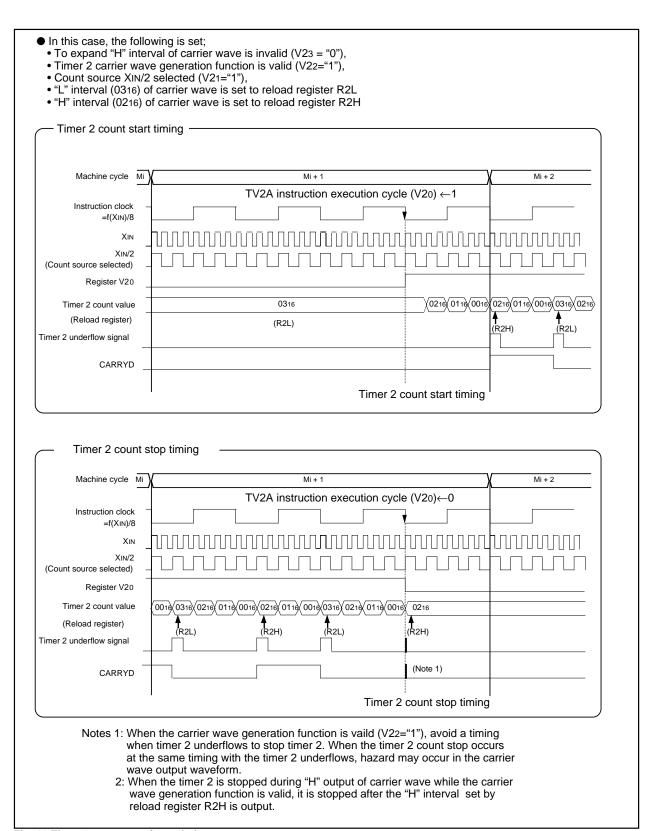


Fig. 16 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM back-up mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

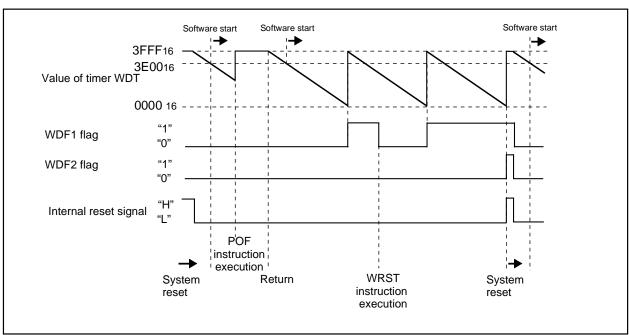


Fig. 17 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4282 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Table 5 Logic operation selection register LO

Logic operation selection register LO		at reset: 002			at RAM back-up : 002	W	
					Logic operation function		
LO ₁	LO1 Logic operation selection bits	0	0	Exclusive logic OR	Exclusive logic OR operation (XOR)		
		0	1	OR operation (OR)			
LO ₀		1	0	AND operation (AND)			
		1	1	Not available			

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

The 4282 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD=0 to 2.2 V is obtained at power-on 1ms or less.

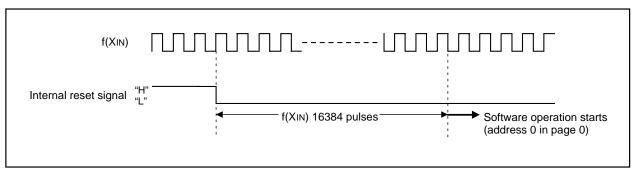


Fig. 18 Reset release timing

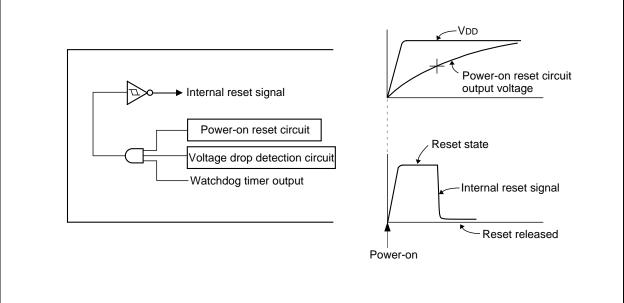


Fig. 19 Power-on reset circuit example

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 20 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 20 are undefined, so set the initial value to them.

• Program counter (PC)
Address 0 in page 0 is set to program counter.
• Power down flag (P)
• Timer 1 underflow flag (T1F)
• Timer 2 underflow flag (T2F)
• Timer control register V10 0 0
• Timer control register V20 0 0 0
Port CARR output flag (CAR)
Pull-down control register PU0 0 0 0 0
Pull-down control register PU1
Logic operation selection register LO
Most significant ROM code reference enable flag (URS)
• Carry flag (CY)
• Register A
• Register B
• Register X
• Register Y
Stack pointer (SP)

Fig. 20 Internal state at reset

Table 6 Port state at reset

Name	State at reset				
D0-D3	High impedance state				
D4-D7	High impedance state (Pull-down transistor OFF)				
Go–G3	High impedance state (Pull-down transistor OFF)				
E0, E1	High impedance state (Pull-down transistor OFF)				
CARR	"L" output				

Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

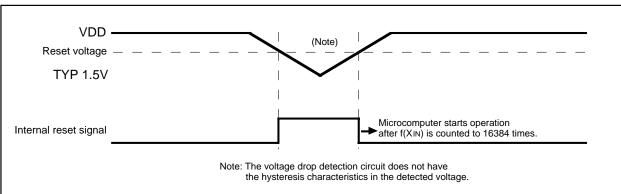


Fig. 21 Voltage drop detection circuit operation waveform

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RAM BACK-UP MODE

The 4282 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 22 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied.

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

Table 7 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	^
Contents of RAM	0
Port CARR	×
Ports D ₀ –D ₇	0
Ports E ₀ , E ₁	0
Port G	0
Timer control registers V1, V2	×
Pull-down control registers PU0, PU1	0
Logic operation selection register LO	×
Timer 1 function, Timer 2 function	×
Timer underflow flags (T1F, T2F)	×
Watchdog timer (WDT)	×
Watchdog timer flags (WDF1, WDF2)	×
MostsignificantROMcodereferenceenableflag(URS)	×

- Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

 Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
 - 2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

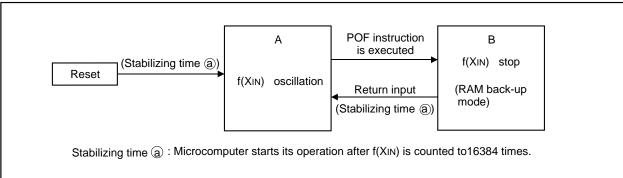


Fig. 22 State transition

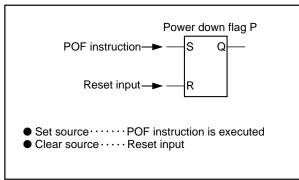


Fig. 23 Set source and clear source of the P flag

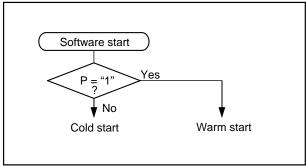


Fig. 24 Start condition identified example using the SNZP instruction

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

. Return source	Return condition	Remarks	
Ports D4-D7	Return by an external "H" level Only key-on wakeup function of the port whose pull-dow		
	input.	turned ON by register PU1 is valid.	
Ports E ₀ , E ₁ , G	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is	
	input.	turned ON by register PU0 is valid.	
Ports E ₂	Return by an external "H" level	Key-on wakeup function is always valid.	
	input.		

(5) Pull-down control register

Registers PU0 and PU1 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports E0, E1, G and ports D4–D7.

Set the contents of register PU0 or PU1 through register A with the TPU0A or TPU1A instruction, respectively.

Table 9 Pull-down control registers

	Pull-down control register PU0		Pull-down control register PU0		Pull-down control register PU0		reset: 00002	at RAM back-up : state retained	W
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transisto	tor OFF, key-on wakeup invalid					
P003	bit	1 Pull-down transistor ON, key-on wakeup valid							
PU02	Ports G ₀ , G ₁ pull-down transistor control	Pull-down transistor OFF, key-on wakeup invalid							
F U U 2	bit	Pull-down transistor ON, key-on wakeup valid							
PU0 ₁	Dort C. will down transistor control hit	0	Pull-down transistor OFF, key-on wakeup invalid						
PU01 Port E1 pull-down transistor control bit 1 Pull-down transistor ON, key-on wakeup valid									
PU0 ₀	Port E ₀ pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid						
P000	Port E0 pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid						

	Pull-down control register PU1	at reset : 00002		at RAM back-up : state retained	W		
DUIA	Dort De null down transister control hit	0	Pull-down transisto	or OFF, key-on wakeup invalid			
PU13 Port D7 pull-down transistor control bit			Pull-down transisto	r ON, key-on wakeup valid			
Pull-down transistor OFF, key				r OFF, key-on wakeup invalid			
PU12 Port D ₆ pull-down transistor control bit			Pull-down transistor ON, key-on wakeup valid				
PU1 ₁	Dort De null down transister control hit	0	Pull-down transisto	r OFF, key-on wakeup invalid			
PU11 Port D ₅ pull-down transistor control bit			Pull-down transistor ON, key-on wakeup valid				
DLIA	PU10 Port D4 pull-down transistor control bit		Pull-down transistor OFF, key-on wakeup invalid				
5010			Pull-down transistor ON, key-on wakeup valid				

Note: "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

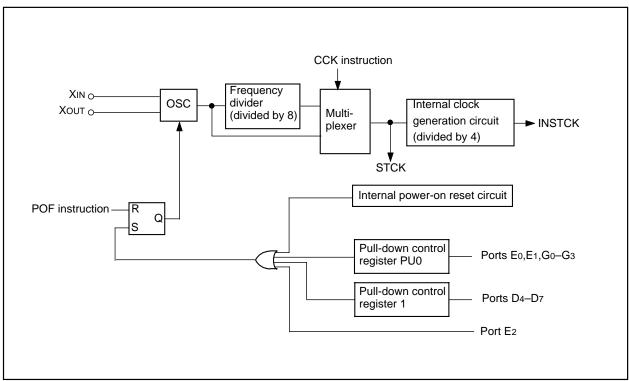


Fig. 25 Clock control circuit structure

System clock signal $f(X_{IN})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance as shown Figure 26.

A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form*
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- * For the mask ROM confirmation, refer to the "Mitsubishi MCU Technical Information" Homepage (http://www.infomicom.maec.co.jp/indexe.htm).

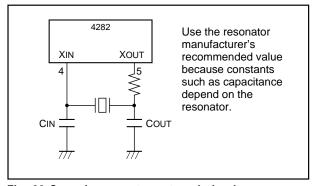


Fig. 26 Ceramic resonator external circuit

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins Vpb and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- · use the thickest wire.

In the One Time PROM version, port E2 is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E2/VPP pin as close as possible at the shortest distance.

2 Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.
 - Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and Vpp at the shortest distance and use the thick wire against noise.

3 Timer

Count source

Stop timer 1 or timer 2 counting to change its count source.

Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

- Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- · Timer 1 count operation
 - When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 256 μ s (at the minimum instruction execution time : 8 μ s) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- Stop of timer 2
 - Avoid a timing when timer 2 underflows to stop timer 2.
- · Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 When to expand "H" interval of carrier wave is valid, set "1"
 or more to reload register R2H.

Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTIONS

The 4282 Group has the 68 instructions. Each instruction is described as follows;

- (1) List of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	x	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	у	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
x	Register X (2 bits)		immediate value
Υ	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PC∟	Low-order 7 bits of program counter	←	Direction of data movement
SK	Stack register (11 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	_	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2L	Timer 2 reload register	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p ₃ p ₂ p ₁ p ₀
T2F	Timer 2 underflow flag	С	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	x	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
Р	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page		Grouping	Mnemonic	Function	Page
	TAB	(A) ← (B)	38			LA n	(A) ← n	31
							n = 0 to 15	
	TBA	(B) ← (A)	40			TABB	(OD) (OD) - 4	20
ē	TAY	$(A) \leftarrow (Y)$	40			TABP p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	39
ansf	IAI	$(A) \leftarrow (1)$	40				$(PCH) \leftarrow p p=0 \text{ to } 15$	
Register to register transfer	TYA	(Y) ← (A)	42				$(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$	
giste							When URS=0	
) re	TEAB	$(ER7-ER4) \leftarrow (B)$	41				(B) \leftarrow (ROM(PC))7 to 4	
er t		$(ER_3-ER_0) \leftarrow (A)$					$(A) \leftarrow (ROM(PC))3 \text{ to } 0$	
gist	TARE	(D) (ED ED)	00				When URS=1	
%	TABE	$(B) \leftarrow (ER_7 - ER_4)$ $(A) \leftarrow (ER_3 - ER_0)$	39				$(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$	
		(A) (= (E13=E10)					$(A) \leftarrow (ROM(PC))3 \text{ to } 0$	
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	40				$(PC) \leftarrow (SK(SP))$	
							(SP) ← (SP) – 1	
	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 3$	31					
RAM addresses		$(Y) \leftarrow y, y = 0 \text{ to } 15$			ion	AM	$(A) \leftarrow (A) + (M(DP))$	27
dre	INY	(Y) ← (Y) + 1	31		Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	27
/ ad		(1) ← (1) + 1	31		do o	AIVIC	$(CY) \leftarrow (A) + (W(DY)) + (CY)$	21
RAI	DEY	(Y) ← (Y) − 1	30		neti		(,,	
					rith	A n	$(A) \leftarrow (A) + n$	27
	ТАМ ј	$(A) \leftarrow (M(DP))$	40		⋖		n = 0 to 15	
		$(X) \leftarrow (X) \text{ EXOR(j)}$					(0)()	0.5
		j = 0 to 3				sc	(CY) ← 1	35
	XAM j	$(A) \longleftrightarrow (M(DP))$	43			RC	(CY) ← 0	33
	,	$(X) \leftarrow (X) EXOR(j)$						
		j = 0 to 3				SZC	(CY) = 0 ?	37
							_	
	XAMD j	$(A) \longleftrightarrow (M(DP))$	43			СМА	$(A) \leftarrow (\overline{A})$	30
sfer		$(X) \leftarrow (X) EXOR(j)$ j = 0 to 3				RAR	$\rightarrow \boxed{CY} \rightarrow \boxed{A_3A_2A_1A_0}$	33
tran		$(Y) \leftarrow (Y) - 1$				IVAIX	701 7/10/12/1/10	00
ster						LGOP	Logic operation	31
legi;	XAMI j	$(A) \longleftrightarrow (M(DP))$	43				instruction	
5		$(X) \leftarrow (X) EXOR(j)$					XOR, OR, AND	
RAM to register transfer		$j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) + 1$		F		SB j	(Mi(DD)) / 1	34
"		(1) ← (1) + 1				ر من	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	54
					ion	RB j	$(Mj(DP)) \leftarrow 0$	33
					Bit operation		j = 0 to 3	
					it op	070 :	(M:(DD)) 0.2	27
					Ä	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	37
							j = 0 t0 0	
	1	· '						

Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
SEAM	(A) = (M(DP)) ?	36		TV1A	$(V12-V10) \leftarrow (A2-A0)$	42
SEA n	(A) = n? n = 0 to 15	35		TAB1	(B) ← (T17–T14) (A) ← (T13–T10)	39
Ba	(PCH) ← a6-a0	27		T1AB	at timer 1 stop (V1₀=0): (R17-R14) ← (B)	37
ыср, а	(PCL) ← a6–a0	20			$(R13-R10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$	
BA a	$(PCL) \leftarrow (a6-a4, A3-A0)$	28			at timer 1 operating (V10=1): $(R17-R14) \leftarrow (B)$	
вьар, а	$(PCL) \leftarrow p$ $(PCL) \leftarrow (a6-a4, A3-A0)$	28		SNZT1		36
ВМ а	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$	28			After skipping the next instruction (T1F) ← 0	
BMI n a	(SD) / (SD) ± 1	20		TV2A	$(V23-V20) \leftarrow (A3-A0)$	42
ымс р, а	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow a_6 - a_0$	29	ration	TAB2	(B) \leftarrow (T27–T24) (A) \leftarrow (T23–T20)	39
BMLA p,	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$	29	Timer ope	Т2АВ	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$	38
RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	34		Т2НАВ	$(R2H7-R2H4) \leftarrow (B)$ $(R2H3-R2H0) \leftarrow (A)$	38
RTS	$(PC) \leftarrow (SK(SP))$	34		T2R2L	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T27-T24) \leftarrow (R2L3-R2L0)$	38
	· , , , ,			SNZT2	(T2F) = 1? After skipping the next instruction $(T2F) \leftarrow 0$	36
	SEA n B a BL p, a BA a BLA p, a BML p, a BML p, a	SEA n (A) = n? $n = 0$ to 15 Ba (PCL) \leftarrow a6-a0 BL p, a (PCH) \leftarrow p (PCL) \leftarrow (a6-a4, A3-A0) BLA p, a (PCH) \leftarrow p (PCL) \leftarrow (a6-a4, A3-A0) BM a (SP) \leftarrow (SP) + 1 (SK(SP)) \leftarrow (PC) (PCH) \leftarrow 2 (PCH) \leftarrow 2 (PCH) \leftarrow a6-a0 BML p, a (SP) \leftarrow (SP) + 1 (SK(SP)) \leftarrow (PC) (PCH) \leftarrow p p= 0 to 15 (PCL) \leftarrow (a6-a4, A3-A0) RT (PC) \leftarrow (SK(SP)) (SP) \leftarrow (SP) - 1	SEA n (A) = n ? 35 n = 0 to 15 27 BL p, a (PCL) \leftarrow a6-a0 27 BL p, a (PCH) \leftarrow p 28 (PCL) \leftarrow (a6-a4, A3-A0) 28 BLA p, a (PCH) \leftarrow p 28 (PCL) \leftarrow (a6-a4, A3-A0) 28 BM a (SP) \leftarrow (SP) + 1 28 (SK(SP)) \leftarrow (PC) (PCH) \leftarrow 2 (PCL) \leftarrow a6-a0 BML p, a (SP) \leftarrow (SP) + 1 29 (SK(SP)) \leftarrow (PC) (PCH) \leftarrow p p = 0 to 15 29 (BMLA p, a) (SP) \leftarrow (SP) + 1 29 (BMLA p, a) (SP) \leftarrow (SP) \leftarrow (PC) (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow (SK(SP)) 34 RT (PC) \leftarrow (SK(SP) - 1 RTS (PC) \leftarrow (SK(SP)) 34	SEA n (A) = n ? 35 B a (PCL) \leftarrow a6-a0 27 BL p, a (PCH) \leftarrow p 28 (PCL) \leftarrow (a6-a4, A3-A0) 28 BLA p, a (PCH) \leftarrow p 28 (PCH) \leftarrow p 28 (PCH) \leftarrow p 28 (PCH) \leftarrow p 28 (SP) \leftarrow (SP) + 1 28 (SK(SP)) \leftarrow (PC) (PCH) \leftarrow 2 (PCH) \leftarrow 2 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15 (PCH) \leftarrow p = 0 to 15	SEA n (A) = n ? n = 0 to 15 B a (PCL) ← ae-ao 27 BL p, a (PCH) ← p 28 BA a (PCL) ← (a6-a4, A3-A0) 28 BLA p, a (PCH) ← p 28 BM a (SP) ← (SP) + 1 28 SNZT1 BM a (SP) ← (SP) + 1 29 (PCL) ← ae-ao 29 BML p, a (SP) ← (SP) + 1 29 (SK(SP)) ← (PC) (PCH) ← p p = 0 to 15 (PCL) ← ae-ao 20 BMLA p, a (SP) ← (SP) + 1 29 a (SK(SP)) ← (PC) (PCH) ← p p = 0 to 15 (PCL) ← ae-ao 30 BMLA p, a (SP) ← (SP) + 1 34 SK(SP)) ← (PC) (PCH) ← p p = 0 to 15 (PCL) ← (ae-a4, A3-A0) T2AB T2AB	$\begin{array}{c} \text{SEA n} & \text{(A)} = \text{n ?} \\ \text{n = 0 to 15} & \text{35} \\ \text{B a} & \text{(PCL)} \leftarrow \text{a6-ao} & \text{27} \\ \text{BL p, a} & \text{(PCL)} \leftarrow \text{a6-ao} & \text{28} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{28} \\ \text{(BLA p, a} & \text{(PCH)} \leftarrow \text{p} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{28} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{28} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{28} \\ \text{(PCL)} \leftarrow \text{(a6-a6-a0, A3-Ao)} & \text{28} \\ \text{(PCL)} \leftarrow \text{(a6-a6-a0, A3-Ao)} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{29} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{29} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCL)} \leftarrow \text{a6-ao} & \text{34} \\ \text{(SK(SP))} \leftarrow \text{(PC)} \\ \text{(PCH)} \leftarrow \text{p p o 1 to 15} \\ \text{(PCL)} \leftarrow \text{(a6-a4, A3-Ao)} & \text{34} \\ \text{(SK(SP))} \leftarrow \text{(SP)} - 1 \\ \text{(SP)} \leftarrow \text{(SP)} \rightarrow \text{(SP)} - 1 \\ \text{(SP)} \leftarrow \text{(SP)} \rightarrow \text{(SP)} \rightarrow \text{(SP)} - 1 \\ \text{(SP)} \leftarrow \text{(SP)} \rightarrow \text{(SP)} \rightarrow \text{(SP)} - 1 \\ \text{(SP)} \leftarrow $

LIST OF INSTRUCTION FUNCTION (CONTINUED)

	Dana		
Grouping	Mnemonic	Function	Page
	RD	$(D) \leftarrow 0$ $(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$	29 34
ıtion	SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7	35
Input/Output operation	SZD	(D(Y)) = 0 ? (Y) = 4 to 7	37
υD/tndι	OEA	$(E_1,E_0) \leftarrow (A_1,A_0)$	32
<u> </u>	IAE	$(A_2 \!\!-\!\! A_0) \leftarrow (E_2 \!\!-\!\! E_0)$	30
	OGA	$(G) \leftarrow (A)$	32
	IAG	$(A) \leftarrow (G)$	30
ave	SCAR	(CAR) ← 1	35
Carrier wave control operation	RCAR	(CAR) ← 0	33
	NOP	(PC) ← (PC) + 1	32
	POF	RAM back-up	32
	SNZP	(P) = 1 ?	36
tion	сск	STCK changes to f(XIN)	29
ther operation	TLOA	$(LO_1,LO_0) \leftarrow (A_1,A_0)$	41
Other	URSC	(URS) ← 1	42
	TPU0A	(PU03−PU00) ← (A3−A0)	41
	TPU1A	(PU13−PU10) ← (A3−A0)	41
	WRST	(WDF1) ← 0	43

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

·		Number of	Niveshau of	Flor CV	Chin condition
0 1 0 1 0 03 03 01 00	0 A n	words	cycles	Flag CY	Skip condition
	16	1	1	_	Overflow = 0
$(A) \leftarrow (A) + n$		Grouping:	Arithmetic	operation	
n = 0 to 15		Description	register A. The conte		
			Skips the		
ccumulator and Memory)					
D8 D0	0 0 A	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
$(A) \leftarrow (A) + (M(DP))$		Grouping:	Arithmetic	operation	
		Description	Stores the	result in re	egister A. The content
accumulator, Memory and Carry) D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
	0 0 B 16	1	1	0/1	_
$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$		Grouping: Description			M(DP) and carry fla
			CY to regi	ster A. Sto	res the result in regis
to address a)					
D8 D0	1 8 a	Number of words	Number of cycles	Flag CY	Skip condition
	<u> </u>	1	1	-	-
(PCL) ← a6–a0		Grouping:	Branch op	eration	
			: Branch wit	hin a page	
	ccumulator and Memory) D8	D8	De	Do O I O I O I	D8

RA a (Bran	ch to address a + Accumulator)					
Instrunction code Operation:	ch to address a + Accumulator) D8 D0 0 0 0 0 0 0 1 1 1 1 a6 a5 a4 a3 a2 a1 a0 2 (PCL) ← a6-a4, A3-A0	0 0 1 ₁₆	Number of words 2 Grouping: Description		hin a page	Skip condition - : Branches to address determined by replace
BL p, a (Br Instrunction code	anch Long to address a in page p) D8 D0 0 0 0 1 1 p3 p2 p1 p0 2 1 1 a6 a5 a4 a3 a2 a1 a0 2 (PCH) ← (P) (PCL) ← a6–a0	0 3 p 16 1 8 a 16	Number of words 2 Grouping: Description Note:	Number of cycles 2 Branch ope	Flag CY eration t of a page for M34282	its of the address a in h register A. Skip condition - : Branches to address
BLA p, a (E Instrunction code	Branch Long to address a in page p) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 0 16 1 8 p 16	Number of words 2 Grouping: Description	(a6 a5 a4 A	hin a page 3 A2 A1 A0)	Skip condition - : Branches to address determined by replacits of the address a ir
BM a (Bran	nch and Mark to address a in page 2)		Note:	page p with p is 0 to 7 p is 0 to 15 Number of cycles	h register <i>A</i> for M34282	A. 2M1,
Operation:		1 a a a 16	1 Grouping:	Subroutine : Call the s	ubroutine	– tion in page 2 : Calls the s a in page 2.

BML p, a (E	Branch and Mark Long to address a ir	n page p)							
Instrunction code	D8 D0 0 0 1 1 1 p3 p2 p1 p0 2	0 7 p	1	Number of words	Number of cycles	Flag CY	Skip condition		
]16]	2	2	_	-		
	1 0 a6 a5 a4 a3 a2 a1 a0 ₂	1 a a	16	Grouping:	Subroutine	call opera	ation		
Operation:	$(SK(SP)) \leftarrow (PC)$						Calls the subroutine a		
	(SP) ← (SP) + 1				address a				
	(PCH) ← p			Note:	p is 0 to 7	for M3428	2M1,		
	(PCL) ← a6–a0				p is 0 to 15	5 for M342	82M2/E2.		
BMLA p, a	(Branch and Mark Long to address a	in page p)							
Instrunction	D8 D0		_	Number of	Number of	Flag CY	Skip condition		
code	0 0 1 0 1 0 0 0 0 2	0 5 0	16	words	cycles				
	1 0 a6 a5 a4 p3 p2 p1 p0 2	1 0 0	16	2	2	_	_		
	. 0 00 07 p0 p2 p1 p0 2	1 a p	Grouping:	Subroutine	call opera	ation			
Operation:	$(SK(SP)) \leftarrow (PC)$			Description	: Call the su	broutine:	Calls the subroutine a		
	(SP) ← (SP) + 1				`		A ₂ A ₁ A ₀) determined		
	$(PCH) \leftarrow p$, .	•	order 4 bits of address		
	$(PCL) \leftarrow (a6-a4, A3-A0)$				a in page p	Ū			
				Note:	Note: p is 0 to 7 for M34282M1,				
					p is 0 to 15	5 for M342	82M2/E2.		
CCK (Chan	ge system Clock to f(XIN))								
Instrunction	D8 D0			Number of	Number of	Flag CY	Skip condition		
code	0 0 1 0 1 1 0 0 1	0 5 9	16	words 1	cycles 1	_	_		
Operation:	Change to STCK = f(XIN)			Grouping:	Other oper	ration			
				Description: Changes system clock (STCK) from f(XIN)/					
					, ,		s instruction at address		
					0 in page (J.			
CLD (CLea	r port D) D8 D0			Number of	Number of	Flag CY	Skip condition		
code			1	words	cycles	riag C1	Skip condition		
code	0 0 0 0 1 0 0 1 2	0 1 1	16	1	1	_	-		
Operation:	(D) ← 1		Grouping:	Input/Outp	ut operatio	n			
				Description	: Clears (0)	to port D (I	high-impedance state)		

CMA (CoM	plement of Accumulator)						
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code			words	cycles	l lag C1	Skip condition	
0000		0 1 C ₁₆	1	1	_	_	
Operation:	$(A) \leftarrow \overline{(A)}$		Grouping:	Arithmetic	operation		
•						mplement for registe	
				A's conten	ts in regist	er A.	
DEY (DEcr	ement register Y)						
Instrunction code	D8 D0 0 0 0 0 1 0 1 1 1	0 1 7	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	1	_	(Y) = 15	
Operation:	(Y) ← (Y) − 1		Grouping:	RAM addre	esses		
•			Description			contents of register Y.	
			As a result of subtraction, when the cortents of register Y is 15, the next instructio is skipped.				
	Accumulator from port E)				I I		
Instrunction code	D8 D0 0 1 0 1 0 1 1 0 2	0 5 6	Number of words	Number of cycles	Flag CY	Skip condition	
		0 0 16	1	1	_	_	
Operation:	(A2−A0) ← (E2−E0)		Grouping: Description	Input/Outp : Transfers A.		n ts of port E to register	
IAG (Input	Accumulator from port G)						
Instrunction code	D8 D0 0 0 1 0 1 0 0 0	0 2 8 46	Number of words	Number of cycles	Flag CY	Skip condition	
		0 2 0 16	1	1	-	-	
Operation:	$(A) \leftarrow (G)$		Grouping:	Input/Outp	ut operatio	n	
•						ts of port G to register	

INY (INcrer	nent register Y)						
Instrunction	D8 D0	0 1 3	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	1	_	(Y) = 0	
Operation:	(Y) ← (Y) + 1		Grouping: Description	sult of ac	he content Idition, w	s of register Y. As a re- hen the contents of e next instruction is	
LA n (Load	n in Accumulator)		•				
Instrunction code	D8 D0 0 1 0 1 1 n3 n2 n1 n0	0 B n	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	1	_	Continuous description	
Operation:	(A) ← n n = 0 to 15		Grouping:	Arithmetic	•	the immediate field to	
				coded and struction	d executed is exec	tions are continuously d, only the first LA in- uted and other LA d continuously are	
LGOP (Loc	Gic OPeration between accumulator	and register E)					
Instrunction code	D8 D0 0 0 1 0 0 0 0 0 1	0 4 1	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	1	_	_	
Operation:	Logic operation XOR, OR, AND		Grouping: Arithmetic operation Description: Executes the logic operation selected logic operation selection register LO tween the contents of register A a register E, and stores the result in regist A.				
LXY x, y (L	oad register X and Y with x and y)						
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 C y 16	Number of words	Number of cycles	Flag CY	Skip condition	
	[5 7 7 70 70 72 71 70 2	16 +X y	1	1	-	Continuous description	
Operation:	$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$		Grouping: RAM addresses Description: Loads the value x in the immediate register X, and the value y in the immediate field to register Y. When the LXY i tions are continuously coded and ex only the first LXY instruction is ex and other LXY instructions coded cously are skipped.				

NOP (No O	Peration)					
Instrunction code	D8 D0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	(PC) ← (PC) + 1		Grouping:	Other oper	ation	
			Description	: No operation	on	
OEA (Outpu	ut port E from Accumulator)					
Instrunction code	D ₈ D ₀	0 8 4 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 4 16	1	1	-	_
Operation:	$(E1,E0) \leftarrow (A1,A0)$		Grouping:	Input/Outp		n of register A to port E.
001 (0.11)						
	ut port G from Accumulator)				E. 01/	011 111
Instrunction code	D8 D0 0 1 0 0 0 0 0 0 0 0 0 0 2	0 8 0 16	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	_	_
Operation:	$(G) \leftarrow (A)$		Grouping: Description	Input/Outputs the		n of register A to port G.
POF (Powe	r OFf1)					
Instrunction code	D8 D0 0 0 0 0 0 1 1 0 1	0 0 D	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	RAM back-up		Grouping: Description	Other oper : Puts the sy		AM back-up state.

RAR (Rota	te Accumulator Right)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 1	0 1 D 16	words 1	cycles 1	0/1	
			1	ı	0/1	_
Operation:	\rightarrow CY \rightarrow A3A2A1A0		Grouping:	Arithmetic		
			Description			ontents of register A in-
				cluding the right.	e contents	of carry flag CY to the
RB j (Rese	t Bit)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 0 1 1 j1 j0 2	0 4 C +j 16	words	cycles		
	2		1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$		Grouping:	Bit operation	on	
	j = 0 to 3					its of bit j (bit specified
				by the val M(DP).	lue j in th	e immediate field) of
RC (Reset	Carry flag)					
Instrunction code	D8 D0 0 0 0 0 0 1 1 0	0 0 6	Number of words	Number of cycles	Flag CY	Skip condition
	2	10	1	1	0	_
Operation:	$(CY) \leftarrow 0$		Grouping:	Arithmetic		
			Description	: Clears (0)	to carry fla	g CY.
RCAR (Res	set CAR flag)					
Instrunction code	D8 D0 0 1 0 0 0 0 1 1 0 0	0 8 6	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	$(CAR) \leftarrow 0$		Grouping:	Carrier way	ve control	operation
			Description	: Clears (0)	to port CAI	RR output flag.

	. 5					
· · · · · · · · · · · · · · · · · · ·	port D specified by register Y)		1	1		
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		0 1 4 16	1	1	_	_
			<u>'</u>	'		
Operation:	$(D(Y)) \leftarrow 0$		Grouping:	Input/Outp	-	
	However,		Description			oort D specified by reg
	(Y) = 0 to 7			ister Y (hig	n-impedar	ice state).
RT (ReTurr	n from subroutine)					
Instrunction code	D8 D0 0 0 1 0 0 0 1 0 0	0 4 4	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	2	_	_
Operation:	(SP) ← (SP) − 1		Grouping:	Return ope	eration	
	$(PC) \leftarrow (SK(SP))$		Description			outine to the routine
			called the subroutine.			
Instrunction	Irn form subroutine and Skip)		Number of words	Number of cycles	Flag CY	Skip condition
code		0 4 5 16	1	2	_	Skip at uncondition
	(00) (00)		0	Determ		
Operation:	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		Grouping:	Return ope		outine to the routine
	(r o) ~ (six(sr))		2000 Ip.101		subroutine	, and skips the next in
SB j (Set B	sit)					
Instrunction code	D8 D0 0 0 1 0 1 1 1 1 j1 j0 2	0 5 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$		Grouping:	Bit operation	on	
	j = 0 to 3		Description	: Sets (1) the	e contents	of bit j (bit specified by nediate field) of M(DP).

SC (Set Ca)									T		T	l
Instrunction	D8			T 1		D ₀	,			_	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0	0	0 0	0	1 1	1	2	0	0 7	16	1	1	1	_
Operation:	(CY) ←	1									Grouping:	Arithmetic	operation	
•	` ,											: Sets (1) to	•	CY.
SCAR (Set	CAR fla	ag)												
Instrunction code	D8 0 1	0	0 0	0	1 1	D0	1	0	8 7	.]	Number of words	Number of cycles	Flag CY	Skip condition
					. .	ļ ·	2		<u> </u>	16	1	1	_	_
Operation:	(CAR) «	<u> </u>									Grouping:	Carrier wa		operation R output flag (CAR).
SD (Set po	rt D spe	cifie	d by re	egist	er Y)									
Instrunction code	D8 0	0	0 1	0	1 0	D0	1	0	1 5	;] ₄₀	Number of words	Number of cycles	Flag CY	Skip condition
							16	1	1	-	_			
Operation:	(D(Y)) <										Grouping:	Input/Outp	ut operation	on
	(Y) = 0	to 7									Description	: Sets (1) to ter Y.	a bit of po	ort D specified by regis-
SEA n (Ski	p Equal	, Ac	cumula	ator	with ir			data	n)					
Instrunction code	D8 0	0	1 0	0	1 0	D ₀]2	0	2 5	16	Number of words	Number of cycles	Flag CY	Skip condition
	0 1	0	1 1	n3	n2 n		1	0		16	2	2	_	(A) = n, n = 0 to 15
				1 - 1			12			16	Grouping:	Compariso		
Operation:	(A) = n n = 0 to										Description		gister A is	ruction when the con- equal to the value n ir
											1			

CEAM (CL:	- Faul Assumble to with Marson A							
Instrunction			Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 0 0 1 1 0	0 2 6 16	1	1	_	(A) = (M(DP))		
Operation:	(A) = (M(DP)) ?		Grouping:	Compariso	n operation	n		
						uction when the con		
				tents of reg M(DP).	gister A is e	qual to the contents o		
SNZP (Skip	o if Non Zero condition of Power dow	n flag)						
Instrunction code		0 0 3	Number of words	Number of cycles	Flag CY	Skip condition		
		0 0 0 16	1	1	_	(P) = 1		
Operation:	(P) = 1 ?		Grouping: Other operation					
·			Description	: Skips the r	next instruc	tion when P flag is "1' remains unchanged.		
	rip if Non Zero condition of Timer 1 ur	nderflow flag)	Number of	Niverbarat	Flor CV	Chin condition		
Instrunction code	D8 D0 0 0 1 0 0 0 1 0 2	0 4 2 16	Number of words	Number of cycles	Flag CY	Skip condition		
			1	1	_	(T1F) = 1		
Operation:	(T1F) = 1 ?		Grouping:	Timer oper	ration			
	After skipping, (T1F) ← 0			: Skips the tents of T1	next instr F flag is "1	uction when the con." (0) to T1F flag.		
SNZT2 (Sk	ip if Non Zero condition of Timer 2 in	errupt request	flag)					
Instrunction code		0 5 2	Number of words	Number of cycles	Flag CY	Skip condition		
		16	1	1	_	(T2F) = 1		
Operation:	(T2F) = 1? After skipping, $(T2F) \leftarrow 0$		Grouping: Description	tents of T2	next instr F flag is "1	uction when the con ." (0) to T2F flag.		

C7D i (Skin	if Zoro Bit\				
Instrunction	Ds Do	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
Couc	0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 2	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?	Grouping:	Bit operation	on	,
	j = 0 to 3	Description	tents of bi	t j (bit spe	ruction when the concified by the value j in of M(DP) is "0."
SZC (Skip i	f Zero, Carry flag)	1			
Instrunction	D8 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 1 1 1 2	1	1	-	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic	<u>operatio</u> n	
		Description	: Skips the	next instr	ruction when the con-
SZD (Skin	if Zero, port D specified by register Y)				
Instrunction		Number of	Number of	Floa CV	Okin sondition
code	D8	words	cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 0 0 2	2	2	_	(D(Y)) = 0
	0 0 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆				(Y) = 4 to 7
Operation:	(D(Y)) = 0 ?	Grouping:	Input/Outp	ut operation	on
орогинот.	(Y) = 4 to 7			•	ction when a bit of port
			D specified	d by registe	er Y is "0."
T1AB (Tran	nsfer data to timer 1 and register R1 from Accumula	ator and reg	ister B)		
Instrunction	D8 D0 0 0 1 0 0 0 1 1 1 1 0 0 4 7	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 0 0 0 1 1 1 2	1	1	_	-
Operation:	at timer 1 stop (V10=0)	Grouping:	Timer oper	ration	
•	$(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$	Description			= 0), transfers the connd register B to timer 1
	$(T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A)$ at timer 1 operating (V10=1)		and reload		
	$(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$			Ü	(V10 = 1), transfers the
				of register	A and register B to re-

T2AB (Tran	nsfer data to timer 2 and register R2L	from Accumula	ator and re	gister B)		
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 0 0 1 0 0 0	0 8 8 16	words 1	cycles 1	_	_
	(DOL - DOL)					
Operation:	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$		Grouping:	Timer oper		ts of registers A and B
	$(T27-T24) \leftarrow (B)$		Description			reload register R2L.
	$(T23-T20) \leftarrow (A)$			to timor 2 t	and timer 2	reload register NZE.
	(120 120) ((14)					
T2HAB (Tra	ansfer data to register R2H Accumula	ator from regist	er B)			
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 0 0 1 0 0 1	0 8 9	words	cycles		
		16	1	1	_	-
Operation:	(R2H7−R2H4) ← (B)		Grouping:	Timer oper	ration	
	(R2H3−R2H0) ← (A)					nts of register A and
				register B	to reload re	egister R2H.
	insfer data to timer 2 from register R2	2L)		T		
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		0 5 3 16				
			1	1	-	_
Operation:	(T27–T24) ← (R2L7–R2L4)		Grouping:	Timer oper	ration	
•	(T23–T20) ← (R2L3–R2L0)		1			nts of reload register
				R2L to time	er 2.	
		D)				
	ifer data to Accumulator from register	B)	Nimel	Nimeler	Flor OV	Obin and Pri
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 0	0 1 E ₁₆	1	1	_	_
			'	'		
Operation:	$(A) \leftarrow (B)$		Grouping:	Register to	register tr	ansfer
			Description	: Transfers	the conten	ts of register B to reg-
				ister A.		

sfer data to Accumulator and register B from ti	mer	1)			
D8 D0		Number of	Number of	Flag CY	Skip condition
0 0 1 0 1 0 1 1 1 2 0 5 7	7	words	cycles		
	16	1	1	-	_
(B) ← (T17–T14)		Grouping:	Timer oper	ation	
(A) ← (T13–T10)					ts of timer 1 to regis-
			ters A and	В.	
sfer data to Δccumulator and register B from ti	mar '	2)			
-	illei z	r e	Number of	Flag CV	Skip condition
) 16	words	cycles	Flag C1	Skip condition
		1	1	_	_
(B) ← (T27–T24)		Grouping:	Timer opera	ation	
$(A) \leftarrow (T23-T20)$		Description	: Transfers t	the conten	ts of timer 2 to regis-
			ters A and I	ь.	
sfer data to Accumulator and register B from re	egist	er E)			
D8 D0		Number of	Number of	Flag CY	Skip condition
0 0 0 1 0 1 0 1 0 0	10	words	cycles		
	10	1	1	_	-
(B) ← (ER7–ER4)		Grouping:	Register to	register tra	ansfer
$(A) \leftarrow (ER3-ER0)$			-	-	
			isters A and	d B.	
ansfer data to Accumulator and register B from	Pro	gram memo	ry in page	p)	
	- ,	1	Number of	Flag CY	Skip condition
D8 D0	\neg		cvcles		
	16	words 1	cycles 3		
D8 D0 0 1 0 0 1 p3 p2 p1 p0 2 0 9 p	16	words 1	3		
D8 D0	16	words 1 Grouping:	3 Arithmetic		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	words 1 Grouping: Description	3 Arithmetic	operation	d bits 3 to 0 to register
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	words 1 Grouping: Description Transfers bit	3 Arithmetic of the second sec	operation	d bits 3 to 0 to register
$\begin{array}{ c c c c c c c c }\hline D8 & D0 \\\hline \hline 0 & 1 & 0 & 0 & 1 & p_3 & p_2 & p_1 & p_0 \\\hline \hline SK(SP)) \leftarrow (PC) \ , \ (SP) \leftarrow (SP) + 1 \\ (PCH) \leftarrow p, \ p = 0 \ to \ 7, \ (PCL) \leftarrow (DR2-DR0, \ A3-A0) \\\hline When \ URS = 0, \\ (B) \leftarrow (ROM(PC))7 \ to \ 4, \ (A) \leftarrow (ROM(PC))3 \ to \ 0 \\\hline When \ URS = 1, \\\hline \end{array}$	16	words 1 Grouping: Description Transfers bit A when URS ROM pattern	3 Arithmetic of the state of th	operation gister B and to "0." T DR2 DR1 [
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	words 1 Grouping: Description Transfers bit A when URS ROM patterr fied by regist	Arithmetic of the state of the	gister B and to "0." TDR2 DR1 [hese bits 7 to 0 are the DR ₀ A ₃ A ₂ A ₁ A ₀) speci-
$\begin{array}{ c c c c c c c c }\hline D8 & D0 \\\hline \hline 0 & 1 & 0 & 0 & 1 & p_3 & p_2 & p_1 & p_0 \\\hline \hline SK(SP)) \leftarrow (PC) \ , \ (SP) \leftarrow (SP) + 1 \\\hline (PCH) \leftarrow p, \ p = 0 \ to \ 7, \ (PCL) \leftarrow (DR2-DR0, \ A3-A0) \\\hline When \ URS = 0, \\\hline (B) \leftarrow (ROM(PC))7 \ to \ 4, \ (A) \leftarrow (ROM(PC))3 \ to \ 0 \\\hline When \ URS = 1, \\\hline (CY) \leftarrow (ROM(PC))8 \\\hline \end{array}$	16	words 1 Grouping: Description Transfers bit A when URS ROM pattern fied by regist Transfers bit	Arithmetic of the state of the	gister B and to "0." TDR2 DR1 [In page p. tern is trans	hese bits 7 to 0 are the
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D ₈	Sifer data to Accumulator and register B from timer 2	Da	Dis

Number of	f Flag C	Y Skip condition
cycles 1	+-	_
register A, performed	nsferring that A, an extended between mmediate	ansfer the contents of M(DP) to clusive OR operation is n register X and the value field, and stores the re-
Number of cycles	f Flag C	Y Skip condition
1	-	_
Register to Transfers the ter A.		r transfer ents of register Y to regis-
Number of cycles	f Flag C	Y Skip condition
1	_	-
Register to Transfers the ter B.		r transfer ents of register A to regis-
Number of cycles	f Flag C	Y Skip condition
1	_	_
Register to Transfers the ter D.		r transfer ents of register A to regis-

TEAB (Tran	nsfer data to register E from Accumul	lator and regist	er B)			
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 0 1 0 2	0 1 A ₁₆	1	1	_	
Oneretien	(FD= FD() : (D)		Canada in ma	Dominton to		anata.
Operation:	$(ER7-ER4) \leftarrow (B)$ $(ER3-ER0) \leftarrow (A)$		Grouping: Description	Register to : Transfers		nts of register A and
			Docon paron	register B t		
				· ·	· ·	
	nsfer data to register LO from Accum	ulator)	I		I	
Instrunction	D8 Do		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 0 1 1 0 0 0 2	0 5 8 16		-		
			1	1	_	_
Operation:	(LO1, LO0) ← (A1, A0)		Grouping:	Other oper	ation	
-			Description			ts of register A to logic
				operation s	election re	egister LO.
TDIIOA (Tro	ansfer data to register PU0 from Accu	ımı ılator)				
Instrunction	D8 D0	unidiator)	Number of	Number of	Flag CY	Skip condition
code	0 1 0 0 0 1 1 1 1	0 8 F	words	cycles	l lag 01	OKIP CONDITION
		16	1	1	_	_
Operation:	$(PU03-PU00) \leftarrow (A3-A0)$		Grouping: Description	Other oper		to of register A to pull
			Description	up control		ts of register A to pull-
				up control	rogistor r c	50.
TPU1A (Tra	ansfer data to register PU1 from Accu	umulator)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 8 E ₁₆	words	cycles		
			1	1	_	_
Operation:	(PU13−PU10) ← (A3−A0)		Grouping:	Other oper	ation	
			Description	: Transfers	the conten	ts of register A to pull-
				up control	register Pl	J1.

TV1A (Tran	sfer data to register V1 from Accumulate	or)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 1 0 1 1 1 0	5 B	words	cycles		
		16	1	1	_	-
Operation:	$(V12-V10) \leftarrow (A2-A0)$		Grouping:	Timer oper	ation	
operation.	$(V12-V10) \leftarrow (A2-A0)$		Description			s of register A to regis-
			•	ter V1.		0 0
	sfer data to register V2 from Accumulate	or)	1			
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 0 1 1 0 1 0 2	5 A ₁₆		-		
			1 1	1	_	_
Operation:	$(V23-V20) \leftarrow (A3-A0)$		Grouping:	Timer oper	ation	
			Description		he content	s of register A to regis-
				ter V2.		
TYA (Transf	er data to regiser Y from Accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0	0 C 16	words	cycles		·
		16	1	1	_	-
Operation:	ΔΛ . (Δ)		0	Danistanta		
operation:	$(Y) \leftarrow (A)$		Grouping:	Register to		s of register A to regis-
				ter Y.		o or regional ritio regio
IDCC (Cata	Linnan DOM Codo notono co con la fia	\				
Instrunction	S Upper ROM Code reference enable fla	9)	Number of	Number of	Flag CY	Ckin condition
code	D8 D0 0 1 0 0 0 1 0 0		words	cycles	Flag CT	Skip condition
oouc	0 1 0 0 0 0 0 1 0 2	8 2 16	1	1	_	_
Operation:	(URS) ← 1	-	Grouping:	Other opera		
			Description:		-	cant ROM code refer-
				ence enable	e iiag (UR	S) (U 1.

Instrunction	tchdog timer ReSeT) D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 0 F	words	cycles	l lag O I	OKIP CONGRIGHT
		16	1	1	_	-
Operation:	(WDF1) ← 0		Grouping:	Other oper	ation	
			Description	: Initializes t	he watchd	og timer flag (WDF1).
XAM j (eXc	hange Accumulator and Memory dat	a)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 0 0 0 1 1 0	0 6 j ₁₆	1	1	_	_
Onenetien	(A) (M/DD))		Crauminau	DAM to rea		
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X)EXOR(j)$		Grouping:	RAM to rec		ne contents of M(DP
	i = 0 to 3		Description			egister A, an exclusive
	,					ormed between regis
				•		in the immediate field
				and stores	the result	in register X.
	Change Accumulator and Memory da	ata and Decrer	nent registe Number of	er Y and sk	ip) Flag CY	Skip condition
Instrunction	D8 D0					Skip condition
Instrunction	D8 D0		Number of	Number of		Skip condition (Y) = 15
Instrunction code	D8 D0 0 0 1 1 0 1 1 j1 j0 2		Number of words	Number of cycles	Flag CY	(Y) = 15
Instrunction code	D8 D0		Number of words	Number of cycles 1 RAM to reg: After exch	Flag CY - gister trans	(Y) = 15 efer e contents of M(DP)
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of words 1 Grouping:	Number of cycles 1 RAM to reg: After exch with the co	Flag CY - gister trans anging the	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of words 1 Grouping:	Number of cycles 1 RAM to reg : After exch with the co OR operati	Flag CY - gister trans anging th ntents of r ion is perf	(Y) = 15 Ifer le contents of M(DP) egister A, an exclusive ormed between regis
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of words 1 Grouping:	Number of cycles 1 RAM to reg : After exch with the co OR operat ter X and ti and stores	Flag CY pister transtanging the ntents of rion is perfect the value juthe result	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive ormed between regis in the immediate field in register X.
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of words 1 Grouping:	RAM to reg: After exch with the co OR operat ter X and ti and stores Subtracts	Flag CY pister trans ranging the ntents of r ion is perf he value j the result from the	(Y) = 15 Ifer Le contents of M(DP) Legister A, an exclusive Legister A
Instrunction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Number of words 1 Grouping:	RAM to reg: After exch with the co OR operat ter X and stores Subtracts As a resul tents of reg	Flag CY - gister trans anging th ntents of r ion is perf he value j the result from the t of subtra	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field in register X. The contents of register Y exciton, when the contents of the conte
Instrunction code Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C +j 16	Number of words 1 Grouping: Description	RAM to reg : After exch with the co OR operat ter X and ti and stores Subtracts As a resul tents of reg is skipped.	Flag CY - gister trans ranging the ntents of r ion is perf he value j the result from the t of subtra gister Y is	(Y) = 15 Ifer le contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field
Instrunction code Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C +j 16	Number of words 1 Grouping: Description	RAM to reg : After exch with the co OR operat ter X and tl and stores Subtracts As a resul tents of reg is skipped. Y and skip Number of	Flag CY - gister trans ranging the ntents of r ion is perf he value j the result from the t of subtra gister Y is	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field in register X. The contents of register Y exciton, when the contents of the conte
Instrunction code Operation: XAMI j (eXo	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C +j 16	Number of words 1 Grouping: Description ent register Number of words	RAM to reg : After exch with the co OR operati ter X and ti and stores Subtracts As a resul tents of reg is skipped. Y and skip Number of cycles	Flag CY - gister trans ranging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is Flag CY	(Y) = 15 Infer
Instrunction code Operation: XAMI j (eXo	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of	RAM to reg : After exch with the co OR operat ter X and tl and stores Subtracts As a resul tents of reg is skipped. Y and skip Number of	Flag CY - pister trans ranging the ntents of r ion is perf he value j the result from the t of subtra gister Y is	(Y) = 15 Ifer le contents of M(DP) egister A, an exclusive ormed between regis in the immediate field in register X. contents of register Y action, when the con 15, the next instruction
Instrunction code Operation: XAMI j (eXo	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to reg After exch with the co OR operatiter X and to and stores Subtracts As a resultents of reg is skipped. Y and skip Number of cycles 1 RAM to reg	Flag CY pister trans ranging th ntents of r ion is perf he value j the result from the t of subtra gister Y is Flag CY	(Y) = 15 Infer
Instrunction code Operation: XAMI j (eXo	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1	Number of cycles 1 RAM to reg: After exch with the co OR operation of the condition of the condition of the cycles Y and skipped. Y and skipped. Y and skipped. Y and skipped. After exch	Flag CY pister trans anging th ntents of r ion is perf he value j the result from the t of subtra gister Y is Flag CY gister trans anging th	(Y) = 15 Infer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field in register X. The contents of register Y faction, when the condition to the immediate in the immediate field in register X. The exclusive of the immediate field in register Y faction, when the condition to the immediate field in the
Nami j (eXc Instrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to reg : After exch with the co OR operat ter X and to and stores Subtracts As a resul tents of reg is skipped. Y and skip Number of cycles 1 RAM to reg : After exch with the co	gister transpanging the ntents of rolling is perfectly the result of the result of subtragister Y is subtragister Y is subtragister transpanging the ntents of r	(Y) = 15 Infer Infer I
Instrunction code Operation: XAMI j (eXclinstrunction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to rec After exch with the co OR operati ter X and ti and stores Subtracts As a resul tents of rec is skipped. Y and skip Number of cycles 1 RAM to rec After exch with the co OR operati ter X and ti	Flag CY - gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is Flag CY - gister trans anging th ntents of r ion is perf he value j	(Y) = 15 Infer Infer I
Nami j (eXc Instrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive with the coordinates of receives and stores are sultents of receives skipped. Y and skip Number of cycles 1 RAM to receive are exchibited and stores of receives are sultents of receives skipped. Y and skip Number of cycles 1 RAM to receive are exchibited and stores	Flag CY pister translanging the ntents of rion is perfihe value jethe result from the tof subtragister Y is selected. Flag CY Flag CY gister translanging the result of rion is perfihe value jethe result the result th	(Y) = 15 Infer The contents of M(DP) The egister A, an exclusive ormed between register A; an exclusive ormed between register Y; action, when the contents of register Y; action, when the contents, the next instruction Skip condition (Y) = 0 Infer The econtents of M(DP) The egister A, an exclusive ormed between register A; an exclusive ormed between register X.
Nami j (eXc Instrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6 C 16	Number of words 1 Grouping: Description ent register Number of words 1 Grouping:	RAM to receive with the coordinate of cycles RAM to receive the coordinate of cycles and stores of cycles Y and skip Number of cycles 1 RAM to receive the coordinate of cycles 1 RAM to receive the cycles of cy	Flag CY pister transfanging the ntents of rion is perfihe value jithe result from the tof subtratister Y is subtratister Y is subtration is perfihe value jithe result the content of rion is perfihe value jithe result the content of rion is perfihe value jithe result the content in the subtration is perfihe value jithe result the content in the subtration is perfihe value jithe result the content in the subtration is perfihe value jithe result the content in the subtration is perfined in the subtration in the subtration is perfined in the subtration in the subtration in the subtration is perfined in the subtration in the subtration is perfined in the subtration in the subtration in the subtration is perfined in the subtration in the subtrat	(Y) = 15 Infer The contents of M(DP) The egister A, an exclusive ormed between registin the immediate field in register X. The contents of register Y faction, when the contents of the instruction of the immediate field in register X. Skip condition (Y) = 0 Infer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

Parameter						Ir	nstru	ıctio	n co	de				er of Is	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀		kade otat	cimal ion	Number of words	Number c cycles	Function
III OLI GOLOTIO	TAB	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
er	ТВА	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
transf	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
egister	TYA	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
Register to register transfer	TEAB	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(ER_7 - ER_4) \leftarrow (B) \ (ER_3 - ER_0) \leftarrow (A)$
Regis	TABE	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	$(B) \leftarrow (ER_7 - ER_4) \; (A) \leftarrow (ER_3 - ER_0)$
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
	LXY x, y	0	1	1	X 1	X 0	у з	y 2	y 1	y 0	0	C +×	-	1	1	$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
<u> </u>	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	(Y) ← (Y) − 1
	ТАМ ј	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1		$ \begin{aligned} (A) &\leftarrow (M(DP)) \\ (X) &\leftarrow (X) \; EXOR(j) \\ j &= 0 \; to \; 3 \end{aligned} $
ansfer	ХАМ ј	0	0	1	1	0	0	0	j1	jo	0	6	j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \longleftrightarrow (Y) - 1$
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1		$ \begin{aligned} &(A) \longleftarrow (M(DP)) \\ &(X) \longleftarrow (X) \ EXOR(j) \\ &j = 0 \ to \ 3 \\ &(Y) \longleftarrow (Y) + 1 \end{aligned} $

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
-	-	Transfers the contents of register A to register D.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
_	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ıctio	n co	de				er of ds	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	1	cadec otatio		Number of words	Number c cycles	Function
	LA n	0	1	0	1	1	пз	n ₂	n1	n o	0	В	n	1	1	(A) ← n
	TABP p	0	1	0	0	1	рз	p ₂	p1	po	0	9	p	1	3	$\begin{array}{l} n = 0 \text{ to } 15 \\ \\ (SK(SP)) \leftarrow (PC) \\ (SP) \leftarrow (SP) + 1 \\ (PCH) \leftarrow p, p = 0 \text{ to } 7 \text{ (Note)} \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ \text{When URS=0}, \\ (B) \leftarrow (ROM(PC))7 \text{ to } 4 \\ (A) \leftarrow (ROM(PC))3 \text{ to } 0 \\ \text{When URS=1}, \\ (CY) \leftarrow (ROM(PC))8 \\ (B) \leftarrow (ROM(PC))7 \text{ to } 4 \\ (A) \leftarrow (ROM(PC))7 \text{ to } 0 \\ \end{array}$
pperation	AMC	0	0	0		0	1		1	0		0		1	1	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$ $(A) \leftarrow (A) + (M(DP))$ $(A) \leftarrow (A) + (M(DP)) + (CY)$
Arithmetic operation																(CY) ← Carry
Aı	A n	0	1	0	1	0		n ₂				Α		1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	SC	0	0	0	0	0	0	1	1	1			7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	1	1	0		0		1	1	(CY) ← 0
			0		1	0	1			1		2		1		(CY) = 0 ?
		0	0				1		0			1		1	1	$(A) \leftarrow (\overline{A})$
		0		0				1				1		1	1	$\longrightarrow \boxed{CY} \longrightarrow \boxed{A3A2A1A0}$
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
Continuous description	- Car	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed
·		and other LA instructions coded continuously are skipped.
_	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to "0." These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p.
	0/1	Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to "1" (after the URSC instruction is executed). (One of stack is used when the TABP p instruction is executed.)
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	_	Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lr	nstru	ıctio	n co	de				er of	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D1	D ₀	1	adec otatio		Number of words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	jo	0	5	C +j	1		(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1		(Mj(DP)) ← 0 j = 0 to 3
Bit o	SZB j	0	0	0	1	0	0	0	j1	j o	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2		(A) = n ? n = 0 to 15
ပို		0	1	0	1	1	пз	n2	n1	n o	0	В	n			
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6-a0
	BL p, a	0	0	0	1	1	рз	p ₂	p 1	p ₀	0	3	p	2	2	(PCH) ← p (PCL) ← a6–a0
Branch operation		1	1	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	1	8 +a	а			(Note)
och ope	BA a	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6–a4, A3–A0)
Brar		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(РСн) ← р (РСL) ← (а6-а4, А3-А0)
		1	1	a 6	a 5	a 4	рз	p ₂	p 1	p ₀	1	8 +a	р			(Note)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
_	_	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
_	-	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch within a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in the identical page with register A.
_	_	Branch out of a page : Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in page p with register A.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						li	nstru	ıctio	n co	de				er of	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	-	adec otati	imal on	Number of words	Number c cycles	Function
	ВМ а	1	0	a 6	a 5	a4	a 3	a 2	a 1	a 0	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$
peration	BML p, a	0	0	1	1	1	рз	p ₂	p 1	p ₀	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	а	а			(PCL) ← a6–a0 (Note)
Su	BMLA p, a			1		1	0		0	0			0	2	2	(SK(SP)) ← (PC) (SP) ← (SP) + 1
		1	0	a 6	a 5	a 4	рз	p ₂	p 1	p ₀	1	а	р			$(PCH) \leftarrow p$ $(PCL) \leftarrow (a6-a4, A3-A0)$ (Note)
Return operation	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
Return o	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) $ (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) \\ (T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A) \\ \text{at timer 1 operating (V10=1)} \\ (R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A) $
u	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1	$(B) \leftarrow (T17-T14)$ $(A) \leftarrow (T13-T10)$
peratio	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$
Timer operation	SNZT1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1 ? After skipping the next instruction (T1F) \leftarrow 0
	T2AB	0	1	0	0	0	1	0	0	0	0	8	8	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T27-T24) \leftarrow (B)$, $(T23-T20) \leftarrow (A)$

Note: p is 0 to 7 for M34282M1, and p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
_	_	Call the subroutine in page 2: Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine: Calls the subroutine at address (a6 a5 a4 A3 A2 A1 A0) determined by replacing the low-order 4 bits of address a in page p with register A.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
_	_	At timer 1 stop ($V10 = 0$), transfers the contents of register A and register B to timer 1 and reload register R1. At timer 1 operating ($V10 = 1$), transfers the contents of register A and register B to reload register R1.
-	_	Transfers the contents of timer 1 to registers A and B.
-	_	Transfers the contents of register A to registers V1.
(T1F) = 1	_	Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
_	_	Transfers the contents of register A and register B to timer 2 and reload register R2L.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						Ir	nstru	ıctio	n co	de				er of	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	Hexa not			Number of words	Number of cycles	Function
	TAB2	0	0	1	0	0	0	0	0	0	0	4	0	1	1	(B) \leftarrow (T27–T24), (A) \leftarrow (T23–T20)
	TV2A	0	0	1	0	1	1	0	1	0	0	5	Α	1	1	(V23−V20) ← (A3−A0)
Timer operation	SNZT2	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(T2F) = 1? After skipping the next instruction $(T2F) \leftarrow 0$
Timer	Т2НАВ	0	1	0	0	0	1	0	0	1	0	8	9	1	1	$(R2H7-R2H4) \leftarrow (B)$ $(R2H3-R2H0) \leftarrow (A)$
	T2R2L	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T23-T20) \leftarrow (R2L3-R2L0)$
rion	SCAR	0	1	0	0	0	0	1	1	1	0	8	7	1	1	(CAR) ← 1
Carrier wave control operation	RCAR	0	1	0	0	0	0	1	1	0	0	8	6	1	1	$(CAR) \leftarrow 0$
	CLD	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 0
	RD	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$
	SD	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
ation	SZD	0	0	0	1	0	0	1	0	0	0			2	2	(D(Y)) = 0 ? (Y) = 4 to 7
nt oper		0	0	0	1	0	1	0	1	1	0	2	В			
Input/Output operation	OEA	0	1	0	0	0	0	1	0	0	0	8	4	1	1	$(E_1,E_0) \leftarrow (A_1,A_0)$
Input	IAE	0	0	1	0	1	0	1	1	0	0	5	6	1	1	$(A2-A0) \leftarrow (E2-E0)$
	OGA	0	1	0	0	0	0	0	0	0	0	8	0	1	1	$(G) \leftarrow (A)$
	IAG	0	0	0	1	0	1	0	0	0	0	2	8	1	1	$(A) \leftarrow (G)$

Skip condition	Carry flag CY	Detailed description
_	-	Transfers the contents of timer 2 to registers A and B.
-	_	Transfers the contents of register A to registers V2.
(T2F) = 1	_	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
-	_	Transfers the contents of register A and register B to reload register R2H.
-	_	Transfers the contents of reload register R2L to timer 2.
-	-	Sets (1) to port CARR output flag (CAR).
-	_	Clears (0) to port CARR output flag (CAR).
-	-	Clears (0) to port D (high-impedance state).
-	-	Clears (0) to a bit of port D specified by register Y (high-impedance state).
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 4 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0."
-	_	Outputs the contents of register A to port E.
_	-	Transfers the contents of port E to register A.
_	-	Outputs the contents of register A to port G.
_	_	Transfers the contents of port G to register A.

Parameter						lr	nstru	ıctio	n co	de				er of ser			
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	Hexa	adec tati	imal on	Number of words	Number of cycles	Function	
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1	
	POF	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up	
	SNZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?	
Other operation	ССК	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)	
Other c	TLOA	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(LO_1, LO_0) \leftarrow (A_1, A_0)$	
	URSC	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1	
	TPU0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	(PU03−PU00) ← (A3−A0)	
	TPU1A	0	1	0	0	0	1	1	1	0	0	8	E	1	1	(PU13−PU10) ← (A3−A0)	
	WRST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	(WDF1) ← 0	

Skip condition	Carry flag CY	Detailed description
-	-	No operation
_	-	Puts the system in RAM back-up state.
(P) = 1	-	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	-	System clock (STCK) changes to f(XIN) from f(XIN)/8. Execute this CCK instruction at address 0 in page 0.
-	-	Transfers the contents of register A to the logic operation selection register LO.
-	-	Sets the most significant ROM code reference enable flag (URS) to "1."
-	-	Transfers the contents of register A to register PU0.
-	-	Transfers the contents of register A to register PU1.
-	-	Initializes the watchdog timer flag (WDF1).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTION CODE TABLE

<u> </u>		1101		JE 17	ADLL	<u> </u>	I	1		I	1	I				1			
	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	
D3- D0	Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAB2	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	ВМ	В
0001	1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	ВМ	В
0010	2		_	SZB 2	BL	SNZT1	SNZT2	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	ВМ	В
0011	3	SNZP	INY	SZB 3	BL	_	T2R2L	XAM 3	BML	_	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	ВМ	В
0100	4	1	RD	SZD	BL	RT	_	TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	ВМ	В
0101	5	1	SD	SEAn	BL	RTS	_	TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	ВМ	В
0110	6	RC		SEAM	BL		IAE	TAM 2	BML	RCAR	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	ВМ	В
0111	7	sc	DEY	_	BL	T1AB	TAB1	TAM 3	BML	SCAR	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	ВМ	В
1000	8	_	_	IAG	BL*		TLOA	XAMI 0	BML*	T2AB	TABP 8*	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
1001	9	_	_	TDA	BL*	_	сск	XAMI 1	BML*	T2HAB	TABP 9*	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	В
1010	А	AM	TEAB	TABE	BL*	_	TV2A	XAMI 2	BML*	_	TABP 10*	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
1011	В	AMC	_	_	BL*		TV1A	XAMI 3	BML*	_	TABP 11*	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	ВМ	В
1100	С	TYA	СМА	_	BL*	RB 0	SB 0	XAMD 0	BML*	_	TABP 12*	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	ВМ	В
1101	D	POF	RAR		BL*	RB 1	SB 1	XAMD 1	BML*		TABP 13*	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	ВМ	В
1110	E	TBA	TAB	_	BL*	RB 2	SB 2	XAMD 2	BML*	TPU1A	TABP 14*	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	ВМ	В
1111	F	WRST	TAY	SZC	BL*	RB 3	SB 3	XAMD 3	BML*	TPU0A	TABP 15*	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8–D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "—."

The codes for the second word of a two-word instruction are described below.

	TI	he secon	d word
BL	1	1 a a a	aaaa
BML	1	0 a a a	aaaa
BA	1	1 a a a	aaaa
BLA	1	1 a a a	рррр
BMLA	1	0 a a a	рррр
SEA	0	1011	nnnn
SZD	0	0010	1011

* cannot be used in the M34282M1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REGISTER STRUCTURE

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W					
V12	Corrier ways autout auto control hit	0	Auto-control output by timer 1 is invalid							
V 12	Carrier wave output auto-control bit	1	Auto-control output	Auto-control output by timer 1 is valid						
1/4.	Timer 1 count source selection bit	0	Carrier wave output	it (CARRY)						
V1 ₁	Timer i count source selection bit	1	Bit 5 of watchdog to	imer (WDT)						
1/40	Timer 1 central hit	0	Stop (Timer 1 state	e retained)						
V10	Timer 1 control bit	1	Operating							

	Timer control register V1	at	reset : 00002	at RAM back-up : 00002	W
V13	Carrier wave "H" interval expansion bit	0	To expand "H" inte	rval is invalid	
V 13	Carrier wave 11 interval expansion bit	1	To expand "H" inte	rval is valid (when V22=1 selected)	
1/4 -	Coming to the state of the stat	0	Carrier wave gener	ration function invalid	
V12	Carrier wave generation function control bit	1	Carrier wave gener	ration function valid	
1/4	Time a 2 count count and ation hit	0	f(XIN)		
V1 ₁	Timer 2 count source selection bit	1	f(XIN)/2		
1/4 -	Times 2 control bit	0	Stop (Timer 2 state	e retained)	
V10	Timer 2 control bit	1	Operating		

Lo	gic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W		
		LO ₁	LOo		Logic operation function			
LO ₁		0	0	Exclusive logic OR	operation (XOR)			
	Logic operation selection bits	0	1	OR operation (OR)				
LO ₀		1	0	AND operation (AND)				
		1	1	Not available				

	Pull-down control register PU0		reset : 00002	at RAM back-up : state retained W		
PU03	Ports G ₂ , G ₃ pull-down transistor control 0 Pull-down transistor		Pull-down transisto	or OFF, key-on wakeup invalid		
P003	bit	1	Pull-down transistor ON, key-on wakeup valid			
PU02	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid			
PU02	bit	1	1 Pull-down transistor ON, key-on wakeup valid			
BUO B . F . II		0	Pull-down transisto	r OFF, key-on wakeup invalid		
P 001	PU01 Port E ₁ pull-down transistor control bit 1 Pull-down transistor ON, key-on wakeup valid					
PU00 Port Eo pull-down transistor control bit		0	Pull-down transisto	or OFF, key-on wakeup invalid		
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained	W		
PU13 Port D ₇ pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid				
		1	Pull-down transistor ON, key-on wakeup valid				
PU12 Port D6 pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid				
F 0 12	Port D ₆ pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid			
PU1 ₁	Port De pull down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid				
PU11 Port D ₅ pull-down transistor control bit		1	Pull-down transistor ON, key-on wakeup valid				
PU10	Port Dy pull down transistor central hit	0	Pull-down transisto	r OFF, key-on wakeup invalid			
FUI	Port D ₄ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

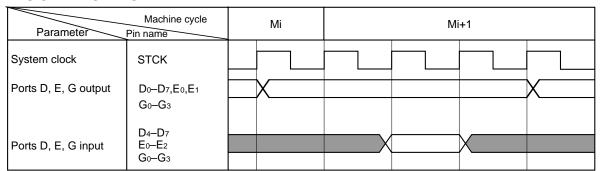
Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, V_{DD} = 1.8 V to 3.6 V, unless otherwise noted)

Cb. a.l	Parameter		O a a divisa a	Limits			Unit
Symbol	Pa	irameter	Conditions	Min.	Тур.	Max.	Offic
VDD	Supply voltage			1.8		3.6	V
VRAM	RAM back-up voltage (at	RAM back-up mode)		1.1		3.6	V
Vss	Supply voltage				0		V
ViH	"H" level input voltage Po	orts D4-D7, E, G	VDD = 3.0 V	0.7Vdd		VDD	V
ViH	"H" level input voltage XII	N .	VDD = 3.0 V	0.8Vpd		VDD	V
VIL	"L" level input voltage Po	rts D4-D7, E, G	VDD = 3.0 V	0		0.2VDD	V
VIL	"L" level input voltage XIN	I	VDD = 3.0 V	0		0.2VDD	V
Iон(peak)	"H" level peak output cur	rent Ports D, E ₁ , G	VDD = 3.0 V			-4	mA
Іон(peak)	"H" level peak output cur	rent Port Eo	VDD = 3.0 V			-24	mA
Іон(peak)	"H" level peak output cur	rent CARR	VDD = 3.0 V			-20	mA
loL(peak)	"L" level peak output curr	ent CARR	VDD = 3.0 V			4	mA
Iон(avg)	"H" level average output	current Ports D, E ₁ , G	VDD = 3.0 V			-2	mA
Iон(avg)	"H" level average output	current Port Eo	VDD = 3.0 V			-12	mA
Iон(avg)	"H" level average output	current CARR	VDD = 3.0 V			-10	mA
lo _L (avg)	"L" level average output of	current CARR	VDD = 3.0 V			2	mA
f(XIN)	System clock frequency	when STCK = $f(XIN)/8$ selected	Ceramic resonance			4	MHz
		when STCK = f(XIN) selected	Ceramic resonance			500	kHz
VDET	Voltage drop detection ci	rcuit detection voltage		1.10		1.80	V
			Ta=25 °C	1.40	1.50	1.56	1
TDET	Voltage drop detection ci	rcuit low voltage	When supply voltage passes		0.2	1.2	ms
	determination time		the detected voltage at ±50V/s.				
TPON	Power-on reset circuit va	lid power source rising time	V _{DD} = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.



ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, VDD = 3 V, unless otherwise noted)

Cumbal	Parameter	Test conditions		Llait		
Symbol		Test conditions	Min.	Тур.	Max.	Unit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vol	"L" level output voltage Хоит	IoL = 0.2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Iон = −2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Iон = −12 mA	1.5			V
Vон	"H" level output voltage CARR	Iон = −10 mA	1.0			V
Vон	"H" level output voltage Хоот	Iон = −0.2 mA	2.1			V
lı∟	"L" level input current Ports D4-D7, E, G	Vı = Vss			-1	μΑ
Iн	"H" level input current Ports Eo, E1	VI = VDD			1	μΑ
		Pull-down transistor in off-state				
loz	Output current at off-state Ports D, E ₀ , E ₁ , G	Vo = Vss			-1	μΑ
IDD	Supply current (when operating)	f(XIN) = 4.0 MHz		400	800	μΑ
		f(XIN) = 500 kHz		250	500	μΑ
	Supply current (at RAM back-up)			1	3	μΑ
		Ta = 25 °C		0.1	0.5	μΑ
Rрн	Pull-down resistor value Ports D4-D7, E, G	VDD = 3 V, VI = 3 V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT]	700		3200	kΩ

BASIC TIMING DIAGRAM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4282 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 shows the product of built-in PROM version. Figure 27 and 28 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 10 Product of built-in PROM version

Product	PROM size	RAM size	Packago	ROM type
Product	(X 9 bits)	(X 4 bits)	Package	KOW type
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM [shipped in blank]

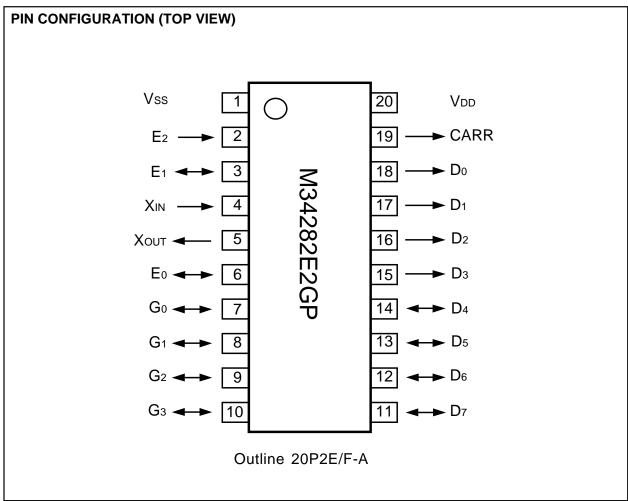


Fig. 27 Pin configuration of built-in PROM version

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) PROM mode (serial input/output)

The M34282E2GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 28 and powering on the VDD pin, and then applying 12.5V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Refer to the "Mitsubishi Microcomputer Development Support Tools" Hompage (http://www.tool-spt.maec.co.jp/index_e.htm).

about the serial programmer for the Mitsubishi single-chip microcomputers.

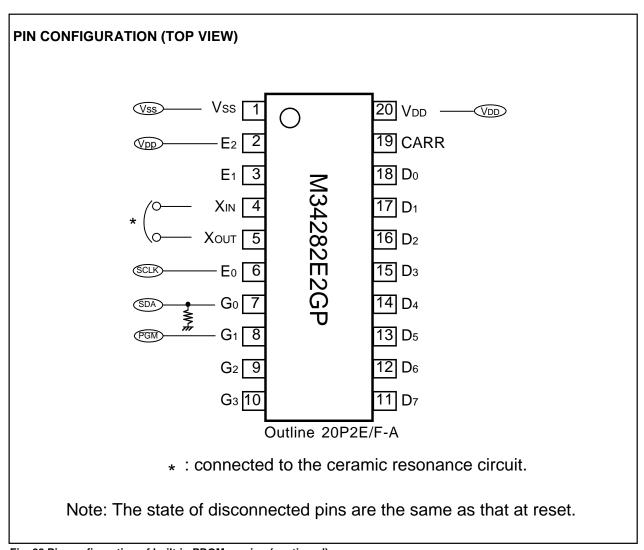


Fig. 28 Pin configuration of built-in PROM version (continued)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(2) Functional outline

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits. In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command

Number of transfer Command	First command code input	Second	Third	Fourth
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)

Number of transfer Command	Fifth	Sixth	Seventh
Read	Read data H (output)		
Program	Program data H (input)		
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)

(3) Read

Input the command code 15 $_{16}$ in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the \overline{PGM} pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the $\overline{\text{PGM}}$ pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

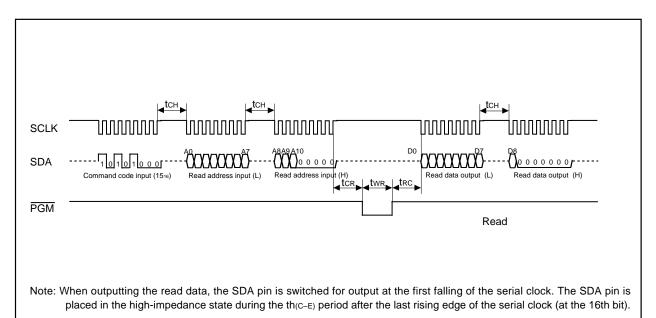


Fig. 29 Timing at reading

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Program

Input command code 25₁₆ in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the $\overline{\text{PGM}}$ pin to "L." When this is done, the program data is programmed to the specified address.

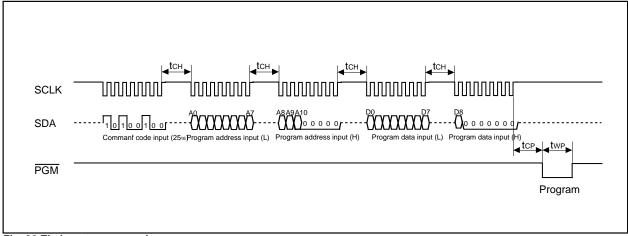


Fig. 30 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the \overline{PGM} pin to "L." When this is done, the program data is programmed to the specified address. Then, when the \overline{PGM} pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the \overline{PGM} pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

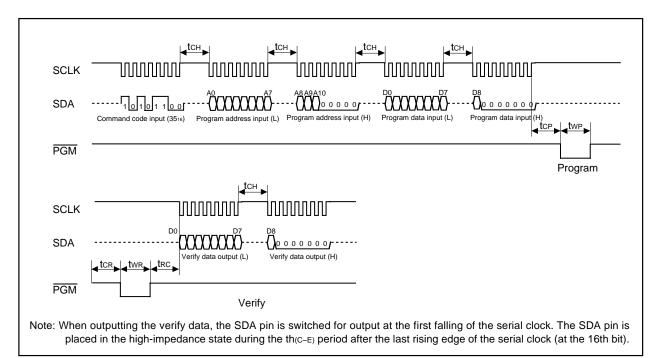
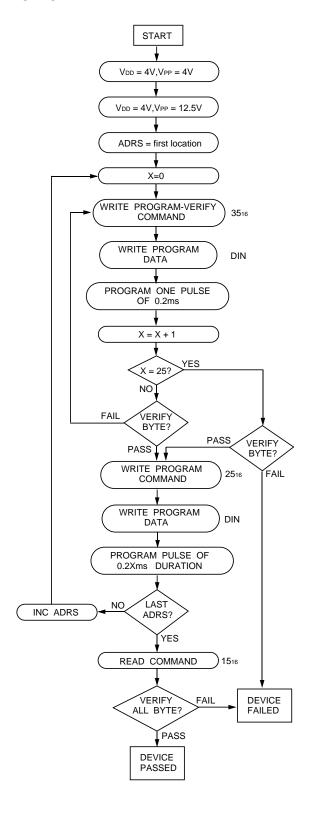
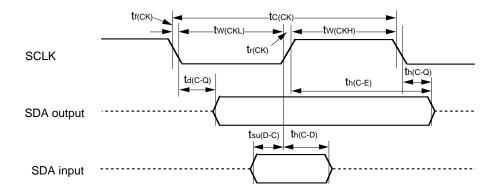



Fig. 31 Timing at program verifying

PROGRAM ALGORITHM FLOW CHART



TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS

 $(Ta = 25 \, ^{\circ}C, \, V_{DD} = 4.0 \, V, \, V_{PP} = 12.5 \, V)$

Symbol	Parameter	Lin	nits	Unit
Symbol	Farameter	Min.	Max.	Unit
tсн	Serial transfer width time	2.0		μs
tcr	Read wait time after transfer	2.0		μs
twr	Read pulse width	500		ns
trc	Transfer wait time after read	2.0		μs
tcp	Program wait time after transfer	2.0		μs
twp	Program pulse width	0.19	0.21	ms
towp	Added program pulse width	0.19	5.25	ms
tc(ck)	SCLK input cycle time	1.0		μs
tw(ckh)	SCLK "H" pulse width	450		ns
tw(CKL)	SCLK "L" pulse width	450		ns
tr(CK)	SCLK rising time	40		ns
tf(CK)	SCLK falling time	40		ns
td(C-Q)	SDA output delay time	0	180	ns
th(C-Q)	SDA output hold time	0		ns
th(C-E)	SDA output hold time (only for 16th bit)	100		ns
tsu(D-C)	SDA input set-up time	60		ns
th(C-D)	SDA input hold time	180		ns

TIMING DIAGRAM

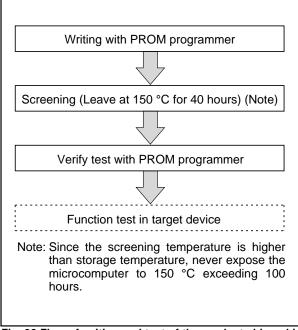
Measurement condition

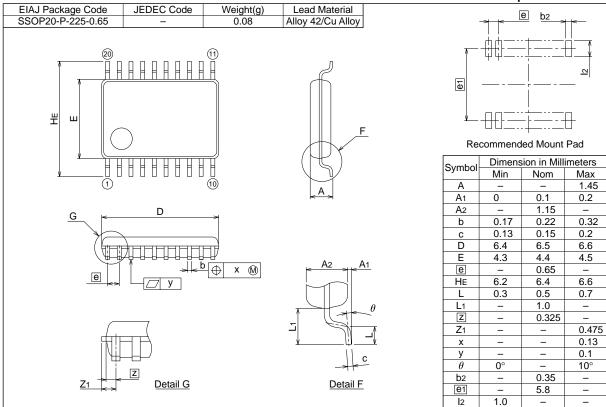
Output timing voltage: VOL = 0.8 V, VOH = 2.0 VInput timing voltage: VIL = 0.2 VDD, VIH = 0.8 VDD

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the One Time PROM version, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 32 before using is recommended.

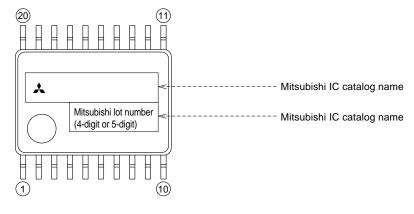



Fig. 32 Flow of writing and test of the product shipped in blank

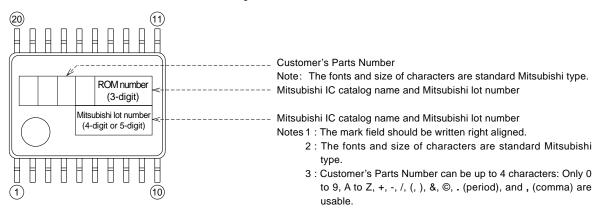
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE

20P2E/F-A Plastic 20pin 225mil SSOP JEDEC Code Lead Material Weight(g)



20P2E/F-A (20-PIN SSOP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	
----------------------------	--

Please choose one of the marking types below (A, B), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC Catalog Name

MITSUBISHI MICROCOMPUTERS

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples
- contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- All information contained in triese materials, including product cast, all agrams and charts, represent information or products at the lime of publication or these materials, and are subject to change by missionshi Electric Corporation without notice due to product improvements or other reasons. It is therefore reconstructioners contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized mitsubis
- approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

4282 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	000619
1.1	Page 12 (2) Precautions revised.	000725
	Page 13 (3) Timer 1, (4) Timer 2 revised.	
	Page 22 ③ Timer revised.	
1.2	Pages 7, 8, 14, 18, 21: Character fonts errors revised.	000823
1.3	All pages:	010703
	"PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change." eliminated.	
	Page 1: Product name table; "Under development" eliminated.	
	Page 9: 48 words X 4 bits ($\underline{128}$ bits) \rightarrow 48 words X 4 bits ($\underline{192}$ bits)	
	Page 21: ROM ORDERING METHOD revised.	
	Page 61: "Mitsubishi Microcomputer Development Support Tools" Hompage	
	(http://www.tool-spt.m <u>es</u> c.co.jp/index_e.htm)	
	\rightarrow (http://www.tool-spt.m <u>ae</u> c.co.jp/index_e.htm)	