MC9S12DP256B Device User Guide V02.15 Covers also MC9S12DT256C, MC9S12DJ256C, MC9S12DG256C, MC9S12DT256B, MC9S12DJ256B, MC9S12DG256B MC9S12A256B Original Release Date: 29 Mar 2001 Revised: Jan 11, 2005 Freescale Semiconductor, Inc. ## **Revision History** | Version
Number | Revision
Date | Effective Date | Author | Description of Changes | | |-------------------|------------------|----------------|--------|--|--| | V01.00 | 29 MAR
2001 | 29 MAR
2001 | | Initial version. | | | V01.01 | 8 MAY
2001 | 8 MAY
2001 | | VDD5 spec change 4.5V 5.25V Current Injection on single pin +- 2.5mA added DC bias level on EXTAL pin minor cosmetics and corrected typos | | | V02.00 | 16 May
2001 | 16 May
2001 | | changed ATD Electrical Characteristics seperate coupling ratio for positive and negative bulk current injection added pinout for 80QFP corrected SPI timing | | | V02.01 | 5 June
2001 | | | corrected Expanded Bus Timing Characteristics | | | V02.02 | 14 June
2001 | | | Some corrections on pin usage after review | | | V02.03 | 18 June
2001 | | | Minor corrections with respect to format and wording Added SRAM data retention disclaimer | | | V02.04 | 26 June
2001 | | | Changed Oscillator Characteristics t _{CQOUT} max 2.5s and replaced Clock Monitor Time-out by Clock Monitor Failure Assert Frequency Changed Self Clock Mode Frequency min 1MHz and max 5.5MHz Changed I _{DDPS} (RTI and COP disabled) to 400uA | | | V02.05 | 11 July
2001 | | | Corrected f _{ref} and REFDV/SYNR Settings for PLL Stabilization Delay Measurements, added t _{EXTR} and t _{EXTF} to Oscillator Characteristics, Corrected t _{EXTL} and t _{EXTH} values | | | V02.06 | 17 July
2001 | | | Added thermal resistance for LQFP 80, added PCB layout proposal for power and ground connections | | | V02.07 | 24 July
2001 | | | Added Document Names Variable definitions and Names have been hidden Added Maskset 1K79X Modified description in chapter A.5.2 Oscillator | | Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. # Freesaale Semiconductor nilpc 9S12DP256BDGV2/D V02.15 | Version
Number | Revision
Date | Effective
Date | Author | Description of Changes | |-------------------|-------------------|-------------------|--------|--| | V02.08 | 24 August
2001 | | | Corrected local enable bits in interrupt vector table Corrected #33 - #36 in table A-20 A.4 Voltage Regulator characteristics was removed A.1 to A.7 major rework according to feedback from PE | | V02.09 | 12 Nov
2001 | | | Changed document name and title to MC9 Added table containing other devices covered by this document Added NVM Blank check specificaiton Added external ADC trigger to pin description Updated A-7 Supply Current Characteristics Updated Table0-1 Derivative Differences Added Item8 to Table A-8 | | V02.10 | 28 Feb
2002 | | | IOL/IOH reduced to 10mA/2mA for full/reduced drive Changed ATD characteristic Cins max to 22pF Changed VDD min VDDPLL min to 2.35V Removed Oscillator startup time from POR or STOP changed input capacitance for standard i/o pin to 6pF | | V02.11 | 26 Mar
2002 | | | Corrected NVM reliability spec | | V02.12 | 12 Aug
2002 | | | added derivative differences for part number MC9S12D256C added partID and maskset number for MC9S12D256D added table with fixed defects on 2K79X added table for HCS12 core configuration Added detailed register map Added pull device description to signal table | | V02.13 | 25 Sep
2002 | | | corrected tables 0-1 and 0-2 Derivative Differences added 80QFP DG256 pin assignment diagram | | V02.14 | 28 Feb
2003 | | | added A256B parts to table 0-1 Derivative Differences | | V02.15 | 11 Jan
2005 | | | removed protected sector definition from table 1-1 | ## **Table of Contents** | Secti | on 1 Introduction | | |--------|--|----| | 1.1 | Overview | 17 | | 1.2 | Features | 17 | | 1.3 | Modes of Operation | 19 | | 1.4 | Block Diagram | 20 | | 1.5 | Device Memory Map | 22 | | 1.6 | Detailed Register Map | 25 | | 1.7 | Part ID Assignments | 51 | | Secti | on 2 Signal Description | | | 2.1 | Device Pinout | 53 | | 2.2 | Signal Properties Summary | 56 | | 2.3 | Detailed Signal Descriptions | 59 | | 2.3.1 | EXTAL, XTAL — Oscillator Pins | 59 | | 2.3.2 | RESET — External Reset Pin | 60 | | 2.3.3 | TEST — Test Pin | 60 | | 2.3.4 | VREGEN — Voltage Regulator Enable Pin | 60 | | 2.3.5 | XFC — PLL Loop Filter Pin | 60 | | 2.3.6 | BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin | 60 | | 2.3.7 | PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 | 60 | | 2.3.8 | PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1 | 61 | | 2.3.9 | PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 | 61 | | 2.3.10 | PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 | 61 | | 2.3.11 | PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins | 61 | | 2.3.12 | PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins | 61 | | 2.3.13 | PE7 / NOACC / XCLKS — Port E I/O Pin 7 | 61 | | 2.3.14 | PE6 / MODB / IPIPE1 — Port E I/O Pin 6 | 61 | | 2.3.15 | | | | 2.3.16 | | | | 2.3.17 | PE3 / LSTRB / TAGLO — Port E I/O Pin 3 | 62 | | 2.3.18 | PE2 / R/W — Port E I/O Pin 2 | 62 | | 2.3.19 | PE1 / IRQ — Port E Input Pin 1 | 62 | 2.3.20 # MC9S12DP256B Device User of the escale Semiconductor, Inc. | 2.3.21 | PH7 / KWH7 / SS2 — Port H I/O Pin 7 | 62 | |--------|--|----| | 2.3.22 | PH6 / KWH6 / SCK2 — Port H I/O Pin 6 | 62 | | 2.3.23 | PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 | 63 | | 2.3.24 | PH4 / KWH4 / MISO2 — Port H I/O Pin 2 | 63 | | 2.3.25 | PH3 / KWH3 / SS1 — Port H I/O Pin 3 | 63 | | 2.3.26 | PH2 / KWH2 / SCK1 — Port H I/O Pin 2 | 63 | | 2.3.27 | PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 | 63 | | 2.3.28 | PH0 / KWH0 / MISO1 — Port H I/O Pin 0 | 63 | | 2.3.29 | PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 | 63 | | 2.3.30 | PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 | 64 | | 2.3.31 | PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] | 64 | | 2.3.32 | PK7 / ECS / ROMONE — Port K I/O Pin 7 | 64 | | 2.3.33 | PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] | 64 | | 2.3.34 | PM7 / TXCAN3 / TXCAN4 — Port M I/O Pin 7 | 64 | | 2.3.35 | PM6 / RXCAN3 / RXCAN4 — Port M I/O Pin 6 | 64 | | 2.3.36 | PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 | 64 | | 2.3.37 | PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 | 64 | | 2.3.38 | PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 | 65 | | 2.3.39 | PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 | 65 | | 2.3.40 | PM1 / TXCAN0 / TXB — Port M I/O Pin 1 | 65 | | 2.3.41 | PM0 / RXCAN0 / RXB — Port M I/O Pin 0 | 65 | | 2.3.42 | PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 | 65 | | 2.3.43 | PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 | 65 | | 2.3.44 | PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5 | 65 | | 2.3.45 | PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4 | 66 | | 2.3.46 | PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 | 66 | | 2.3.47 | PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 | 66 | | 2.3.48 | PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1 | 66 | | 2.3.49 | PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0 | 66 | | 2.3.50 | PS7 / SS0 — Port S I/O Pin 7 | 66 | | 2.3.51 | PS6 / SCK0 — Port S I/O Pin 6 | 66 | | 2.3.52 | PS5 / MOSI0 — Port S I/O Pin 5 | 67 | | 2.3.53 | PS4 / MISO0 — Port S I/O Pin 4 | | | 2.3.54 | PS3 / TXD1 — Port S I/O Pin 3 | 67 | | 2.3.55 | PS2 / RXD1 — Port S I/O Pin 2 | 67 | | 2.3.56 | PS1 / TXD0 — Port S I/O Pin 1 | 67 | (M) MOTOROLA | | Freescale Semiconduston 2 Incomice User Guide — V02.15 | |--|--| | 2.3.57
2.3.58 | PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] | | 2.42.4.12.4.268 | Power Supply Pins | | 2.4.3
2.4.4 | VDD1, VDD2, VSS1, VSS2 — Core Power Pins | | 2.4.5
2.4.6 | VRH, VRL — ATD Reference Voltage Input Pins | | 2.4.7 | VREGEN — On Chip Voltage Regulator Enable | | 3.1 | on 3 System Clock Description Overview71 | | Secti | on 4 Modes of Operation | | 4.1
4.2 | Overview. | | 4.3
4.3.1 | Security | | 4.3.2
4.3.3 | Operation of the Secured Microcontroller | | 4.4
4.4.1 | Low Power Modes | | 4.4.2
4.4.3 | Pseudo
Stop | | 4.4.4 | Run | | Secti | on 5 Resets and Interrupts | | 5.1 | Overview | | 5.2 | Vectors | | 5.2.1 | Vector Table77 | | 5.3 | Effects of Reset | | 5.3.1
5.3.2 | I/O pins | | Secti | on 6 HCS12 Core Block Description | | MC9S12DP256B Device User of reescale Semiconductor, Inc. | |--| | Section 7 Clock and Reset Generator (CRG) Block Description 7.1 Device-specific information | | 7.1.1 XCLKS8 ^{-/} | | Section 8 Enhanced Capture Timer (ECT) Block Description | | Section 9 Analog to Digital Converter (ATD) Block Description | | Section 10 Inter-IC Bus (IIC) Block Description | | Section 11 Serial Communications Interface (SCI) Block Description | | Section 12 Serial Peripheral Interface (SPI) Block Description | | Section 13 J1850 (BDLC) Block Description | | Section 14 Pulse Width Modulator (PWM) Block Description | | Section 15 Flash EEPROM 256K Block Description | | Section 16 EEPROM 4K Block Description | | Section 17 RAM Block Description | | Section 18 MSCAN Block Description | | Section 19 Port Integration Module (PIM) Block Description | | Section 20 Voltage Regulator (VREG) Block Description | | Appendix A Electrical Characteristics | | A.1 General. .87 A.1.1 Parameter Classification .87 A.1.2 Power Supply. .87 A.1.3 Pins .88 | | A.1.4 Current Injection | **B.2** **B.3** #### Freescale Semiconductorhaline Device User Guide — V02.15 A.1.7 A.1.8 A.1.9 A.1.10 **A.2** A.2.1 A.2.2 A.2.3 A.3 A.3.1 A.3.2 A.4 **A.5** A.5.1 A.5.2 A.5.3 **A.6 A.7** A.7.1 A.7.2 **8.A** A.8.1 **Appendix B Package Information B.1** 112-pin LQFP package......124 # **List of Figures** | Figure 0-1 | Order Part Number Example | |-------------|---| | Figure 1-1 | MC9S12DP256B Block Diagram21 | | Figure 1-2 | MC9S12DP256B Memory Map | | Figure 2-1 | Pin Assignments in 112-pin LQFP54 | | Figure 2-2 | Pin Assignments in 80-pin QFP for MC9S12DG25655 | | Figure 2-3 | Pin Assignments in 80-pin QFP for MC9S12DJ25656 | | Figure 2-4 | PLL Loop Filter Connections | | Figure 3-1 | Clock Connections71 | | Figure 20-1 | Recommended PCB Layout 112 LQFP85 | | Figure 20-2 | Recommended PCB Layout for 80QFP86 | | Figure A-1 | ATD Accuracy Definitions | | Figure A-2 | Basic PLL functional diagram 109 | | Figure A-3 | Jitter Definitions | | Figure A-4 | Maximum bus clock jitter approximation | | Figure A-5 | SPI Master Timing (CPHA = 0) | | Figure A-6 | SPI Master Timing (CPHA =1) | | Figure A-7 | SPI Slave Timing (CPHA = 0) | | Figure A-8 | SPI Slave Timing (CPHA =1) | | Figure A-9 | General External Bus Timing | | Figure B-1 | 112-pin LQFP mechanical dimensions (case no. 987) | | Figure B-2 | 80-pin QFP Mechanical Dimensions (case no. 841B) | # **List of Tables** | Table 0-1 | Drivative Differences MC9S12D256B | 15 | |------------|--|-----| | Table 0-2 | Derivative Differences MC9S12D256C | 15 | | Table 0-4 | Document References | 16 | | Table 0-3 | Defects fixed on Maskset 2K79X | 16 | | Table 1-1 | Device Memory Map | 22 | | Table 1-2 | Detailed MSCAN Foreground Receive and Transmit Buffer Layout | 41 | | Table 1-3 | Assigned Part ID Numbers | 51 | | Table 1-4 | Memory size registers | 51 | | Table 2-1 | Signal Properties | 56 | | Table 2-2 | MC9S12DP256 Power and Ground Connection Summary | 69 | | Table 4-1 | Mode Selection | 73 | | Table 4-2 | Clock Selection Based on PE7 | 73 | | Table 4-3 | Voltage Regulator VREGEN | 74 | | Table 5-1 | Interrupt Vector Locations | 77 | | Table 6-1 | Configuration of HCS12 Core | 81 | | Table A-1 | Absolute Maximum Ratings | 89 | | Table A-2 | ESD and Latch-up Test Conditions | 90 | | Table A-3 | ESD and Latch-Up Protection Characteristics | | | Table A-4 | Operating Conditions | 91 | | Table A-5 | Thermal Package Characteristics | | | Table A-6 | 5V I/O Characteristics | 94 | | Table A-7 | Supply Current Characteristics | 96 | | Table A-8 | ATD Operating Characteristics | 97 | | Table A-9 | ATD Electrical Characteristics | 98 | | Table A-10 | ATD Conversion Performance | 99 | | Table A-11 | NVM Timing Characteristics | 102 | | Table A-12 | NVM Reliability Characteristics | 103 | | Table A-13 | Voltage Regulator Recommended Load Capacitances | 105 | | Table A-14 | Startup Characteristics | 107 | | Table A-15 | Oscillator Characteristics | 108 | | Table A-16 | PLL Characteristics | 112 | | Table A-17 | MSCAN Wake-up Pulse Characteristics | 113 | | Table A-18 | SPI Master Mode Timing Characteristics | 116 | | MC9S12DP256B Device User c tukees co2!f€ | Semiconductor, inc. | | |---|---------------------|--| | | | | | Table A-19 | SPI Slave Mode Timing Characteristics | .118 | |------------|---------------------------------------|------------------| | Table A-20 | Expanded Bus Timing Characteristics | .12 ⁶ | ## **Preface** The Device User Guide provides information about the MC9S12DP256B device made up of standard HCS12 blocks and the HCS12 processor core. **Table 0-1** and **Table 0-2** show the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Drivative Differences MC9S12D256B | Generic device | MC9S12DP256B | MC9S12DT256B | MC9S12DJ256B | MC9S12DG256B | MC9S12A256B | |-----------------|--|--|--|--|--| | # of CANs | 5 | 3 | 2 | 2 | 0 | | CAN0 | ✓ | ✓ | ✓ | ✓ | | | CAN1 | ✓ | ✓ | | | | | CAN2 | ✓ | | | | | | CAN3 | ✓ | | | | | | CAN4 | ✓ | ✓ | ✓ | ✓ | | | J1850/BDLC | ✓ | | ✓ | | | | Package | 112 LQFP | 112 LQFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | | Mask set | 0/1K79X | 0/1K79X | 0/1K79X | 0/1K79X | 0/1K79X | | Temp Options | M, V, C | M, V, C | M, V, C | M, V, C | С | | package
Code | PV | PV | PV/FU | PV | PV/FU | | Notes | An errata exists conntact Sales office | Table 0-2 Derivative Differences MC9S12D256C | Generic device | MC9S12DP256C | MC9S12DT256C | MC9S12DJ256C | MC9S12DG256C | |--|--------------|--|--|--| | # of CANs | 5 | 3 | 2 | 2 | | CAN0 | √ | ✓ | ✓ | ✓ | | CAN1 | √ | ✓ | | | | CAN2 | √ | | | | | CAN3 | √ | | | | | CAN4 | √ | ✓ | ✓ | ✓ | | J1850/BDLC | √ | | ✓ | | | Package | 112 LQFP | 112 LQFP | 112 LQFP/80 QFP | 112 LQFP/80 QFP | | Mask set | 2K79X | 2K79X | 2K79X | 2K79X | | Temp Options | M, V, C | M, V, C | M, V, C | M, V, C | | package
Code | PV | PV | PV/FU | PV | | Notes An errata exists conntact Sales offi | | An errata exists conntact Sales office | An errata exists conntact Sales office | An errata exists conntact Sales office | # MC9S12DP256B Device User of the escale Semiconductor, Inc. **Table 0-3** shows the defects fixed on maskset 2K79X (MC9S12DP256C) Table 0-3 Defects fixed on Maskset 2K79X | Defect | Headline | |------------|---| | MUCts00510 | SCI interrupt asserts only if odd number of interrupts active | | MUCts00604 | Security in Normal Single Chip mode | | MUCts00603 | Security in Normal Single Chip mode | This document is part of the customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document. Figure 0-1 Order Part Number Example See **Table 0-4** for names and versions of the referenced documents throughout the Device User Guide. **Table 0-4 Document References** | User Guide | Version | Document Order Number | |-----------------------------|---------|-----------------------| | HCS12 V1.5 Core User Guide | 1.2 | HCS12COREUG | | CRG Block User Guide | V02 | S12CRGV2/D | | ECT_16B8C Block User Guide | V01 | S12ECT16B8CV1/D | | ATD_10B8C Block User Guide | V02 | S12ATD10B8CV2/D | | IIC Block User Guide | V02 | S12IICV2/D | | SCI Block User Guide | V02 | S12SCIV2/D | | SPI Block User Guide | V02 | S12SPIV2/D | | PWM_8B8C Block User Guide | V01 | S12PWM8B8CV1/D | | FTS256K Block User Guide | V02 | S12FTS256KV2/D | | EETS4K Block User Guide | V02 | S12EETS4KV2/D | | BDLC Block User Guide | V01 | S12BDLCV1/D | | MSCAN Block User Guide | V02 | S12MSCANV2/D | | VREG Block User Guide | V01 | S12VREGV1/D | | PIM_9DP256 Block User Guide | V02 | S12PIM9DP256V2/D | ## **Section 1 Introduction** #### 1.1 Overview The MC9S12DP256 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 256K bytes of Flash EEPROM, 12K bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), three serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, five CAN 2.0 A, B software compatible modules (MSCAN12), and an Inter-IC Bus. The MC9S12DP256 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power
consumption and performance to be adjusted to suit operational requirements. #### 1.2 Features - HCS12 Core - 16-bit HCS12 CPU - i. Upward compatible with M68HC11 instruction set - ii. Interrupt stacking and programmer's model identical to M68HC11 - iii. Instruction queue - iv. Enhanced indexed addressing - MEBI (Multiplexed External Bus Interface) - MMC (Module Mapping Control) - INT (Interrupt control) - BKP (Breakpoints) - BDM (Background Debug Mode) - CRG (low current oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor) - 8-bit and 4-bit ports with interrupt functionality - Digital filtering - Programmable rising or falling edge trigger - Memory - 256K Flash EEPROM - 4K byte EEPROM - 12K byte RAM ## MC9S12DP256B Device User of kees@16 Semiconductor, Inc. - Two 8-channel Analog-to-Digital Converters - 10-bit resolution - External conversion trigger capability - Five 1M bit per second, CAN 2.0 A, B software compatible modules - Five receive and three transmit buffers - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit - Four separate interrupt channels for Rx, Tx, error and wake-up - Low-pass filter wake-up function - Loop-back for self test operation - Enhanced Capture Timer - 16-bit main counter with 7-bit prescaler - 8 programmable input capture or output compare channels - Two 8-bit or one 16-bit pulse accumulators - 8 PWM channels - Programmable period and duty cycle - 8-bit 8-channel or 16-bit 4-channel - Separate control for each pulse width and duty cycle - Center-aligned or left-aligned outputs - Programmable clock select logic with a wide range of frequencies - Fast emergency shutdown input - Usable as interrupt inputs - Serial interfaces - Two asynchronous Serial Communications Interfaces (SCI) - Three Synchronous Serial Peripheral Interface (SPI) - Byte Data Link Controller (BDLC) - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications - Inter-IC Bus (IIC) - Compatible with I2C Bus standard - Multi-master operation - Software programmable for one of 256 different serial clock frequencies - 112-Pin LQFP package - I/O lines with 5V input and drive capability - 5V A/D converter inputs - Operation at 50MHz equivalent to 25MHz Bus Speed - Development support - Single-wire background debugTM mode (BDM) - On-chip hardware breakpoints ## 1.3 Modes of Operation #### User modes - Normal and Emulation Operating Modes - Normal Single-Chip Mode - Normal Expanded Wide Mode - Normal Expanded Narrow Mode - Emulation Expanded Wide Mode - Emulation Expanded Narrow Mode - Special Operating Modes - Special Single-Chip Mode with active Background Debug Mode - Special Test Mode (Motorola use only) - Special Peripheral Mode (Motorola use only) #### Low power modes - Stop Mode - Pseudo Stop Mode - Wait Mode # MC9S12DP256B Device User of reescale Semiconductor, Inc. ## 1.4 Block Diagram **Figure 1-1** shows a block diagram of the MC9S12DP256B device. Figure 1-1 MC9S12DP256B Block Diagram ## 1.5 Device Memory Map **Table 1-1** and **Figure 1-2** show the device memory map of the MC9S12DP256B after reset. Note that after reset the bottom 1k of the EEPROM (\$0000 - \$03FF) are hidden by the register space. Table 1-1 Device Memory Map | Address | Module | Size
(Bytes) | |-----------------|--|-----------------| | \$0000 - \$0017 | CORE (Ports A, B, E, Modes, Inits, Test) | 24 | | \$0018 - \$0019 | Reserved | 2 | | \$001A - \$001B | Device ID register (PARTID) | 2 | | \$001C - \$001F | CORE (MEMSIZ, IRQ, HPRIO) | 4 | | \$0020 - \$0027 | Reserved | 8 | | \$0028 - \$002F | CORE (Background Debug Mode) | 8 | | \$0030 - \$0033 | CORE (PPAGE, Port K) | 4 | | \$0034 - \$003F | Clock and Reset Generator (PLL, RTI, COP) | 12 | | \$0040 - \$007F | Enhanced Capture Timer 16-bit 8 channels | 64 | | \$0080 - \$009F | Analog to Digital Converter 10-bit 8 channels (ATD0) | 32 | | \$00A0 - \$00C7 | Pulse Width Modulator 8-bit 8 channels (PWM) | 40 | | \$00C8 - \$00CF | Serial Communications Interface 0 (SCI0) | 8 | | \$00D0 - \$00D7 | Serial Communications Interface 0 (SCI1) | 8 | | \$00D8 - \$00DF | Serial Peripheral Interface (SPI0) | 8 | | \$00E0 - \$00E7 | Inter IC Bus | 8 | | \$00E8 - \$00EF | Byte Data Link Controller (BDLC) | 8 | | \$00F0 - \$00F7 | Serial Peripheral Interface (SPI1) | 8 | | \$00F8 - \$00FF | Serial Peripheral Interface (SPI2) | 8 | | \$0100- \$010F | Flash Control Register | 16 | | \$0110 - \$011B | EEPROM Control Register | 12 | | \$011C - \$011F | Reserved | 4 | | \$0120 - \$013F | Analog to Digital Converter 10-bit 8 channels (ATD1) | 32 | | \$0140 - \$017F | Motorola Scalable Can (CAN0) | 64 | | \$0180 - \$01BF | Motorola Scalable Can (CAN1) | 64 | | \$01C0 - \$01FF | Motorola Scalable Can (CAN2) | 64 | | \$0200 - \$023F | Motorola Scalable Can (CAN3) | 64 | | \$0240 - \$027F | Port Integration Module (PIM) | 64 | | \$0280 - \$02BF | Motorola Scalable Can (CAN4) | 64 | | \$02C0 - \$03FF | Reserved | 320 | | \$0000 - \$0FFF | EEPROM array | 4096 | | \$1000 - \$3FFF | RAM array | 12288 | | \$4000 - \$7FFF | Fixed Flash EEPROM | 16384 | | \$8000 - \$BFFF | Flash EEPROM Page Window | 16384 | | \$C000 - \$FFFF | Fixed Flash EEPROM | 16384 | Figure 1-2 MC9S12DP256B Memory Map ^{*} Assuming that a '0' was driven onto port K bit 7 during MCU # MC9S12DP256B Device User of reescale Semiconductor, Inc. # 1.6 Detailed Register Map The following tables show the detailed register map of the MC9S12DP256B. | ¢ ^^ | ١٨ | 400 | \n_ | |-------------|------|-----|-----| | \$000 | JU - | DUL | JUE | ## MEBI map 1 of 3 (Core User Guide) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|----------|-----------------|--------|-------|-------|-------|-------|-------|-------|-------| | \$0000 | PORTA | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0001 | PORTB | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0002 | DDRA | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0003 | DDRB | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0004 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0005 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0006 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0007 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0008 | PORTE | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | Bit 1 | Bit 0 | | \$0009 | DDRE | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | Bit 2 | 0 | 0 | | \$000A | PEAR | Read:
Write: | NOACCE | 0 | PIPOE | NECLK | LSTRE | RDWE | 0 | 0 | | \$000B | MODE | Read:
Write: | MODC | MODB | MODA | 0 | IVIS | 0 | EMK | EME | | \$000C | PUCR | Read:
Write: | PUPKE | 0 | 0 | PUPEE | 0 | 0 | PUPBE | PUPAE | | \$000D | RDRIV | Read:
Write: | RDPK | 0 | 0 | RDPE | 0 | 0 | RDPB | RDPA | | \$000E | EBICTL | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ESTR | | \$000F | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ## \$0010 - \$0014 ## MMC map 1 of 4 (Core User Guide) | Address | s Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-------------------------|----------------|------------|---------|-------|-------|--------|-------|-------|----------| | \$0010 | INITRM | Read: | RAM15 | RAM14 | RAM13 | RAM12 | RAM11 | 0 | 0 | RAMHAL | | \$0010 | IINI I KIVI | Write: | KAWII | KAWI14 | KAWI3 | KAWIZ | KAWIII | | | KAIVITAL | | \$0011 | . INITOC. | Read: | 0 | . DEG14 | REG13 | REG12 | REG11 | 0 | 0 | 0 | | \$UU11 | is reset MoThBrAnd expa | e or narrow mo | dei/ EG 14 | REGIS | REGIZ | KEGII | | | | | ## Freescale Semiconductor, 2 Inchescole User Guide — V02.15 #### \$0010 - \$0014 #### MMC map 1 of 4 (Core User Guide) | Address | Name | |---------|--------| | \$0012 | INITEE | | \$0013 | MISC | | \$0014 | MTST0 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|--------|--------|------------|-------| | Read: | EE15 | EE14 | EE13 | EE12 | 0 | 0 | 0 | EEON | | Write: | | CC14 | LLIS | LLIZ | | | | LLON | | Read: | 0 | 0 | 0 | 0 | EXSTR1 | EXSTR0 | ROMHM | ROMON | | Write: | | | | | EXSIKI | EXSTRU | KOWII IIVI | KOWON | | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Write: | | | | | | | | | | | | | | | | | | | #### \$0015 - \$0016 #### INT map 1 of 2 (Core User Guide) | Address | ivame | |---------|-------| | \$0015 | ITCR | | \$0016 | ITEST | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|-------|-------|----------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | WRINT | ADR3 | ADR2 | ADR1 | ADR0 | | Write: | | | | VVINIINI | ADKO | ADNZ | ADNI | ADNO | | Read:
Write: | INTE | INTC | INTA | INT8 | INT6 | INT4 | INT2 | INT0 | #### \$0017 - \$0017 #### MMC map 2 of 4 (Core User Guide) | Address | Name | |---------|-------| | \$0017 | MTST1 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Write: | | | | | | | | | #### \$0018 - \$001B ## Miscellaneous Peripherals (Device User Guide, Table 1-3) | Address | Name | |---------|----------| | \$0018 | Reserved | | \$0019 | Reserved | | \$001A | PARTIDH | | \$001B | PARTIDL | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | ID15 | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | | Write: | | | | | | | | | | Read: | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | | Write: | | | | | | | | | #### \$001C - \$001D ##
MMC map 3 of 4 (Core and Device User Guide, Table 1-4) | Address | Name | |---------|---------| | \$001C | MEMSIZ0 | | \$001D | MEMSIZ1 | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|---------|---------|---------|---------|-------|---------|---------|---------| | Read: | reg_sw0 | 0 | eep_sw1 | eep_sw0 | 0 | ram_sw2 | ram_sw1 | ram_sw0 | | Write: | | | | | | | | | | Read: | rom_sw1 | rom_sw0 | 0 | 0 | 0 | 0 | pag_sw1 | pag_sw0 | | Write: | | | | | | | | | #### \$001E - \$001E ## MEBI map 2 of 3 (Core User Guide) | Address | Name | |---------|-------| | \$001E | INTCR | | | L | |-----------------|---| | Read: | I | | Read:
Write: | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-------|-------|-------|-------|-------|-------|-------|-------| | IRQE | IRQEN | 0 | 0 | 0 | 0 | 0 | 0 | | IRQE | IRQEN | | | | | | | # MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ## **\$001F - \$001F** INT map 2 of 2 (Core User Guide) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$001F | HPRIO | Read: | PSEL7 | PSEL6 | PSEL5 | PSEL4 | PSEL3 | PSEL2 | PSEL1 | 0 | | Φ001F | пРКІО | Write: | PSELI | PSELO | PSELS | FSEL4 | PSELS | PSELZ | PSELI | | #### \$0020 - \$0027 Reserved | ۸ ما ما <u>بر</u> م | Mana | ſ | D:4 7 | D:4 C | D:4 F | D:4 4 | D:4 0 | D:4 0 | D:4.4 | D:4 0 | |---------------------|-----------------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | \$0020 | \$0020 Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φ0020 | Reserved | Write: | | | | | | | | | | \$0021 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ψ0021 | Reserved | Write: | | | | | | | | | | \$0022 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φ0022 | Reserved | Write: | | | | | | | | | | \$0023 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φ0023 | Reserved | Write: | | | | | | | | | | \$0024 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυυ24 | Reserved | Write: | | | | | | | | | | \$0025 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φ0025 | Reserved | Write: | | | | | | | | | | \$0026 | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυυ 2 0 Ι | Reserved | Write: | | | | | | | | | | \$0027 | Bosoniad | Read | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυυ27 | Reserved | Write: | | | | | | | | | ## **\$0028 - \$002F** BKP (Core User Guide) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|--------|-----------------|--------|--------|--------|--------|--------|-------|--------|-------| | \$0028 | BKPCT0 | Read:
Write: | BKEN | BKFULL | BKBDM | BKTAG | 0 | 0 | 0 | 0 | | \$0029 | BKPCT1 | Read:
Write: | BK0MBH | BK0MBL | BK1MBH | BK1MBL | BK0RWE | BK0RW | BK1RWE | BK1RW | | \$002A | BKP0X | Read:
Write: | 0 | 0 | BK0V5 | BK0V4 | BK0V3 | BK0V2 | BK0V1 | BK0V0 | | \$002B | ВКР0Н | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$002C | BKP0L | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$002D | BKP1X | Read:
Write: | 0 | 0 | BK1V5 | BK1V4 | BK1V3 | BK1V2 | BK1V1 | BK1V0 | | \$002E | BKP1H | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$002F | BKP1L | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | # Freescale Semiconductoria Device User Guide — V02.15 #### \$0030 - \$0031 ## MMC map 4 of 4 (Core User Guide) | Address | Name | |---------|----------| | \$0030 | PPAGE | | \$0031 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------|-------|-------|-------|-------|-------|-------|-------|-------| | Read: | 0 | 0 | PIX5 | PIX4 | PIX3 | PIX2 | PIX1 | PIX0 | | Write: | | | FIXO | F1A4 | FIVO | FIAZ | FIXI | FIXU | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | #### \$0032 - \$0033 ## MEBI map 3 of 3 (Core User Guide) | Address | Name | |---------|-------| | \$0032 | PORTK | | \$0033 | DDRK | | | ſ | |--------|---| | Read: | Ī | | Write: | | | Read: | Ī | | Write: | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|-------|-------|-------|-------|-------|-------|-------|-------| | d:
e: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | d:
e: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | #### \$0034 - \$003F ## **CRG (Clock and Reset Generator)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------------|-----------|--------|--------|--------|--------|--------|--------|--------|---------|--------| | \$0034 | SYNR | Read: | 0 | 0 | SYN5 | SYN4 | SYN3 | SYN2 | SYN1 | SYN0 | | ΨΟΟΟΨ | STIVIX | Write: | | | 01110 | 01114 | 01110 | 01112 | 01111 | 01110 | | \$0035 | REFDV | Read: | 0 | 0 | 0 | 0 | REFDV3 | REFDV2 | REFDV1 | REFDV0 | | 4 0000 | | Write: | | | | | _ | | | | | \$0036 | CTFLG | Read: | TOUT7 | TOUT6 | TOUT5 | TOUT4 | TOUT3 | TOUT2 | TOUT1 | TOUT0 | | ψυσσο | TEST ONLY | Write: | | | | | | | | | | \$0037 | CRGFLG | Read: | RTIF | PROF | 0 | LOCKIF | LOCK | TRACK | SCMIF | SCM | | ψυσοι | CKGFLG | Write: | IXIII | 1 101 | | LOOKII | | | OCIVIII | | | \$0038 | CRGINT | Read: | RTIE | 0 | 0 | LOCKIE | 0 | 0 | SCMIE | 0 | | ψυσσσ | ORGINI | Write: | 1111 | | | | | | OOMIL | | | \$0039 | CLKSEL | Read: | PLLSEL | PSTP | SYSWAI | ROAWAI | PLLWAI | CWAI | RTIWAI | COPWAI | | ***** | OLITOLL | Write: | | | | | | | | | | \$003A | PLLCTL | Read: | CME | PLLON | AUTO | ACQ | 0 | PRE | PCE | SCME | | | | Write: | | | | | | | | | | \$003B | RTICTL | Read: | 0 | RTR6 | RTR5 | RTR4 | RTR3 | RTR2 | RTR1 | RTR0 | | | | Write: | | | | | • | | | | | \$003C | COPCTL | Read: | WCOP | RSBCK | 0 | 0 | 0 | CR2 | CR1 | CR0 | | | | Write: | | | 0 | | 0 | 0 | | | | \$003D | FORBYP | Read: | RTIBYP | СОРВУР | 0 | PLLBYP | 0 | 0 | FCM | 0 | | | TEST ONLY | Write: | | | | | | | | | | \$003E | CTCTL | Read: | TCTL7 | TCTL6 | TCTL5 | TCTL4 | TCLT3 | TCTL2 | TCTL1 | TCTL0 | | ₩ 300L | TEST ONLY | Write: | | | | | | | | | | \$003F | ARMCOP | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ψυυσι | ANNICOF | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | # MC9S12DP256B Device User of reescale Semiconductor, Inc. ## \$0040 - \$007F ## **ECT (Enhanced Capture Timer 16 Bit 8 Channels)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------|-----------|-----------------|--------|-------|-------|-------|-------|-------|-------|-------| | \$0040 | TIOS | Read:
Write: | IOS7 | IOS6 | IOS5 | IOS4 | IOS3 | IOS2 | IOS1 | IOS0 | | COO44 | 05000 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0041 | CFORC | Write: | FOC7 | FOC6 | FOC5 | FOC4 | FOC3 | FOC2 | FOC1 | FOC0 | | \$0042 | ОС7М | Read:
Write: | ОС7М7 | ОС7М6 | OC7M5 | OC7M4 | ОС7М3 | OC7M2 | OC7M1 | ОС7М0 | | \$0043 | OC7D | Read:
Write: | OC7D7 | OC7D6 | OC7D5 | OC7D4 | OC7D3 | OC7D2 | OC7D1 | OC7D0 | | \$0044 | TCNT (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0045 | TCNT (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0046 | TSCR1 | Read:
Write: | TEN | TSWAI | TSFRZ | TFFCA | 0 | 0 | 0 | 0 | | \$0047 | TTOV | Read:
Write: | TOV7 | TOV6 | TOV5 | TOV4 | TOV3 | TOV2 | TOV1 | TOV0 | | \$0048 | TCTL1 | Read:
Write: | OM7 | OL7 | OM6 | OL6 | OM5 | OL5 | OM4 | OL4 | | \$0049 | TCTL2 | Read:
Write: | ОМ3 | OL3 | OM2 | OL2 | OM1 | OL1 | ОМ0 | OL0 | | \$004A | TCTL3 | Read:
Write: | EDG7B | EDG7A | EDG6B | EDG6A | EDG5B | EDG5A | EDG4B | EDG4A | | \$004B | TCTL4 | Read:
Write: | EDG3B | EDG3A | EDG2B | EDG2A | EDG1B | EDG1A | EDG0B | EDG0A | | \$004C | TIE | Read:
Write: | C7I | C6I | C5I | C4I | C3I | C2I | C1I | COI | | \$004D | TSCR2 | Read:
Write: | TOI | 0 | 0 | 0 | TCRE | PR2 | PR1 | PR0 | | \$004E | TFLG1 | Read:
Write: | C7F | C6F | C5F | C4F | C3F | C2F | C1F | C0F | | \$004F | TFLG2 | Read:
Write: | TOF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0050 | TC0 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0051 | TC0 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0052 | TC1 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0053 | TC1 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0054 | TC2 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0055 | TC2 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0056 | TC3 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0057 | TC3 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0058 | TC4 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | # Freescale Semiconducton 2 Device User Guide — V02.15 ## \$0040 - \$007F ## **ECT (Enhanced Capture Timer 16 Bit 8 Channels)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|---------------------|-----------------|--------|-------|-------|------------|-----------|-------|-------|-------| | \$0059 | TC4 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$005A | TC5 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$005B | TC5 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$005C | TC6 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$005D | TC6 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$005E | TC7 (hi) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$005F | TC7 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0060 | PACTL | Read:
Write: | 0 | PAEN | PAMOD | PEDGE | CLK1 | CLK0 | PAOVI | PAI | | \$0061 | PAFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | PAOVF | PAIF | | \$0062 | PACN3 (hi) | Read:
Write: | Bit 7 | 6 | 5 |
4 | 3 | 2 | 1 | Bit 0 | | \$0063 | PACN2 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0064 | PACN1 (hi) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0065 | PACN0 (lo) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0066 | MCCTL | Read:
Write: | MCZI | MODMC | RDMCL | 0
ICLAT | 0
FLMC | MCEN | MCPR1 | MCPR0 | | \$0067 | MCFLG | Read:
Write: | MCZF | 0 | 0 | 0 | POLF3 | POLF2 | POLF1 | POLF0 | | \$0068 | ICPAR | Read:
Write: | 0 | 0 | 0 | 0 | PA3EN | PA2EN | PA1EN | PA0EN | | \$0069 | DLYCT | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | DLY1 | DLY0 | | \$006A | ICOVW | Read:
Write: | NOVW7 | NOVW6 | NOVW5 | NOVW4 | NOVW3 | NOVW2 | NOVW1 | NOVW0 | | \$006B | ICSYS | Read:
Write: | SH37 | SH26 | SH15 | SH04 | TFMOD | PACMX | BUFEN | LATQ | | \$006C | Reserved | Read:
Write: | | | | | | | | | | \$006D | TIMTST
Test Only | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | TCBYP | 0 | | \$006E | Reserved | Read:
Write: | | | | | | | | | | \$006F | Reserved | Read:
Write: | | | | | | | | | | \$0070 | PBCTL | Read:
Write: | 0 | PBEN | 0 | 0 | 0 | 0 | PBOVI | 0 | | \$0071 | PBFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | PBOVF | 0 | # MC9S12DP256B Device User of the escale Semiconductor, Inc. #### \$0040 - \$007F ## **ECT (Enhanced Capture Timer 16 Bit 8 Channels)** | | | _ | | | | | | | | | |----------------|---------------|--------|---------|-------|-------|-------|-------|-------|-------|-------| | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | \$0072 | PA3H | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | φ0072 | PASH | Write: | | | | | | | | | | ¢ 0072 | DAGLI | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0073 | PA2H | Write: | | | | | | | | | | \$0074 | DAALI | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0074 | PA1H | Write: | | | | | | | | | | \$007 E | DAOLI | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0075 | PA0H | Write: | | | | | | | | | | #0070 | MOONT (I:) | Read: | D:4.4.C | 14 | 13 | 40 | 44 | 10 | 9 | Bit 8 | | \$0076 | MCCNT (hi) | Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | DILO | | ¢ 0077 | MOONT (Ia) | Read: | D:+ 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0077 | MCCNT (lo) | Write: | Bit 7 | 0 | 5 | 4 | ٥ | 2 | 1 | DIL U | | | TOOL (/-:) | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0078 | TC0H (hi) | Write: | | | | | | | | | | \$0070 | TC011 (1-) | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0079 | TC0H (lo) | Write: | | | | | | | | | | Ф00 7 А | TO411 (1-1) | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$007A | TC1H (hi) | Write: | | | | | | | | | | ¢007D | TO411 (Ia) | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$007B | TC1H (lo) | Write: | | | | | | | | | | ¢007C | TC011 (b:) | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$007C | TC2H (hi) | Write: | | | | | | | | | | ¢007D | TC011 (Ia) | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$007D | TC2H (lo) | Write: | | | | | | | | | | | TOOL (/-:) | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$007E | TC3H (hi) | Write: | | | | | | | | | | \$007 E | TO 21.1 (14.) | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$007F | TC3H (lo) | Write: | | | | | | | | | ## \$0080 - \$009F ## ATD0 (Analog to Digital Converter 10 Bit 8 Channel) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-------------------|-----------|--------|-------|---------|--------|---------|--------|-------|-------|-------| | የ ለበበብ | ATDOCTLO | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0080 | ATD0CTL0 | Write: | | | | | | | | | | \$0081 | ATD0CTL1 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυυσι | AIDUCILI | Write: | | | | | | | | | | \$0082 | ATD0CTL2 | Read: | ADPU | AFFC | AWAI | ETRIGLE | ETRIGP | ETRIG | ASCIE | ASCIF | | φ0002 | AIDUCILZ | Write: | ADFO | AFFC | AVVAI | LIKIGLE | LIKIGE | LIKIG | ASCIE | | | \$0002 | ATD0CTL3 | Read: | 0 | S8C | S4C | S2C | S1C | FIFO | FRZ1 | FRZ0 | | \$0083 ATD00 | AIDUCILS | Write: | | 300 | 340 | 320 | 310 | FIFO | FRZI | FRZU | | \$0084 | ATD0CTL4 | Read: | SRES8 | SMP1 | SMP0 | PRS4 | PRS3 | PRS2 | PRS1 | PRS0 | | φ000 4 | AIDUCTL4 | Write: | SKESO | SIVIF I | SIVIEU | FN34 | FNOO | FNOZ | FNOI | FNSU | | \$0085 | ATD0CTL5 | Read: | DJM | DSGN | SCAN | MULT | 0 | СС | СВ | CA | | φυυου | AIDUCILS | Write: | DJIVI | DOGN | SCAN | IVIOLI | | CC | СВ | CA | | \$0086 | ATDOCTATO | Read: | SCF | 0 | ETORF | FIFOR | 0 | CC2 | CC1 | CC0 | | φυυου | ATD0STAT0 | Write: | | | | | | | | | | ¢nnop | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$008B Reserved | | Write: | | | | | | | | | (M) MOTOROLA 30 # Freescale Semiconducton 2 Device User Guide — V02.15 ## \$0080 - \$009F ## ATD0 (Analog to Digital Converter 10 Bit 8 Channel) | Address | Name | ſ | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------------|-------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------| | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0088 | ATD0TEST0 | Write: | | | | | | | | | | \$0089 | ATD0TEST1 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | sc | | | | Write:
Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$008A | Reserved | Write: | U | 0 | U | 0 | U | U | U | 0 | | # 000 D | ATD 0.0TAT4 | Read: | CCF7 | CCF6 | CCF5 | CCF4 | CCF3 | CCF2 | CCF1 | CCF0 | | \$008B | ATD0STAT1 | Write: | | | | | | | | | | \$008C | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Write:
Read: | | | | | | | | | | \$008D | ATD0DIEN | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | ¢∩∩oE | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$008E | Reserved | Write: | | | | | | | | | | \$008F | PORTAD0 | Read: | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | BIT 0 | | | | Write:
Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0090 | ATD0DR0H | Write: | Dit13 | 14 | 13 | 12 | 11 | 10 | 9 | Dito | | \$0004 | ATDODDOL | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0091 | ATD0DR0L | Write: | | | | | | | | | | \$0092 | ATD0DR1H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | | | Write:
Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0093 | ATD0DR1L | Write: | Diti | Dito | O O | 0 | 0 | | 0 | | | ¢0004 | ATDODDOLL | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0094 | ATD0DR2H | Write: | | | | | | | | | | \$0095 | ATD0DR2L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Write:
Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0096 | ATD0DR3H | Write: | Dit10 | 17 | 13 | 12 | 11 | 10 | 3 | Dito | | ¢0007 | ATDODDSI | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0097 | ATD0DR3L | Write: | | | | | | | | | | \$0098 | ATD0DR4H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | | | Write:
Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0099 | ATD0DR4L | Write: | Diti | Dito | U | U | O O | 0 | U | | | \$009A | ATD0DR5H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | фоовн | ALDUDKSH | Write: | | | | | | | | | | \$009B | ATD0DR5L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Write:
Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$009C | ATD0DR6H | Write: | Dit13 | 14 | 13 | 12 | 11 | 10 | 9 | Dito | | 4000D | ATDODDOL | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$009D | ATD0DR6L | Write: | | | | | | | | | | \$009E | ATD0DR7H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | | | Write:
Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$009F | ATD0DR7L | Write: | DILI | סונס | U | U | U | U | U | U | | | | ******** | | | | | | | | | # MC9S12DP256B Device User of reescale Semiconductor, Inc. ## \$00A0 - \$00C7 ## **PWM (Pulse Width Modulator 8 Bit 8 Channel)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|---------------------|-----------------|------------|--------|--------|--------|--------|--------|--------|------------| | \$00A0 | PWME | Read:
Write: | PWME7 | PWME6 | PWME5 | PWME4 | PWME3 | PWME2 | PWME1 | PWME0 | | \$00A1 | PWMPOL | Read:
Write: | PPOL7 | PPOL6 | PPOL5 | PPOL4 | PPOL3 | PPOL2 | PPOL1 | PPOL0 | | \$00A2 | PWMCLK | Read:
Write: | PCLK7 | PCLK6 | PCLK5 | PCLK4 | PCLK3 | PCLK2 | PCLK1 | PCLK0 | | \$00A3 | PWMPRCLK | Read:
Write: | 0 | PCKB2 | PCKB1 | PCKB0 | 0 | PCKA2 | PCKA1 | PCKA0 | | \$00A4 | PWMCAE | Read:
Write: | CAE7 | CAE6 | CAE5 | CAE4 | CAE3 | CAE2 | CAE1 | CAE0 | | \$00A5 | PWMCTL | Read:
Write: | CON67 | CON45 | CON23 | CON01 | PSWAI | PFRZ | 0 | 0 | | \$00A6 | PWMTST
Test Only | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00A7 | PWMPRSC | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00A8 | PWMSCLA | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00A9 | PWMSCLB | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00AA | PWMSCNTA | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00AB | PWMSCNTB | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00AC | PWMCNT0 | Read:
Write: | Bit 7
0 | 6
0 | 5
0 | 4
0 | 3
0 | 2
0 | 1 0 | Bit 0 | | \$00AD | PWMCNT1 | Read:
Write: | Bit 7 | 6
0 | 5
0 | 4
0 | 3 | 2 | 1 0 | Bit 0 | | \$00AE | PWMCNT2 | Read:
Write: | Bit 7 | 6 | 5
0 | 4 | 3 | 2 | 1 | Bit 0 | | \$00AF | PWMCNT3 | Read:
Write: | Bit 7 | 6 | 5 | 4 0 | 3 | 2 | 1 0 | Bit 0 | | \$00B0 | PWMCNT4 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | Bit 0 | | \$00B1 | PWMCNT5 | Read: | Bit 7 | 6 | 5 | 4 0 | 3 | 2 | 1 0 | Bit 0 | | \$00B2 | PWMCNT6 | Write:
Read: | 0
Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
Bit 0 | | \$00B3 | PWMCNT7 | Write:
Read: | 0
Bit 7 | 0
6 | 0
5 | 0
4 | 3 | 0 2 | 0
1 | 0
Bit 0 | | \$00B4 | PWMPER0 | Write:
Read: | 0
Bit 7 | 6 | 5 | 0
4 | 3 | 2 | 1 | 0
Bit 0 | | | | Write:
Read: | | | | 4 | 3 | | 1 | | |
\$00B5 | PWMPER1 | Write:
Read: | Bit 7 | 6 | 5 | | 3 | 2 | | Bit 0 | | \$00B6 | PWMPER2 | Write:
Read: | Bit 7 | 6 | 5 | 4 | | 2 | 1 | Bit 0 | | \$00B7 | PWMPER3 | Write:
Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00B8 | PWMPER4 | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | MOTOROLA ## Freescale Semiconductoria Device User Guide — V02.15 ## \$00A0 - \$00C7 ## **PWM (Pulse Width Modulator 8 Bit 8 Channel)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |------------------------|----------|-----------------|-------|-------|--------------|--------|-------|--------|-------------|-------------| | \$00B9 | PWMPER5 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BA | PWMPER6 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BB | PWMPER7 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BC | PWMDTY0 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BD | PWMDTY1 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BE | PWMDTY2 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00BF | PWMDTY3 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C0 | PWMDTY4 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C1 | PWMDTY5 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C2 | PWMDTY6 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C3 | PWMDTY7 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$00C4 | PWMSDN | Read:
Write: | PWMIF | PWMIE | PWMRS
TRT | PWMLVL | 0 | PWM7IN | PWM7IN
L | PWM7E
NA | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00C5 | Reserved | Write: | 0 | | | | U | | J | | | # 00 0 0 | Б . | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00C6 | Reserved | Write: | | | | | | | | | | \$00C7 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ## \$00C8 - \$00CF ## **SCI0 (Asynchronous Serial Interface)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------|----------|--------|-------|-----------|-------|--------|--------|--------|-------|-------| | \$00C8 | SCI0BDH | Read: | 0 | 0 | 0 | SBR12 | SBR11 | SBR10 | SBR9 | SBR8 | | ψυσσο | SCIODDIT | Write: | | | | ODICIZ | ODICTI | ODICIO | ODINO | ODINO | | \$00C9 | SCI0BDL | Read: | SBR7 | SBR6 | SBR5 | SBR4 | SBR3 | SBR2 | SBR1 | SBR0 | | ***** | 00.0222 | Write: | | 0 - 1 10 | | | | | | | | \$00CA | SCI0CR1 | Read: | LOOPS | SCISWAI | RSRC | М | WAKE | ILT | PE | PT | | φοσολί | COICCITT | Write: | 200.0 | 00.017.11 | | | *** | | | | | \$00CB | SCI0CR2 | Read: | TIE | TCIE | RIE | ILIE | TE | RE | RWU | SBK | | \$00CB | 00100112 | Write: | - | TOIL | IVIL | į | | 1/2 | 1200 | ODIX | | \$00CC | SCI0SR1 | Read: | TDRE | TC | RDRF | IDLE | OR | NF | FE | PF | | \$00CC | SCIUSKI | Write: | | | | | | | | | | \$00CD | SCI0SR2 | Read: | 0 | 0 | 0 | 0 | 0 | BRK13 | TXDIR | RAF | | \$00CD | 3C103K2 | Write: | | | | | | DIXIO | IADIK | | | ¢00CE | SCI0DRH | Read: | R8 | T8 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00CE SO | SCIUDKII | Write: | | '0 | | | | | | | | \$00CF | CCIODDI | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | φυυυΓ | SCI0DRL | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | # MC9S12DP256B Device User of reescale Semiconductor, Inc. ## \$00D0 - \$00D7 ## **SCI1 (Asynchronous Serial Interface)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------------|---------|----------------|--------|-----------|-------|-------|--------|-------|-------|-------| | \$00D0 | SCI1BDH | Read: | 0 | 0 | 0 | SBR12 | SBR11 | SBR10 | SBR9 | SBR8 | | \$00D0 | SCHEDI | Write: | | | | SBN12 | SBKII | SBK10 | SDR9 | SDICO | | COOD 4 | COMPDI | Read: | CDD7 | CDDC | CDDC | CDD4 | CDDa | CDDO | CDD4 | CDDO | | \$00D1 SCI1BD | SCI1BDL | Write: | SBR7 | SBR6 | SBR5 | SBR4 | SBR3 | SBR2 | SBR1 | SBR0 | | Фооро | 0014004 | Read: | 1.0000 | 001014/41 | D0D0 | | \A/A// | - | | 5 | | \$00D2 | SCI1CR1 | Write: | LOOPS | SCISWAI | RSRC | М | WAKE | ILT | PE | PT | | | SCI1CR2 | Read: | | TOLE | DIE | | | 5.5 | DWII | 0014 | | \$00D3 | | Write: | TIE | TCIE | RIE | ILIE | TE | RE | RWU | SBK | | | | Read: | TDRE | TC | RDRF | IDLE | OR | NF | FE | PF | | \$00D4 | SCI1SR1 | SCI1SR1 Write: | | | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | | | RAF | | \$00D5 | SCI1SR2 | Write: | | | | | | BRK13 | TXDIR | | | | | Read: | R8 | | 0 | 0 | 0 | 0 | 0 | 0 | | \$00D6 | SCI1DRH | Write: | | T8 | - | | | | | | | | | | DZ | R6 | D.F. | D.4 | Da | DO | D4 | DO | | \$00D7 | SCI1DRL | Read: | R7 | _ | R5 | R4 | R3 | R2 | R1 | R0 | | Ψ00Β1 | COMBINE | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | ## \$00D8 - \$00DF ## **SPI0 (Serial Peripheral Interface)** | | | _ | | | | | | | | | |---------------|----------|-----------------|-------|-------|-------|-----------|---------|-------|---------|-------| | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | \$00D8 | SPI0CR1 | Read:
Write: | SPIE | SPE | SPTIE | MSTR | CPOL | СРНА | SSOE | LSBFE | | \$00D9 | SPI0CR2 | Read: | 0 | 0 | 0 | MODFEN | BIDIROE | 0 | SPISWAI | SPC0 | | φ00D9 3F10C | SPIUCKZ | Write: | | | | INIODELIN | BIDINOL | | SFISWAI | 51 00 | | \$00DA SPI0BF | CDIODD | Read: | 0 | SPPR2 | SPPR1 | SPPR0 | 0 | SPR2 | SPR1 | SPR0 | | | SPIUDR | Write: | | SFFRZ | SPEKI | SFFRU | | SPRZ | SPKI | | | ¢00DB | SPI0SR | Read: | SPIF | 0 | SPTEF | MODF | 0 | 0 | 0 | 0 | | \$00DB | SPIUSK | Write: | | | | | | | | | | \$00DC | D | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00DC | Reserved | Write: | | | | | | | | | | ¢00DD | CDIODD | Read: | Bit7 | 6 | E | 4 | 0 | 2 | 1 | D:+O | | \$00DD | SPI0DR | Write: | DILI | 0 | 5 | 4 | 3 | 2 | I | Bit0 | | ¢00DE | Dagamuad | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00DE | Reserved | Write: | | | | | | | | | | ¢00DE | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00DF | | Write: | | | | | | | | | | | | - | | | | | | | | | ## \$00E0 - \$00E7 ## IIC (Inter IC Bus) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|------|-----------------|-------|-------|---------|-------|-------|-------|-------|---------| | \$00E0 | IBAD | Read:
Write: | ADR7 | ADR6 | ADR5 | ADR4 | ADR3 | ADR2 | ADR1 | 0 | | \$00E1 | IBFD | Read:
Write: | IBC7 | IBC6 | IBC5 | IBC4 | IBC3 | IBC2 | IBC1 | IBC0 | | \$00E2 | IBCR | Read: | IBEN | IBIE | MS/SL | TX/RX | TXAK | 0 | 0 | IBSWAI | | Ψ00L2 | IBCK | Write: | IDLIN | IDIL | IVIO/OL | IMIX | IAAN | RSTA | | IDOVVAI | | ¢00Г2 | IDCD | Read: | TCF | IAAS | IBB | IDAI | 0 | SRW | IBIF | RXAK | | \$00E3 | IBSR | Write: | | | | IBAL | | | IDIF | | 34 # Freescale Semiconductorn 2 to Device User Guide — V02.15 ## \$00E0 - \$00E7 ## IIC (Inter IC Bus) | Address | Name | |---------|----------| | \$00E4 | IBDR | | \$00E5 | Reserved | | \$00E6 | Reserved | | \$00E7 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|-------|-------|-------|-------|-------|-------|-------| | Read:
Write: | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D 0 | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | #### \$00E8 - \$00EF Name Address ## **BDLC (Bytelevel Data Link Controller J1850)** | \$00E8 | DLCBCR1 | |--------|----------| | \$00E9 | DLCBSVR | | \$00EA | DLCBCR2 | | \$00EB | DLCBDR | | \$00EC | DLCBARD | | \$00ED | DLCBRSR | | \$00EE | DLCSCR | | \$00EF | DLCBSTAT | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | |--------|-----------|---------|---------|--------|-------|--------|--------------|-----------|--| | Read: | IMSG | CLKS | 0 | 0 | 0 | 0 | IE | WCM | | | Write: | IIVIOG | CLKS | | | | | IL. | VVCIVI | | | Read: | 0 | 0 | 13 | 12 | l1 | 10 | 0 | 0 | | | Write: | | | | | | | | | | | Read: | SMRST | DLOOP | RX4XE | NBFS | TEOD | TSIFR | TMIFR1 | TMIFR0 | | | Write: | SiviiXST | DLOOI | IVAAVE | כ ומאו | ILOD | 101111 | I IVIII IX I | TIVIII-KU | | | Read: | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | Write: | <i>D1</i> | D0 | | D-T | | | D1 | | | | Read: | 0 | RXPOL | PYPOI 0 | | ВО3 | BO2 | BO1 | BO0 | | | Write: | | TONI OL | | | D00 | DO2 | 501 | D00 | | | Read: | 0 | 0 | R5 | R4 | R3 | R2 | R1 | R0 | | | Write: | | | 11.5 | 11.4 | 11.0 | 112 | 17.1 | IXO | | | Read: | 0 | 0 | 0 | BDLCE | 0 | 0 | 0 | 0 | | | Write: | | | | DDLOL | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | IDLE | | | Write: | | | | | | | | | | #### \$00F0 - \$00F7 Name Address ## **SPI1 (Serial Peripheral Interface)** | \$00F0 | SPI1CR1 | |--------|----------| | \$00F1 | SPI1CR2 | | \$00F2 | SPI1BR | | \$00F3 | SPI1SR | | \$00F4 | Reserved | | \$00F5 | SPI1DR | | \$00F6 | Reserved | | \$00F7 | Reserved | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-----------------|-------|--------|----------|------------|---------|--------|---------|-------| | Read:
Write: | SPIE | SPE | SPTIE | MSTR | CPOL | СРНА | SSOE | LSBFE | | Read: | 0 | 0 | 0 | MODFEN | BIDIROE | 0 | SPISWAI | SPC0 | | Write: | | | | IVIODI LIV | DIDINOL | | 31 1344 | 31 00 | | Read: | 0 | SPPR2 | SPPR1 | SPPR0 | 0 | SPR2 | SPR1 | SPR0 | | Write: | | 011112 | 51 1 1 1 | 01110 | | 01 112 | 01 101 | 01 10 | | Read: | SPIF | 0 | SPTEF | MODF | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit0 | | Write: | DILI | 0 | 7 | 7 | 5 | | | Dito | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Write: | | | | | | | | | # MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ## \$00F8 - \$00FF ## **SPI2 (Serial Peripheral Interface)** | | | г | | | | | | | | | |------------------------|----------|-----------------
-------|-------|-------|--------|---------|-------|-----------|-------| | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | \$00F8 | SPI2CR1 | Read:
Write: | SPIE | SPE | SPTIE | MSTR | CPOL | СРНА | SSOE | LSBFE | | Ф ОО Г О | ODIOODO | Read: | 0 | 0 | 0 | MODEEN | חוחוח | 0 | CDICVAVAI | CDCO | | \$00F9 SPI2CR2 | SPI2CR2 | Write: | | | | MODFEN | BIDIKOE | | SPISWAI | SPC0 | | ¢00E4 | CDIADD | Read: | 0 | SPPR2 | SPPR1 | SPPR0 | 0 | SPR2 | SPR1 | SPR0 | | \$00FA SPI2BR | SPIZBR | Write: | | SFFKZ | SFFKI | SPPRU | | SFKZ | SPKI | SPRU | | ¢ooed or | SPI2SR | Read: | SPIF | 0 | SPTEF | MODF | 0 | 0 | 0 | 0 | | \$00FB | SPIZSK | Write: | | | | | | | | | | \$00FC | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DUCC | Reserved | Write: | | | | | | | | | | \$00FD | SPI2DR | Read: | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit0 | | ΦυυΓ | SPIZDR | Write: | DILI | O | 5 | 4 | 3 | 2 | 1 | DILU | | \$00FE | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ΦUUΓ⊑ | Reserved | Write: | | | | | | | | | | ¢00EE | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$00FF | | Write: | | | | | | | | | ## \$0100 - \$010F ## Flash Control Register (fts512k4) | | | | | | 1 | | | | | | |--------------|-------------------|-----------------|--------|---------|--------|--------|-------|--------|--------|--------| | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | \$0100 | FCLKDIV | Read:
Write: | FDIVLD | PRDIV8 | FDIV5 | FDIV4 | FDIV3 | FDIV2 | FDIV1 | FDIV0 | | 00404 | 5050 | Read: | KEYEN | NV6 | NV5 | NV4 | NV3 | NV2 | SEC1 | SEC0 | | \$0101 | FSEC | Write: | | | | | | | | | | | | Read: | _ | _ | _ | | 0 | 0 | 0 | _ | | \$0102 | 30102 FTSTMOD Wri | | 0 | 0 | 0 | WRALL | | | | 0 | | | | Read: | | | | 0 | 0 | 0 | | | | \$0103 | FCNFG | Write: | CBEIE | CCIE | KEYACC | | | | BKSEL1 | BKSEL0 | | | | Read: | | | | | | | | | | \$0104 | FPROT | Write: | FPOPEN | NV6 | FPHDIS | FPHS1 | FPHS0 | FPLDIS | FPLS1 | FPLS0 | | | | Read: | | CCIF | | | 0 | | 0 | 0 | | \$0105 | FSTAT | | CBEIF | CCIF | PVIOL | ACCERR | 0 | BLANK | U | U | | | | Write: | • | | | | | | 0 | | | \$0106 | FCMD | Read: | 0 | CMDB6 | CMDB5 | 0 | 0 | CMDB2 | 0 | CMDB0 | | • | | Write: | | | | | | | | | | \$0107 | Reserved for | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φοτον | Factory Test | Write: | | | | | | | | | | #0400 | E4.000 | Read: | 0 | D:4.4.4 | 40 | 40 | 4.4 | 40 | | D:+ 0 | | \$0108 | FADDRHI | Write: | | Bit 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | Read: | | | _ | | _ | _ | _ | | | \$0109 | FADDRLO | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | Read: | | | | | | | | | | \$010A | FDATAHI | Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | Read: | | | | | | | | | | \$010B | FDATALO | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | Write: | | | 0 | | | | 0 | | | \$010C | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτου | 110301100 | Write: | | | | | | | | | MOTOROLA ## Freescale Semiconductoria Device User Guide — V02.15 ### \$0100 - \$010F ### Flash Control Register (fts512k4) | Address | Name | ſ | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-----------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$010D | Descrived | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$010D | Reserved | Write: | | | | | | | | | | \$010E | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ010E | Reserved | Write: | | | | | | | | | | \$010F | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτυΓ | Reserved | Write: | | | | | | | | | ### \$0110 - \$011B ### **EEPROM Control Register (eets4k)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------|------------------------------|-----------------|--------|--------|-------|--------|-------|-------|-------|-------| | \$0110 | ECLKDIV | Read:
Write: | EDIVLD | PRDIV8 | EDIV5 | EDIV4 | EDIV3 | EDIV2 | EDIV1 | EDIV0 | | \$0111 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DOLLO | Reserved for | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0112 | Factory Test | Write: | | | | | | | | | | \$0113 | ECNFG | Read:
Write: | CBEIE | CCIE | 0 | 0 | 0 | 0 | 0 | 0 | | \$0114 | EPROT | Read:
Write: | EPOPEN | NV6 | NV5 | NV4 | EPDIS | EP2 | EP1 | EP0 | | \$0115 | ESTAT | Read:
Write: | CBEIF | CCIF | PVIOL | ACCERR | 0 | BLANK | 0 | 0 | | \$0116 | ECMD | Read:
Write: | 0 | CMDB6 | CMDB5 | 0 | 0 | CMDB2 | 0 | CMDB0 | | \$0117 | Reserved for
Factory Test | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0118 | EADDRHI | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 10 | 9 | Bit 8 | | \$0119 | EADDRLO | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$011A | EDATAHI | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$011B | EDATALO | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | #### \$011C - \$011F ### **Reserved for RAM Control Register** | Address | Name | [| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$011C | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτιο | Reserved | Write: | | | | | | | | | | \$011D | Pagaryad | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | טווטק | Reserved | Write: | | | | | | | | | | \$011E | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ф∪П⊏ | Reserved | Write: | | | | | | | | | | \$011F | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτικ | Reserved | Write: | | | | | | | | | ## MC9S12DP256B Device User of reescale Semiconductor, Inc. ### \$0120 - \$013F ### ATD1 (Analog to Digital Converter 10 Bit 8 Channel) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------|------------|-----------------|-------|-------|-------|---------|--------|-------|-------|-------| | \$0120 | ATD1CTL0 | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO101 | ATD4 OTL 4 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0121 | ATD1CTL1 | Write: | | | | | | | | | | \$0122 | ATD1CTL2 | Read:
Write: | ADPU | AFFC | AWAI | ETRIGLE | ETRIGP | ETRIG | ASCIE | ASCIF | | \$0123 | ATD1CTL3 | Read:
Write: | 0 | S8C | S4C | S2C | S1C | FIFO | FRZ1 | FRZ0 | | \$0124 | ATD1CTL4 | Read:
Write: | SRES8 | SMP1 | SMP0 | PRS4 | PRS3 | PRS2 | PRS1 | PRS0 | | \$0125 | ATD1CTL5 | Read:
Write: | DJM | DSGN | SCAN | MULT | 0 | CC | СВ | CA | | \$0126 | ATD1STAT0 | Read:
Write: | SCF | 0 | ETORF | FIFOR | 0 | CC2 | CC1 | CC0 | | \$0127 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0128 | ATD1TEST0 | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0129 | ATD1TEST1 | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | SC | | \$012A | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$012B | ATD1STAT1 | Read:
Write: | CCF7 | CCF6 | CCF5 | CCF4 | CCF3 | CCF2 | CCF1 | CCF0 | | \$012C | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$012D | ATD1DIEN | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$012E | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$012F | PORTAD1 | Read:
Write: | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | BIT 0 | | \$0130 | ATD1DR0H | Read:
Write: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0131 | ATD1DR0L | Read:
Write: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0132 | ATD1DR1H | Read:
Write: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0133 | ATD1DR1L | Read:
Write: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0134 | ATD1DR2H | Read:
Write: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0135 | ATD1DR2L | Read:
Write: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0136 | ATD1DR3H | Read:
Write: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | \$0137 | ATD1DR3L | Read:
Write: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0138 | ATD1DR4H | Read:
Write: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | MOTOROLA ## Freescale Semiconductoria Device User Guide — V02.15 ### \$0120 - \$013F ### ATD1 (Analog to Digital Converter 10 Bit 8 Channel) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$0139 | ATD1DR4L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | φ0139 | AIDIDK4L | Write: | | | | | | | | | | \$013A | ATD1DR5H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | φυτοΑ | AIDIDKSH | Write: | | | | | | | | | | \$013B | ATD1DR5L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτου | AIDIDKSL | Write: | | | | | | | | | | \$013C | ATD1DR6H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | φ0130 | AIDIDKON | Write: | | | | | | | | | | \$013D | ATD1DR6L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτου | AIDIDROL | Write: | | | | | | | | | | \$013E | ATD1DR7H | Read: | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit8 | | φ013E | AIDIDKIN | Write: | | | | | | | | | | \$013F | ATD1DR7L | Read: | Bit7 | Bit6 | 0 | 0 | 0 | 0 | 0 | 0 | | φυτοΓ | AIDIDKIL | Write: | | | | | | | | | #### \$0140 - \$017F ### **CAN0 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------|------------------|-----------------|----------|-----------|-----------|----------|-----------|---------|----------|------------| | \$0140 | CAN0CTL0 | Read: | RXFRM | RXACT | CSWAI | SYNCH | TIME | WUPE | SLPRQ | INITRQ | | | | Write:
Read: | | | | | 0 | | SLPAK | INITAK | | \$0141 | CAN0CTL1 | Write: | CANE | CLKSRC | LOOPB | LISTEN | | WUPM | GEITH | II WITH CO | | \$0142 | CAN0BTR0 | Read:
Write: | SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 | | \$0143 | CAN0BTR1 | Read:
Write: | SAMP | TSEG22 | TSEG21 | TSEG20 | TSEG13 | TSEG12 | TSEG11 | TSEG10 | | \$0144 | CAN0RFLG | Read:
Write: | WUPIF | CSCIF | RSTAT1
 RSTAT0 | TSTAT1 | TSTAT0 | OVRIF | RXF | | \$0145 | CAN0RIER | Read:
Write: | WUPIE | CSCIE | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE | RXFIE | | \$0146 | CAN0TFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXE2 | TXE1 | TXE0 | | \$0147 | CAN0TIER | Read: | 0 | 0 | 0 | 0 | 0 | TXEIE2 | TXEIE1 | TXEIE0 | | φ0147 | CANUTIER | Write: | | | | | | IACICZ | IVEIEI | IVEIER | | \$0148 | CAN0TARQ | Read: | 0 | 0 | 0 | 0 | 0 | ABTRQ2 | ABTRQ1 | ABTRQ0 | | | | Write:
Read: | 0 | 0 | 0 | 0 | 0 | ABTAK2 | ABTAK1 | ABTAK0 | | \$0149 | CAN0TAAK | Write: | U | U | | 0 | J | ADIAILE | ADIAKI | ADIANO | | CO44A | OANOTROEL | Read: | 0 | 0 | 0 | 0 | 0 | TVO | TV4 | TVO | | \$014A | CAN0TBSEL | Write: | | | | | | TX2 | TX1 | TX0 | | \$014B | CAN0IDAC | Read: | 0 | 0 | IDAM1 | IDAM0 | 0 | IDHIT2 | IDHIT1 | IDHIT0 | | ΨΟΊΨΒ | CANOIDAC | Write: | | | | | | | | | | \$014C | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$014D | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | RXERR7 | RXERR6 | RXERR5 | RXERR4 | RXERR3 | RXERR2 | RXERR1 | RXERR0 | | \$014E | CAN0RXERR | Write: | TOTELLIN | TOTELLING | TOTELLING | TOTELLIT | TOTELLING | TALLINE | TAKETATA | TOTELLING | | 00445 | 0.4.10.7.7.5.5.5 | Read: | TXERR7 | TXERR6 | TXERR5 | TXERR4 | TXERR3 | TXERR2 | TXERR1 | TXERR0 | | \$014F | CAN0TXERR | Write: | | | | | | | | | ## MC9S12DP256B Device User of kees@ale Semiconductor, Inc. #### \$0140 - \$017F ### **CAN0 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------------|--------------------------|-----------------|-------|-------|---------|----------|-----------|---------------------|-------|-------| | \$0150 -
\$0153 | CANOIDAR0 -
CANOIDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0154 -
\$0157 | CANOIDMR0 -
CANOIDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0158 -
\$015B | CANOIDAR4 -
CANOIDAR7 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$015C -
\$015F | CANOIDMR4 -
CANOIDMR7 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0160 -
\$016F | CAN0RXFG | Read:
Write: | | FOF | REGROUN | D RECEIV | E BUFFER | see Table | 1-2 | | | \$0170 -
\$017F | CAN0TXFG | Read:
Write: | | FOR | EGROUNI | TRANSM | IT BUFFEF | R see Tabl e | e 1-2 | | Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout | Sample | | | 1 | | | | 50.4 | - · · | | | 50.5 | |--|---------|-------------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | SxxxX Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID3 ID5 ID4 ID3 ID5 ID4 ID3 ID5 ID4 ID3 ID5 ID4 ID5 ID4 ID5 ID4 ID5 ID5 ID4 ID5 ID5 ID4 ID5 ID5 ID4 ID5 | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | CANXRIDRO Write: Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 ID16 ID15 ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 ID16 ID15 ID20 ID10 ID10 RTR IDE=0 ID20 ID | | Extended ID | Read: | | | | | | | | | | Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 | \$xxx0 | Standard ID | Read: | ID10 | ID9 | ID8 | ID7 | ID6 | ID5 | ID4 | ID3 | | \$xxx1 | | CANxRIDR0 | Write: | | | | | | | | | | CANXRIDR1 Write: Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 | | Extended ID | Read: | ID20 | ID19 | ID18 | SRR=1 | IDE=1 | ID17 | ID16 | ID15 | | Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 | \$xxx1 | Standard ID | Read: | ID2 | ID1 | ID0 | RTR | IDE=0 | | | | | \$xxx2 | | CANxRIDR1 | Write: | | | | | | | | | | CANXRIDR2 Write: Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR | | Extended ID | Read: | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | ID7 | | Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR | \$xxx2 | Standard ID | Read: | | | | | | | | | | \$xxx3 Standard ID CANXRIDR3 Write: Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 \$xxx4- CANXRDSR0 - Read: \$xxxB CANXRDSR7 Write: CANXRDSR7 Write: DLC3 DLC2 DLC1 DLC0 \$xxxC CANRXDLR Read: Write: TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 \$xxxF CANXRTSRL Write: Write: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 \$xx10 Extended ID Read: CANXTIDR0 Write: Standard ID Read: CANXTIDR1 Write: Standard ID Read: ID2 ID21 ID20 ID10 ID20 ID10 ID20 ID21 ID20 ID26 ID26 ID26 ID26 ID27 ID26 ID27 ID26 ID27 ID26 ID27 ID26 ID27 < | | CANxRIDR2 | Write: | | | | | | | | | | CANXRIDR3 Write: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 \$xxxxB CANXRDSR7 Write: Amount of the control c | | Extended ID | Read: | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | RTR | | \$xxx4- CANxRDSR0 - Read: \$xxxB DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 \$xxxB CANRXDLR Write: | \$xxx3 | Standard ID | Read: | | | | | | | | | | \$xxxB CANxRDSR7 Write: Read: DLC3 DLC2 DLC1 DLC0 \$xxxC CANxDLR Read: Write: | | CANxRIDR3 | Write: | | | | | | | | | | \$xxxxB CANxRDSR7 Write: Read: DLC3 DLC2 DLC1 DLC0 \$xxxC CANRXDLR Read: Write: ID10 ID26 ID25 ID24 ID23 ID22 ID21 \$xx10 Extended ID Read: CANxTIDR1 Write: Standard ID Read: ID2 ID21 ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 | \$xxx4- | CANxRDSR0 - | Read: | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | \$xxxD Reserved Write: Read: Write: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 \$xxxxE CANxRTSRL Read: Write: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 \$xxx10 Extended ID Read:
Standard ID Read:
CANxTIDR1
Write: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 \$xx10 Extended ID Read:
Write:
Standard ID Read:
Standard ID Read:
Standard ID Read:
Standard ID Read:
Standard ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 | | CANxRDSR7 | Write: | | | | | | | | | | \$xxxD Reserved Read: Write: Write: Write: Write: Extended ID Standard ID Standard ID Standard ID Standard ID Standard ID Read: | Φ | OAND DID | Read: | | | | | DLC3 | DLC2 | DLC1 | DLC0 | | \$xxxD Reserved Write: Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 \$xxxF CANxRTSRL Read: Write: Write: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 \$xxx10 Extended ID Read:
Write: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 \$xxx10 Extended ID Read:
CANxTIDR1
Standard ID Read:
Standard ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 \$xx10 Standard ID Read:
Standard ID Read: ID2 ID1 ID0 RTR IDE=0 | \$XXXC | CANRXDLR | Write: | | | | | | | | | | \$xxxE | | | Read: | | | | | | | | | | \$xxxE CANXRTSRH Write: Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 \$xxx10 Extended ID CANXTIDR0 Write: Standard ID Read: Write: Extended ID Read: CANXTIDR1 Write: Standard ID Read: CANXTIDR1 Write: Standard ID Read: ID20 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 \$xx10 Extended ID Read: CANXTIDR1 Write: Standard ID Read: ID2 ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 | \$XXXD | Reserved | Write: | | | | | | | | | | \$xxxF | | CAN DECDU | Read: | TSR15 | TSR14 | TSR13 | TSR12 | TSR11 | TSR10 | TSR9 | TSR8 | | \$xxx10 | \$XXXE | CANXRISRH | Write: | | | | | | | | | | \$xx10 | | 0411 07001 | Read: | TSR7 | TSR6 | TSR5 | TSR4 | TSR3 | TSR2 | TSR1 | TSR0 | | \$xx10 | \$xxxF | CANXRISRL | Write: | | | | | | | | | | \$xx10 | | Extended ID | Read: | | | | | | | | | | \$xx10 | | CANxTIDR0 | Write: | ID28 | ID27 | ID26 | ID25 | ID24 | ID23 | ID22 | ID21 | | Write: Write: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 \$xx10 Extended ID Read:
CANxTIDR1 Write:
Standard ID Read:
ID2 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 | \$xx10 | Standard ID | | | | | | | | | | | \$xx10 | | | | ID10 | ID9 | ID8 | ID7 | ID6 | ID5 | ID4 | ID3 | | \$xx10 | | Extended ID | | IDOO | 15.40 | 15.46 | 000 i | IDE (| | 15.40 | 15.45 | | Standard ID Read: ID2 ID1 ID0 RTR IDE=0 | | | | ID20 | ID19 | ID18 | SRR=1 | IDE=1 | וטו7 | ID16 | ID15 | | D2 | \$xx10 | Standard ID | | | | | | | | | | | | | | | ID2 | וטו | וטט | KIR | IDE=0 | | | | Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout | Address | Name | | Bit 7 | Bit 6 | Bit 5
 Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |-------------------|--------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------| | \$xx12 | Extended ID CANxTIDR2 | Read:
Write: | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | ID7 | | ΨΛΛΙΖ | Standard ID | Read:
Write: | | | | | | | | | | \$xx13 | Extended ID CANxTIDR3 | Read:
Write: | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | RTR | | ΨΑΛΙΟ | Standard ID | Read:
Write: | | | | | | | | | | \$xx14-
\$xx1B | CANxTDSR0 -
CANxTDSR7 | Read:
Write: | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | \$xx1C | CANxTDLR | Read:
Write: | | | | | DLC3 | DLC2 | DLC1 | DLC0 | | \$xx1D | CONxTTBPR | Read:
Write: | PRIO7 | PRIO6 | PRIO5 | PRIO4 | PRIO3 | PRIO2 | PRIO1 | PRIO0 | | \$xx1E | CANxTTSRH | Read: | TSR15 | TSR14 | TSR13 | TSR12 | TSR11 | TSR10 | TSR9 | TSR8 | | ΨΛΛΙΔ | OAINATTORIT | Write: | | | | | | | | | | \$xx1F | CANxTTSRL | Read: | TSR7 | TSR6 | TSR5 | TSR4 | TSR3 | TSR2 | TSR1 | TSR0 | | ΨΛΛΤΙ | O, WALLONE | Write: | | | | | | | | | #### \$0180 - \$01BF ### **CAN1 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-------------|-----------------|--------|----------|---------|---------|---------|-----------|---|---------| | \$0180 | CAN1CTL0 | Read:
Write: | RXFRM | RXACT | CSWAI | SYNCH | TIME | WUPE | SLPRQ | INITRQ | | \$0181 | CAN1CTL1 | Read: | CANE | CLKSRC | LOOPB | LISTEN | 0 | WUPM | SLPAK | INITAK | | φοισι | CANTOTET | Write: | O/IIVL | OLINOINO | LOO! B | LIGILIA | | VV O1 1V1 | | | | \$0182 | CAN1BTR0 | Read:
Write: | SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 | | \$0183 | CAN1BTR1 | Read:
Write: | SAMP | TSEG22 | TSEG21 | TSEG20 | TSEG13 | TSEG12 | TSEG11 | TSEG10 | | \$0184 | CAN1RFLG | Read:
Write: | WUPIF | CSCIF | RSTAT1 | RSTAT0 | TSTAT1 | TSTAT0 | OVRIF | RXF | | \$0185 | CAN1RIER | Read:
Write: | WUPIE | CSCIE | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE | RXFIE | | \$0186 | CAN1TFLG | Read: | 0 | 0 | 0 | 0 | 0 | TXE2 | TXE1 | TXE0 | | ψυτου | CANTILLE | Write: | | | | | | IALZ | IXLI | IXLU | | \$0187 | CAN1TIER | Read: | 0 | 0 | 0 | 0 | 0 | TXEIE2 | TXEIE1 | TXEIE0 | | φοιοι | ONTHIER | Write: | | | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1712120 | | \$0188 | CAN1TARQ | Read: | 0 | 0 | 0 | 0 | 0 | ABTRQ2 | ABTRQ1 | ABTRQ0 | | φοισσ | 0/1111/1110 | Write: | | | | | | | | | | \$0189 | CAN1TAAK | Read: | 0 | 0 | 0 | 0 | 0 | ABTAK2 | ABTAK1 | ABTAK0 | | φοισσ | 0/11/1/1/11 | Write: | | | | | | | | | | \$018A | CAN1TBSEL | Read: | 0 | 0 | 0 | 0 | 0 | TX2 | TX1 | TX0 | | ψυτολ | CANTIDOLL | Write: | | | | | | IAZ | 17/1 | 170 | | \$018B | CAN1IDAC | Read: | 0 | 0 | IDAM1 | IDAM0 | 0 | IDHIT2 | IDHIT1 | IDHIT0 | | ψυτου | CANTIDAC | Write: | | | IDAWII | IDAIVIO | | | | | | \$018C | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ψυτου | i vesei veu | Write: | | | | | | | | | ### MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ### \$0180 - \$01BF ### **CAN1 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------------|-----------|-----------------|--------|--------|---------|----------|------------|-------------|--------|--------| | \$018D | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$018E | CAN1RXERR | Write:
Read: | RXERR7 | RXERR6 | RXERR5 | RXERR4 | RXERR3 | RXERR2 | RXERR1 | RXERR0 | | φ016 Ľ | CANTRAERR | Write: | TVEDDZ | TVEDDO | TVEDDE | TVEDDA | TVEDDO | TVEDDO | TVEDDA | TVEDDO | | \$018F | CAN1TXERR | Read:
Write: | TXERR7 | TXERR6 | TXERR5 | TXERR4 | TXERR3 | TXERR2 | TXERR1 | TXERR0 | | \$0190 | CAN1IDAR0 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0191 | CAN1IDAR1 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0192 | CAN1IDAR2 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0193 | CAN1IDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0194 | CAN1IDMR0 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0195 | CAN1IDMR1 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0196 | CAN1IDMR2 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0197 | CAN1IDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМ3 | AM2 | AM1 | AM0 | | \$0198 | CAN1IDAR4 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0199 | CAN1IDAR5 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$019A | CAN1IDAR6 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$019B | CAN1IDAR7 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$019C | CAN1IDMR4 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$019D | CAN1IDMR5 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$019E | CAN1IDMR6 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$019F | CAN1IDMR7 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$01A0 - | CAN1RXFG | Read: | | FOF | REGROUN | D RECEIV | E BUFFER | see Table | 1-2 | | | \$01AF
\$01B0 - | | Write:
Read: | | | | | | | | | | \$01B6 | CAN1TXFG | Write: | | FOR | EGROUNI | TRANSM | IIT BUFFER | R see Table | e 1-2 | | #### \$01C0 - \$01FF ### **CAN2 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-----------|-----------------|--------|--------|---------|---------|---------|---------|--------|--------| | \$01C0 | CAN2CTL0 | Read:
Write: | RXFRM | RXACT | CSWAI | SYNCH | TIME | WUPE | SLPRQ | INITRQ | | \$01C1 | CAN2CTL1 | Read:
Write: | CANE | CLKSRC | LOOPB | LISTEN | 0 | WUPM | SLPAK | INITAK | | \$01C2 | CAN2BTR0 | Read:
Write: | SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 | | \$01C3 | CAN2BTR1 | Read:
Write: | SAMP | TSEG22 | TSEG21 | TSEG20 | TSEG13 | TSEG12 | TSEG11 | TSEG10 | | \$01C4 | CAN2RFLG | Read:
Write: | WUPIF | CSCIF | RSTAT1 | RSTAT0 | TSTAT1 | TSTAT0 | OVRIF | RXF | | \$01C5 | CAN2RIER | Read:
Write: | WUPIE | CSCIE | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE | RXFIE | | \$01C6 | CAN2TFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXE2 | TXE1 | TXE0 | | \$01C7 | CAN2TIER | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXEIE2 | TXEIE1 | TXEIE0 | | \$01C8 | CAN2TARQ | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTRQ2 | ABTRQ1 | ABTRQ0 | | \$01C9 | CAN2TAAK | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTAK2 | ABTAK1 | ABTAK0 | | \$01CA | CAN2TBSEL | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TX2 | TX1 | TX0 | | \$01CB | CAN2IDAC | Read:
Write: | 0 | 0 | IDAM1 | IDAM0 | 0 | IDHIT2 | IDHIT1 | IDHIT0 | | \$01CC | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$01CD | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$01CE | CAN2RXERR | Read:
Write: | RXERR7 | RXERR6 | RXERR5 | RXERR4 | RXERR3 | RXERR2 | RXERR1 | RXERR0 | | \$01CF | CAN2TXERR | Read:
Write: | TXERR7 | TXERR6 | TXERR5 | TXERR4 | TXERR3 | TXERR2 | TXERR1 | TXERR0 | | \$01D0 | CAN2IDAR0 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$01D1 | CAN2IDAR1 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$01D2 | CAN2IDAR2 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$01D3 | CAN2IDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$01D4 | CAN2IDMR0 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$01D5 | CAN2IDMR1 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$01D6 | CAN2IDMR2 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$01D7 | CAN2IDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$01D8 | CAN2IDAR4 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | ### MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ### \$01C0 - \$01FF ### **CAN2 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | |--------------------|-----------|-----------------|--|-------|---------|----------|----------|-----------|-------|-------|--| | \$01D9 | CAN2IDAR5 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$01DA | CAN2IDAR6 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$01DB | CAN2IDAR7 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$01DC | CAN2IDMR4 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$01DD | CAN2IDMR5 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$01DE | CAN2IDMR6 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$01DF | CAN2IDMR7 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$01E0 - | CAN2RXFG | Read: | | FOF | REGROUN | D RECEIV | E BUFFER | see Table | 1-2 | | | | \$01EF | OANZI ALG | Write: | | | | | | | | | | | \$01F0 -
\$01FF | CAN2TXFG | Read:
Write: | FOREGROUND TRANSMIT BUFFER see Table 1-2 | | | | | | | | | #### \$0200 - \$023F ### **CAN3 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-----------|-----------------|-------|--------|---------|---------|---------|---------|--------|--------| | \$0200 | CAN3CTL0 | Read:
Write: | RXFRM | RXACT | CSWAI | SYNCH | TIME | WUPE | SLPRQ | INITRQ | | \$0201 | CAN3CTL1 | Read:
Write: | CANE | CLKSRC | LOOPB | LISTEN | 0 | WUPM | SLPAK | INITAK | | \$0202 | CAN3BTR0 | Read:
Write: | SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 | | \$0203 | CAN3BTR1 | Read:
Write: | SAMP | TSEG22 | TSEG21 | TSEG20 | TSEG13 | TSEG12 | TSEG11 | TSEG10 | | \$0204 | CAN3RFLG |
Read:
Write: | WUPIF | CSCIF | RSTAT1 | RSTAT0 | TSTAT1 | TSTAT0 | OVRIF | RXF | | \$0205 | CAN3RIER | Read:
Write: | WUPIE | CSCIE | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE | RXFIE | | \$0206 | CAN3TFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXE2 | TXE1 | TXE0 | | \$0207 | CAN3TIER | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXEIE2 | TXEIE1 | TXEIE0 | | \$0208 | CAN3TARQ | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTRQ2 | ABTRQ1 | ABTRQ0 | | \$0209 | CAN3TAAK | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTAK2 | ABTAK1 | ABTAK0 | | \$020A | CAN3TBSEL | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TX2 | TX1 | TX0 | | \$020B | CAN3IDAC | Read:
Write: | 0 | 0 | IDAM1 | IDAM0 | 0 | IDHIT2 | IDHIT1 | IDHIT0 | | \$020C | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | MOTOROLA ## Freescale Semiconductoria Device User Guide — V02.15 ### \$0200 - \$023F CAN3 (Motorola Scalable CAN - MSCAN) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------------|-----------|-----------------|---|--------|---------|----------|----------|-----------|--------|--------| | \$020D | Reserved | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ΨΟΖΟΒ | reserved | Write: | DVEDD7 | DVEDDO | DVEDDE | DVEDD4 | DVEDDO | DVEDDO | DVEDDA | DVEDDO | | \$020E | CAN3RXERR | Read: Write: | RXERR7 | RXERR6 | RXERR5 | RXERR4 | RXERR3 | RXERR2 | RXERR1 | RXERR0 | | # | 0.1.1. | Read: | TXERR7 | TXERR6 | TXERR5 | TXERR4 | TXERR3 | TXERR2 | TXERR1 | TXERR0 | | \$020F | CAN3TXERR | Write: | | | | | | | | | | \$0210 | CAN3IDAR0 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0211 | CAN3IDAR1 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0212 | CAN3IDAR2 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0213 | CAN3IDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0214 | CAN3IDMR0 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$0215 | CAN3IDMR1 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$0216 | CAN3IDMR2 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$0217 | CAN3IDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$0218 | CAN3IDAR4 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0219 | CAN3IDAR5 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$021A | CAN3IDAR6 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$021B | CAN3IDAR7 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$021C | CAN3IDMR4 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$021D | CAN3IDMR5 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$021E | CAN3IDMR6 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$021F | CAN3IDMR7 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0220 - | CAN3RXFG | Read: | | FOF | REGROUN | D RECEIV | E BUFFER | see Table | 1-2 | | | \$022F | | Write: | | | | | | | | | | \$0230 -
\$023F | CAN3TXFG | Read:
Write: | FOREGROUND TRANSMIT BUFFER SEE 1306 1-7 | | | | | | | | ## MC9S12DP256B Device User of reescale Semiconductor, Inc. ### \$0240 - \$027F PIM (Port Integration Module PIM_9DP256) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------------|----------|-----------------|-------|--------|--------|--------|--------|--------|--------|--------| | \$0240 | PTT | Read:
Write: | PTT7 | PTT6 | PTT5 | PTT4 | PTT3 | PTT2 | PTT1 | PTT0 | | \$0241 | PTIT | Read: | PTIT7 | PTIT6 | PTIT5 | PTIT4 | PTIT3 | PTIT2 | PTIT1 | PTIT0 | | \$0242 | DDDT | Write:
Read: | DDDT7 | DDDT7 | DDDTE | DDDT4 | DDDT2 | DDDT2 | DDDT1 | DDBTO | | \$0242 | DDRT | Write:
Read: | DDRT7 | DDRT7 | DDRT5 | DDRT4 | DDRT3 | DDRT2 | DDRT1 | DDRT0 | | \$0243 | RDRT | Write: | RDRT7 | RDRT6 | RDRT5 | RDRT4 | RDRT3 | RDRT2 | RDRT1 | RDRT0 | | \$0244 | PERT | Read:
Write: | PERT7 | PERT6 | PERT5 | PERT4 | PERT3 | PERT2 | PERT1 | PERT0 | | \$0245 | PPST | Read:
Write: | PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPST0 | | \$0246 | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | • | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0247 | Reserved | Write: | | | | | | | | | | \$0248 | PTS | Read:
Write: | PTS7 | PTS6 | PTS5 | PTS4 | PTS3 | PTS2 | PTS1 | PTS0 | | \$0249 | PTIS | Read:
Write: | PTIS7 | PTIS6 | PTIS5 | PTIS4 | PTIS3 | PTIS2 | PTIS1 | PTIS0 | | \$024A | DDRS | Read:
Write: | DDRS7 | DDRS7 | DDRS5 | DDRS4 | DDRS3 | DDRS2 | DDRS1 | DDRS0 | | \$024B | RDRS | Read:
Write: | RDRS7 | RDRS6 | RDRS5 | RDRS4 | RDRS3 | RDRS2 | RDRS1 | RDRS0 | | \$024C | PERS | Read:
Write: | PERS7 | PERS6 | PERS5 | PERS4 | PERS3 | PERS2 | PERS1 | PERS0 | | \$024D | PPSS | Read:
Write: | PPSS7 | PPSS6 | PPSS5 | PPSS4 | PPSS3 | PPSS2 | PPSS1 | PPSS0 | | \$024E | WOMS | Read:
Write: | WOMS7 | WOMS6 | WOMS5 | WOMS4 | WOMS3 | WOMS2 | WOMS1 | WOMS0 | | \$024F | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0250 | PTM | Read: | PTM7 | PTM6 | PTM5 | PTM4 | PTM3 | PTM2 | PTM1 | PTM0 | | | | Write:
Read: | PTIM7 | PTIM6 | PTIM5 | PTIM4 | PTIM3 | PTIM2 | PTIM1 | PTIM0 | | \$0251 | PTIM | Write: | | | | | | | | | | \$0252 | DDRM | Read:
Write: | DDRM7 | DDRM7 | DDRM5 | DDRM4 | DDRM3 | DDRM2 | DDRM1 | DDRM0 | | \$0253 | RDRM | Read:
Write: | RDRM7 | RDRM6 | RDRM5 | RDRM4 | RDRM3 | RDRM2 | RDRM1 | RDRM0 | | \$0254 | PERM | Read:
Write: | PERM7 | PERM6 | PERM5 | PERM4 | PERM3 | PERM2 | PERM1 | PERM0 | | \$0255 | PPSM | Read:
Write: | PPSM7 | PPSM6 | PPSM5 | PPSM4 | PPSM3 | PPSM2 | PPSM1 | PPSM0 | | \$0256 | WOMM | Read:
Write: | WOMM7 | WOMM6 | WOMM5 | WOMM4 | WOMM3 | WOMM2 | WOMM1 | WOMM0 | | \$0257 | MODRR | Read:
Write: | 0 | MODRR6 | MODRR5 | MODRR4 | MODRR3 | MODRR2 | MODRR1 | MODRR0 | | \$0258 | PTP | Read:
Write: | PTP7 | PTP6 | PTP5 | PTP4 | PTP3 | PTP2 | PTP1 | PTP0 | ## Freescale Semiconducton 2 Device User Guide — V02.15 ## \$0240 - \$027F PIM (Port Integration Module PIM_9DP256) | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |--------------------|----------|-----------------|--------|--------|-------|-------|-------|-------|--------|--------| | | | Read: | PTIP7 | PTIP6 | PTIP5 | PTIP4 | PTIP3 | PTIP2 | PTIP1 | PTIP0 | | \$0259 | PTIP | Write: | | | _ | | - | | | | | \$025A | DDRP | Read:
Write: | DDRP7 | DDRP7 | DDRP5 | DDRP4 | DDRP3 | DDRP2 | DDRP1 | DDRP0 | | \$025B | RDRP | Read:
Write: | RDRP7 | RDRP6 | RDRP5 | RDRP4 | RDRP3 | RDRP2 | RDRP1 | RDRP0 | | \$025C | PERP | Read:
Write: | PERP7 | PERP6 | PERP5 | PERP4 | PERP3 | PERP2 | PERP1 | PERP0 | | \$025D | PPSP | Read:
Write: | PPSP7 | PPSP6 | PPSP5 | PPSP4 | PPSP3 | PPSP2 | PPSP1 | PPSS0 | | \$025E | PIEP | Read:
Write: | PIEP7 | PIEP6 | PIEP5 | PIEP4 | PIEP3 | PIEP2 | PIEP1 | PIEP0 | | \$025F | PIFP | Read:
Write: | PIFP7 | PIFP6 | PIFP5 | PIFP4 | PIFP3 | PIFP2 | PIFP1 | PIFP0 | | \$0260 | PTH | Read:
Write: | PTH7 | PTH6 | PTH5 | PTH4 | PTH3 | PTH2 | PTH1 | PTH0 | | \$0261 | PTIH | Read: | PTIH7 | PTIH6 | PTIH5 | PTIH4 | PTIH3 | PTIH2 | PTIH1 | PTIH0 | | | | Write:
Read: | | | | | | | | | | \$0262 | DDRH | Write: | DDRH7 | DDRH7 | DDRH5 | DDRH4 | DDRH3 | DDRH2 | DDRH1 | DDRH0 | | \$0263 | RDRH | Read:
Write: | RDRH7 | RDRH6 | RDRH5 | RDRH4 | RDRH3 | RDRH2 | RDRH1 | RDRH0 | | \$0264 | PERH | Read:
Write: | PERH7 | PERH6 | PERH5 | PERH4 | PERH3 | PERH2 | PERH1 | PERH0 | | \$0265 | PPSH | Read:
Write: | PPSH7 | PPSH6 | PPSH5 | PPSH4 | PPSH3 | PPSH2 | PPSH1 | PPSH0 | | \$0266 | PIEH | Read:
Write: | PIEH7 | PIEH6 | PIEH5 | PIEH4 | PIEH3 | PIEH2 | PIEH1 | PIEH0 | | \$0267 | PIFH | Read:
Write: | PIFH7 | PIFH6 | PIFH5 | PIFH4 | PIFH3 | PIFH2 | PIFH1 | PIFH0 | | \$0268 | PTJ | Read: | PTJ7 | PTJ6 | 0 | 0 | 0 | 0 | PTJ1 | PTJ0 | | | | Write:
Read: | PTIJ7 | PTIJ6 | 0 | 0 | 0 | 0 | PTIJ1 | PTIJ0 | | \$0269 | PTIJ | Write: | 1 1107 | 1 1130 | | | 0 | | 1 1101 | 1 1130 | | \$026A | DDRJ | Read:
Write: | DDRJ7 | DDRJ7 | 0 | 0 | 0 | 0 | DDRJ1 | DDRJ0 | | \$026B | RDRJ | Read:
Write: | RDRJ7 | RDRJ6 | 0 | 0 | 0 | 0 | RDRJ1 | RDRJ0 | | \$026C | PERJ | Read:
Write: | PERJ7 | PERJ6 | 0 | 0 | 0 | 0 | PERJ1 | PERJ0 | | \$026D | PPSJ | Read:
Write: | PPSJ7 | PPSJ6 | 0 | 0 | 0 | 0 | PPSJ1 | PPSJ0 | | \$026E | PIEJ | Read:
Write: | PIEJ7 | PIEJ6 | 0 | 0 | 0 | 0 | PIEJ1 | PIEJ0 | | \$026F | PIFJ | Read:
Write: | PIFJ7 | PIFJ6 | 0 | 0 | 0 | 0 | PIFJ1 | PIFJ0 | | \$0270 -
\$027F | Reserved | Read: | | | | | | | | | ### MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ### \$0280 - \$02BF ### **CAN4 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |---------|-----------|-----------------|--------|--------|---------|---------|---------|---------|--------|--------| | \$0280 | CAN4CTL0 | Read:
Write: | RXFRM | RXACT | CSWAI | SYNCH | TIME | WUPE | SLPRQ | INITRQ | | \$0281 | CAN4CTL1 | Read:
Write: | CANE | CLKSRC | LOOPB | LISTEN | 0 | WUPM | SLPAK | INITAK | | \$0282 | CAN4BTR0 | Read:
Write: | SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 | | \$0283 | CAN4BTR1 | Read:
Write: | SAMP | TSEG22 | TSEG21 | TSEG20 | TSEG13 | TSEG12 | TSEG11 | TSEG10 | | \$0284 | CAN4RFLG | Read:
Write: | WUPIF | CSCIF | RSTAT1 | RSTAT0 | TSTAT1 | TSTAT0 | OVRIF | RXF | | \$0285 | CAN4RIER | Read:
Write: | WUPIE | CSCIE | RSTATE1 | RSTATE0 | TSTATE1 | TSTATE0 | OVRIE | RXFIE | | \$0286 | CAN4TFLG | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXE2 | TXE1 | TXE0 | | \$0287 | CAN4TIER | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TXEIE2 | TXEIE1 | TXEIE0 | | \$0288 | CAN4TARQ | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTRQ2 | ABTRQ1 | ABTRQ0 | | \$0289 | CAN4TAAK | Read:
Write: | 0 | 0 | 0 | 0 | 0 | ABTAK2 |
ABTAK1 | ABTAK0 | | \$028A | CAN4TBSEL | Read:
Write: | 0 | 0 | 0 | 0 | 0 | TX2 | TX1 | TX0 | | \$028B | CAN4IDAC | Read:
Write: | 0 | 0 | IDAM1 | IDAM0 | 0 | IDHIT2 | IDHIT1 | IDHIT0 | | \$028C | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$028D | Reserved | Read:
Write: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$028E | CAN4RXERR | Read:
Write: | RXERR7 | RXERR6 | RXERR5 | RXERR4 | RXERR3 | RXERR2 | RXERR1 | RXERR0 | | \$028F | CAN4TXERR | Read:
Write: | TXERR7 | TXERR6 | TXERR5 | TXERR4 | TXERR3 | TXERR2 | TXERR1 | TXERR0 | | \$0290 | CAN4IDAR0 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0291 | CAN4IDAR1 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0292 | CAN4IDAR2 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0293 | CAN4IDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0294 | CAN4IDMR0 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0295 | CAN4IDMR1 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | АМЗ | AM2 | AM1 | AM0 | | \$0296 | CAN4IDMR2 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0297 | CAN4IDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0298 | CAN4IDAR4 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | MOTOROLA ## Freescale Semiconductor, 2 to Device User Guide — V02.15 #### \$0280 - \$02BF ### **CAN4 (Motorola Scalable CAN - MSCAN)** | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | |--------------------|-----------|-----------------|---|-------|--|-------|-------|-------|-------|-------|--| | \$0299 | CAN4IDAR5 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$029A | CAN4IDAR6 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$029B | CAN4IDAR7 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | | \$029C | CAN4IDMR4 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$029D | CAN4IDMR5 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$029E | CAN4IDMR6 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$029F | CAN4IDMR7 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | \$02A0 - | CAN4RXFG | Read: | ead: FOREGROUND RECEIVE BUFFER see Table 1-2 | | | | | | | | | | \$02AF | CANARAFG | Write: | | | | | | | | | | | \$02B0 -
\$02BF | CAN4TXFG | Read:
Write: | | FOR | FOREGROUND TRANSMIT BUFFER see Table 1-2 | | | | | | | #### \$02C0 - \$03FF #### Reserved space | Address | Name | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | |----------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | \$02C0 | Decembed | Read: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | - \$03FF | Reserved | Write: | | | | | | | | | ### 1.7 Part ID Assignments The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-3** shows the assigned part ID number. **Table 1-3 Assigned Part ID Numbers** | Device | Mask Set Number | Part ID ¹ | |-------------|-----------------|----------------------| | MC9S12DP256 | 0K79X | \$0010 | | MC9S12DP256 | 1K79X | \$0011 | | MC9S12DP256 | 2K79X | \$0012 | #### NOTES: 1. The coding is as follows: Bit 15-12: Major family identifier Bit 11-8: Minor family identifier Bit 7-4: Major mask set revision number including FAB transfers Bit 3-0: Minor - non full - mask set revision ## MC9S12DP256B Device User of reescale Semiconductor, Inc. The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details. **Table 1-4 Memory size registers** | Register name | Value | |---------------|-------| | MEMSIZ0 | \$25 | | MEMSIZ1 | \$81 | ## **Section 2 Signal Description** This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device. ### 2.1 Device Pinout The MC9S12DP256B/MC9S12DT256/MC9S12DJ256 and MC9S12DG256 is available in a 112-pin low profile quad flat pack (LQFP) and MC9S12DJ256 is also available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-3** show the pin assignments. ## MC9S12DP256B Device User of kees@ale Semiconductor, Inc. Signals shown in **Bold** are not available on the 80 Pin Package Figure 2-1 Pin Assignments in 112-pin LQFP MOTOROLA Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DG256 Figure 2-3 Pin Assignments in 80-pin QFP for MC9S12DJ256 ### 2.2 Signal Properties Summary **Table 2-1** summarizes the pin functionality. Signals shown in **bold** are not available in the 80 pin package. **Table 2-1 Signal Properties** ## Freescale Semiconducton 2 Device User Guide — V02.15 | Pin Name | Power | Inter | nal Pull
sistor | - Description | |-----------|---------------------------|----------|----------|----------|--------|---------------|--------------------------|---| | Funct. 1 | Funct. 2 | Funct. 3 | Funct. 4 | Funct. 5 | Supply | CTRL | Reset
State | Description | | EXTAL | _ | _ | _ | _ | VDDPLL | NA | NA | Casillatas Dina | | XTAL | _ | _ | _ | _ | VDDPLL | NA | NA | Oscillator Pins | | RESET | _ | _ | _ | _ | VDDR | None | None | External Reset | | TEST | _ | _ | _ | _ | N.A. | NA | NA | Test Input | | VREGEN | _ | _ | _ | _ | VDDX | NA | NA | Voltage Regulator Enable Input | | XFC | _ | _ | _ | _ | VDDPLL | NA | NA | PLL Loop Filter | | BKGD | TAGHI | MODC | _ | _ | VDDR | Always
Up | Up | Background Debug, Tag High, Mode Input | | PAD[15] | AN1[7] | ETRIG1 | _ | _ | VDDA | None | None | Port AD Input, Analog Input AN7 of ATD1, External Trigger Input of ATD1 | | PAD[14:8] | AN1[6:0] | _ | _ | _ | VDDA | None | None | Port AD Inputs, Analog Inputs
AN[6:0] of ATD1 | | PAD[7] | AN0[7] | ETRIG0 | _ | _ | VDDA | None | None | Port AD Input, Analog Input AN7 of ATD0, External Trigger Input of ATD | | PAD[6:0] | AN0[6:0] | _ | _ | _ | VDDA | None | None | Port AD Inputs, Analog Inputs
AN[6:0] of ATD0 | | PA[7:0] | ADDR[15:8]/
DATA[15:8] | _ | _ | _ | VDDR | PUCR | Disabled | Port A I/O, Multiplexed Address/Data | | PB[7:0] | ADDR[7:0]/
DATA[7:0] | _ | _ | _ | VDDR | PUCR | Disabled | Port B I/O, Multiplexed Address/Data | | PE7 | NOACC | XCLKS | _ | _ | VDDR | PUCR | Up | Port E I/O, Access, Clock Select | | PE6 | IPIPE1 | MODB | _ | _ | VDDR | pin | RESET
is low:
own | Port E I/O, Pipe Status, Mode Input | | PE5 | IPIPE0 | MODA | _ | _ | VDDR | pin | RESET
is low:
lown | Port E I/O, Pipe Status, Mode Input | | PE4 | ECLK | _ | _ | _ | VDDR | PUCR | Up | Port E I/O, Bus Clock Output | | PE3 | LSTRB | TAGLO | _ | _ | VDDR | PUCR | Up | Port E I/O, Byte Strobe, Tag Low | | PE2 | R/W | _ | _ | _ | VDDR | PUCR | Up | Port E I/O, R/W in expanded modes | | PE1 | ĪRQ | _ | _ | _ | VDDR | | 1 | Port E Input, Maskable Interrupt | | PE0 | XIRQ | _ | _ | _ | VDDR | Alw | ays up | Port E Input, Non Maskable Interrup | | PH7 | KWH7 | SS2 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, SS of SPI2 | | PH6 | KWH6 | SCK2 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, SCK of SPI2 | MOTOROLA ## MC9S12DP256B Device User of the escale Semiconductor, Inc. | | Pin Name | Power | | nal Pull
sistor | Description | |-------|----------|------------------|----------|----------|----------|--------|---------------|--------------------|--| | | Funct. 1 | Funct. 2 | Funct. 3 | Funct. 4 | Funct. 5 | Supply | CTRL | Reset
State | Description | | | PH5 | KWH5 | MOSI2 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, MOSI of SPI2 | | | PH4 | KWH4 | MISO2 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, MISO of SPI2 | | | PH3 | KWH3 | SS1 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, SS of SPI1 | | | PH2 | KWH2 | SCK1 | 1 | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, SCK of SPI1 | | | PH1 | KWH1 | MOSI1 | | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, MOSI of SPI1 | | 4 | PH0 | KWH0 | MISO1 | _ | _ | VDDR | PERH/
PPSH | Disabled | Port H I/O, Interrupt, MISO of SPI1 | | | PJ7 | KWJ7 | TXCAN4 | SCL | TXCAN0 | VDDX | PERJ/
PPSJ | Up | Port J I/O, Interrupt, TX of CAN4, SCL of IIC, TX of CAN0 | | C | PJ6 | KWJ6 | RXCAN4 | SDA | RXCAN0 | VDDX | PERJ/
PPSJ | Up | Port J I/O, Interrupt, RX of CAN4,
SDA of IIC, RX of CAN0 | | | PJ[1:0] | KWJ[1:0] | _ | _ | _ | VDDX | PERJ/
PSJ | Up | Port J I/O, Interrupts | | | PK7 | ECS | ROMONE | _ | _ | VDDX | PUCR | Up | Port K I/O, Emulation Chip Select, ROM On Enable | | | PK[5:0] | XADDR
[19:14] | _ | _ | _ | VDDX | PUCR | Up | Port K I/O, Extended Addresses | | | PM7 | TXCAN3 | TXCAN4 | _ | _ | VDDX | PERM/
PPSM | Disabled | Port M I/O, TX of CAN3, TX of CAN4 | | 4 | РМ6 | RXCAN3 | RXCAN4 | _ | _ | VDDX | PERM/
PPSM | Disabled | Port M I/O, RX of CAN3, RX of CAN4 | | | PM5 | TXCAN2 | TXCAN0 | TXCAN4 | SCK0 | VDDX | PERM/
PPSM | Disabled | Port M I/O, TX of CAN2, CAN0,
CAN4, SCK of SPI0 | | TO DU | PM4 | RXCAN2 | RXCAN0 | RXCAN4 | MOSI0 | VDDX | PERM/
PPSM | Disabled | Port M I/O, RX of CAN2, CAN0,
CAN4, MOSI of SPI0 | | Ì | PM3 | TXCAN1 | TXCAN0 | _ | SS0 | VDDX | PERM/
PPSM |
Disabled | Port M I/O, TX of CAN1, CAN0, SS of SPI0 | | | PM2 | RXCAN1 | RXCAN0 | _ | MISO0 | VDDX | PERM/
PPSM | Disabled | Port M I/O, RX of CAN1, CAN0,
MISO of SPI0 | | | PM1 | TXCAN0 | TXB | _ | _ | VDDX | PERM/
PPSM | Disabled | Port M I/O, TX of CANO, TX of BDLC | | | PM0 | RXCAN0 | RXB | _ | _ | VDDX | PERM/
PPSM | Disabled | Port M I/O, RX of CAN0, RX of BDLC | | | PP7 | KWP7 | PWM7 | SCK2 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 7 of PWM, SCK of SPI2 | MOTOROLA ## Freescale Semiconducton 2 Device User Guide - V02.15 | | Pin Name | Pin Name
Funct. 2 | Pin Name
Funct. 3 | Pin Name
Funct. 4 | Pin Name
Funct. 5 | Power
Supply | Internal Pull
Resistor | | Description | |---------------|----------|----------------------|----------------------|----------------------|----------------------|-----------------|---------------------------|----------------|--| | | Funct. 1 | | | | | | CTRL | Reset
State | Description | | nductor, Inc. | PP6 | KWP6 | PWM6 | SS2 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 6 of PWM, SS of SPI2 | | | PP5 | KWP5 | PWM5 | MOSI2 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 5 of PWM, MOSI of SPI2 | | | PP4 | KWP4 | PWM4 | MISO2 | | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 4 of PWM, MISO2 of SPI2 | | | PP3 | KWP3 | PWM3 | SS1 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 3 of PWM, SS of SPI1 | | | PP2 | KWP2 | PWM2 | SCK1 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 2 of PWM, SCK of SPI1 | | | PP1 | KWP1 | PWM1 | MOSI1 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 1 of PWM, MOSI of SPI1 | | | PP0 | KWP0 | PWM0 | MISO1 | _ | VDDX | PERP/
PPSP | Disabled | Port P I/O, Interrupt, Channel 0 of PWM, MISO2 of SPI1 | | | PS7 | SS0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, SS of SPI0 | | | PS6 | SCK0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, SCK of SPI0 | | COLUC | PS5 | MOSI0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, MOSI of SPI0 | | Semi | PS4 | MISO0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, MISO of SPI0 | | 7.7 | PS3 | TXD1 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, TXD of SCI1 | | ale | PS2 | RXD1 | _ | _ | - | VDDX | PERS/
PPSS | Up | Port S I/O, RXD of SCI1 | | | PS1 | TXD0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, TXD of SCI0 | | Frees | PS0 | RXD0 | _ | _ | _ | VDDX | PERS/
PPSS | Up | Port S I/O, RXD of SCI0 | | | PT[7:0] | IOC[7:0] | _ | _ | _ | VDDX | PERT/
PPST | Disabled | Port T I/O, Timer channels | ## 2.3 Detailed Signal Descriptions ### 2.3.1 EXTAL, XTAL — Oscillator Pins EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output. ### MC9S12DP256B Device User of the escale Semiconductor, Inc. #### 2.3.2 RESET — External Reset Pin An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset. #### 2.3.3 TEST — Test Pin This input only pin is reserved for test. **NOTE:** The TEST pin must be tied to VSS in all applications. ### 2.3.4 VREGEN — Voltage Regulator Enable Pin This input only pin enables or disables the on-chip voltage regulator. ### 2.3.5 XFC — PLL Loop Filter Pin PLL loop filter. Please ask your Motorola representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided. Figure 2-4 PLL Loop Filter Connections ### 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of RESET. ### 2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1. ### 2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1 PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD1. ### 2.3.9 PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 PAD7 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0. ### 2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD0. ### 2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. ### 2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. ### 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus. The \overline{XCLKS} input selects between an external clock or oscillator configuration. The state of this pin is latched at the rising edge of \overline{RESET} . If the input is a logic low the EXTAL pin is configured for an external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device, if the pin is left floating, the default configuration is an oscillator circuit on EXTAL and XTAL. ### 2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of \overline{RESET} . This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when \overline{RESET} is low. ### MC9S12DP256B Device User of the escale Semiconductor, Inc. #### 2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of \overline{RESET} . This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when \overline{RESET} is low. #### 2.3.16 PE4 / ECLK — Port E I/O Pin 4 PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference. ### 2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 PE3 is a general purpose input or output pin. In MCU expanded modes of operation, \overline{LSTRB} can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, \overline{TAGLO} is used to tag the low half of the instruction word being read into the instruction queue. ### 2.3.18 PE2 / R/W — Port E I/O Pin 2 PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus. ### 2.3.19 PE1 / IRQ — Port E Input Pin 1 PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. ### 2.3.20 PE0 / XIRQ — Port E Input Pin 0 PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. ### 2.3.21 PH7 / KWH7 / SS2 — Port H I/O Pin 7 PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 2 (SPI2). ### 2.3.22 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2). #### 2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). #### 2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2). ### 2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3 PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 1 (SPI1). #### 2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1). ### 2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1). #### 2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1). #### 2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module. ## MC9S12DP256B Device User dikees@2/2 Semiconductor, Inc. #### 2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module. ### 2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode . #### 2.3.32 PK7 / ECS / ROMONE — Port K I/O Pin 7 PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (\overline{ECS}). During MCU normal expanded wide and narrow modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMONE). At the rising edge of \overline{RESET} , the state of this pin is latched to the ROMON bit. ### 2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus. #### 2.3.34 PM7 / TXCAN3 / TXCAN4 — Port M I/O Pin 7 PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4). ### 2.3.35 PM6 / RXCAN3 / RXCAN4 — Port M I/O Pin 6 PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4). #### 2.3.36 PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). #### 2.3.37 PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0). ### 2.3.38 PM3 / TXCAN1 / TXCAN0 / SSO — Port M I/O Pin 3 PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0). #### 2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0). #### 2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin TXB of the BDLC. #### 2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0 PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin RXB of the BDLC. #### 2.3.42 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2). ### 2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 2 (SPI2). #### 2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5 PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). ## MC9S12DP256B Device User of kees@16 Semiconductor, Inc. #### 2.3.45 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4 PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2). ### 2.3.46 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It can be configured as slave select pin \overline{SS} of the Serial Peripheral Interface 1 (SPI1). ### 2.3.47 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1). #### 2.3.48 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1 PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1). #### 2.3.49 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0 PPO is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1). ### 2.3.50 PS7 / SS0 — Port S I/O Pin 7 PS6 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0). #### 2.3.51 PS6 / SCK0 — Port S I/O Pin 6 PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). #### 2.3.52 PS5 / MOSI0 — Port S I/O Pin 5 PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). #### 2.3.53 PS4 / MISO0 — Port S I/O Pin 4 PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). #### 2.3.54 PS3 / TXD1 — Port S I/O Pin 3 PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1). #### 2.3.55 PS2 / RXD1 — Port S I/O Pin 2 PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 1 (SCI1). #### 2.3.56 PS1 / TXD0 — Port S I/O Pin 1 PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 0 (SCI0). #### 2.3.57 PS0 / RXD0 — Port S I/O Pin 0 PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 0 (SCI0). ### 2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT). ### 2.4 Power Supply Pins MC9S12DP256B power and ground pins are described below. **NOTE:** All VSS
pins must be connected together in the application. ### MC9S12DP256B Device User of the escale Semiconductor, Inc. ### 2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. # 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. ### 2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground. **NOTE:** No load allowed except for bypass capacitors. ### 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter. It also provides the reference for the internal voltage regulator. This allows the supply voltage to the ATD and the reference voltage to be bypassed independently. ### 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins VRH and VRL are the reference voltage input pins for the analog to digital converter. ### 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator. **NOTE:** No load allowed except for bypass capacitors. ## Freescale Semiconductoria Device User Guide — V02.15 Table 2-2 MC9S12DP256 Power and Ground Connection Summary | Table 1 2 Interest 2001 and Greatha Comments | | | | | | | |--|-------------|---------|--|--|--|--| | Mnemonic | Pin Number | Nominal | Description | | | | | Willelilollic | 112-pin QFP | Voltage | Description | | | | | V _{DD1, 2} | 13, 65 | 2.5 V | Internal power and ground generated by internal regulator | | | | | V _{SS1, 2} | 14, 66 | 0V | | | | | | V _{DDR} | 41 | 5.0 V | External power and ground, supply to pin drivers and internal voltage regulator. | | | | | V _{SSR} | 40 | 0 V | | | | | | V _{DDX} | 107 | 5.0 V | External power and ground, supply to pin drivers. | | | | | V _{SSX} | 106 | 0 V | External power and ground, supply to pill drivers. | | | | | V _{DDA} | 83 | 5.0 V | Operating voltage and ground for the analog-to-digital | | | | | V _{SSA} | 86 | 0 V | converters and the reference for the internal voltage regulate allows the supply voltage to the A/D to be bypassed independently. | | | | | V _{RL} | 85 | 0 V | Reference voltages for the analog-to-digital converter. | | | | | V _{RH} | 84 | 5.0 V | | | | | | V _{DDPLL} | 43 | 2.5 V | Provides operating voltage and ground for the Phased-Locked | | | | | V _{SSPLL} | 45 | 0 V | Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator. | | | | | VREGEN | 97 | 5V | Internal Voltage Regulator enable/disable | | | | ### 2.4.7 VREGEN — On Chip Voltage Regulator Enable Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally. ## **Section 3 System Clock Description** #### 3.1 Overview The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules. **Figure 3-1** shows the clock connections from the CRG to all modules. Consult the CRG Block User Guide for details on clock generation. Figure 3-1 Clock Connections ## **Section 4 Modes of Operation** #### 4.1 Overview Eight possible modes determine the operating configuration of the MC9S12DP256B. Each mode has an associated default memory map and external bus configuration controlled by a further pin. Three low power modes exist for the device. ### 4.2 Chip Configuration Summary The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**Table 4-1**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal. **Table 4-1 Mode Selection** | BKGD =
MODC | PE6 =
MODB | PE5 =
MODA | PK7 =
ROMCTL | ROMON
Bit | Mode Description | | |----------------|---------------|---------------|-----------------|--------------|---|--| | 0 | 0 | 0 | х | 1 | Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active. | | | 0 | 0 | 1 | Х | 0 | Emulation Expanded Narrow, BDM allowed | | | 0 | 1 | 0 | Х | 0 | Special Test (Expanded Wide), BDM allowed | | | 0 | 1 | 1 | Х | 0 | Emulation Expanded Wide, BDM allowed | | | 1 | 0 | 0 | Х | 1 | Normal Single Chip, BDM allowed | | | 1 | 0 | 1 | 0 | 0 | Normal Expanded Narrow, BDM allowed | | | · | | | 1 | 1 | Tromai Expanded rearrow, bolivi allowed | | | 1 | 1 | 0 | Х | 1 | Peripheral; BDM allowed but bus operations would cause | | | ' | ' | U | ^ | ' | bus conflicts (must not be used) | | | 1 | 1 | 1 | 0 | 0 | Normal Expanded Wide, BDM allowed | | | ' | 1 | ' | 1 | 1 | Normal Expanded Wide, BDM allowed | | For further explanation on the modes refer to the Core User Guide. Table 4-2 Clock Selection Based on PE7 | PE7 = XCLKS | Description | |-------------|------------------------------| | 1 | Colpitts Oscillator selected | | 0 | External clock selected | ## MC9S12DP256B Device User of reesogale Semiconductor, Inc. Table 4-3 Voltage Regulator VREGEN | VREGEN | Description | | | | | |--------|--|--|--|--|--| | 1 | Internal Voltage Regulator enabled | | | | | | 0 | Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V | | | | | ### 4.3 Security The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows: - Protection of the contents of FLASH, - Protection of the contents of EEPROM, - Operation in single-chip mode, - Operation from external memory with internal FLASH and EEPROM disabled. The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM. ### 4.3.1 Securing the Microcontroller Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part. The security byte resides in a portion of the Flash array. Check the Flash Block User Guide for more details on the security configuration. ### 4.3.2 Operation of the Secured Microcontroller ### 4.3.2.1 Normal Single Chip Mode This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked. ### 4.3.2.2 Executing from External Memory The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked. ## 4.3.3 Unsecuring the Microcontroller In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode. Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again. ## 4.4 Low Power Modes The microcontroller features three main
low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG). ## 4.4.1 Stop Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts. ## 4.4.2 Pseudo Stop This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter. #### 4.4.3 Wait This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks. #### 4.4.4 Run Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power. # **Section 5 Resets and Interrupts** ## 5.1 Overview Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and interrupts. ## 5.2 Vectors ### **5.2.1 Vector Table** **Table 5-1** lists interrupt sources and vectors in default order of priority. **Table 5-1 Interrupt Vector Locations** | Table 3-1 iliterrupt vector Locations | | | | | | | | | | |---------------------------------------|----------------------------------|-------------|----------------------------------|------------------------|--|--|--|--|--| | Vector Address | Interrupt Source | CCR
Mask | Local Enable | HPRIO Value to Elevate | | | | | | | \$FFFE, \$FFFF | Reset | None | None | _ | | | | | | | \$FFFC, \$FFFD | Clock Monitor fail reset | None | PLLCTL (CME, SCME) | _ | | | | | | | \$FFFA, \$FFFB | COP failure reset | None | COP rate select | _ | | | | | | | \$FFF8, \$FFF9 | Unimplemented instruction trap | None | None | _ | | | | | | | \$FFF6, \$FFF7 | SWI | None | None | _ | | | | | | | \$FFF4, \$FFF5 | XIRQ | X-Bit | None | _ | | | | | | | \$FFF2, \$FFF3 | IRQ | I-Bit | IRQCR (IRQEN) | \$F2 | | | | | | | \$FFF0, \$FFF1 | Real Time Interrupt | I-Bit | CRGINT (RTIE) | \$F0 | | | | | | | \$FFEE, \$FFEF | Enhanced Capture Timer channel 0 | I-Bit | TIE (C0I) | \$EE | | | | | | | \$FFEC, \$FFED | Enhanced Capture Timer channel 1 | I-Bit | TIE (C1I) | \$EC | | | | | | | \$FFEA, \$FFEB | Enhanced Capture Timer channel 2 | I-Bit | TIE (C2I) | \$EA | | | | | | | \$FFE8, \$FFE9 | Enhanced Capture Timer channel 3 | I-Bit | TIE (C3I) | \$E8 | | | | | | | \$FFE6, \$FFE7 | Enhanced Capture Timer channel 4 | I-Bit | TIE (C4I) | \$E6 | | | | | | | \$FFE4, \$FFE5 | Enhanced Capture Timer channel 5 | I-Bit | TIE (C5I) | \$E4 | | | | | | | \$FFE2, \$FFE3 | Enhanced Capture Timer channel 6 | I-Bit | TIE (C6I) | \$E2 | | | | | | | \$FFE0, \$FFE1 | Enhanced Capture Timer channel 7 | I-Bit | TIE (C7I) | \$E0 | | | | | | | \$FFDE, \$FFDF | Enhanced Capture Timer overflow | I-Bit | TSRC2 (TOF) | \$DE | | | | | | | \$FFDC, \$FFDD | Pulse accumulator A overflow | I-Bit | PACTL (PAOVI) | \$DC | | | | | | | \$FFDA, \$FFDB | Pulse accumulator input edge | I-Bit | PACTL (PAI) | \$DA | | | | | | | \$FFD8, \$FFD9 | SPI0 | I-Bit | SP0CR1 (SPIE, SPTIE) | \$D8 | | | | | | | \$FFD6, \$FFD7 | SCI0 | I-Bit | SC0CR2
(TIE, TCIE, RIE, ILIE) | \$D6 | | | | | | | \$FFD4, \$FFD5 | SCI1 | I-Bit | SC1CR2
(TIE, TCIE, RIE, ILIE) | \$D4 | | | | | | | \$FFD2, \$FFD3 | ATD0 | I-Bit | ATD0CTL2 (ASCIE) | \$D2 | | | | | | | \$FFD0, \$FFD1 | ATD1 | I-Bit | ATD1CTL2 (ASCIE) | \$D0 | | | | | | | \$FFCE, \$FFCF | Port J | I-Bit | PTJIF (PTJIE) | \$CE | | | | | | | \$FFCC, \$FFCD | Port H | I-Bit | I-Bit PTHIF(PTHIE) | | | | | | | | \$FFCA, \$FFCB | Modulus Down Counter underflow | I-Bit | MCCTL(MCZI) | \$CA | | | | | | # MC9S12DP256B Device User of reescale Semiconductor, Inc. | \$FFC8, \$FFC9 | Pulse Accumulator B Overflow | I-Bit | PBCTL(PBOVI) | \$C8 | | | |---------------------|------------------------------|-------|--------------------------|------|--|--| | \$FFC6, \$FFC7 | CRG PLL lock | I-Bit | CRGINT(LOCKIE) | \$C6 | | | | \$FFC4, \$FFC5 | CRG Self Clock Mode | I-Bit | CRGINT (SCMIE) | \$C4 | | | | \$FFC2, \$FFC3 BDLC | | I-Bit | DLCBCR1(IE) | \$C2 | | | | \$FFC0, \$FFC1 | IIC Bus | I-Bit | IBCR (IBIE) | \$C0 | | | | \$FFBE, \$FFBF | SPI1 | I-Bit | SP1CR1 (SPIE, SPTIE) | \$BE | | | | \$FFBC, \$FFBD | SPI2 | I-Bit | SP2CR1 (SPIE, SPTIE) | \$BC | | | | \$FFBA, \$FFBB | EEPROM | I-Bit | EECTL(CCIE, CBEIE) | \$BA | | | | \$FFB8, \$FFB9 | FLASH | I-Bit | FCTL(CCIE, CBEIE) | \$B8 | | | | \$FFB6, \$FFB7 | CAN0 wake-up | I-Bit | CANORIER (WUPIE) | \$B6 | | | | \$FFB4, \$FFB5 | CAN0 errors | I-Bit | CANORIER (CSCIE, OVRIE) | \$B4 | | | | \$FFB2, \$FFB3 | CAN0 receive | I-Bit | CANORIER (RXFIE) | \$B2 | | | | \$FFB0, \$FFB1 | CAN0 transmit | I-Bit | CAN0TIER (TXEIE2-TXEIE0) | \$B0 | | | | \$FFAE, \$FFAF | CAN1 wake-up | I-Bit | CAN1RIER (WUPIE) | \$AE | | | | \$FFAC, \$FFAD | CAN1 errors | I-Bit | CAN1RIER (CSCIE, OVRIE) | \$AC | | | | \$FFAA, \$FFAB | CAN1 receive | I-Bit | CAN1RIER (RXFIE) | \$AA | | | | \$FFA8, \$FFA9 | CAN1 transmit | I-Bit | CAN1TIER (TXEIE2-TXEIE0) | \$A8 | | | | \$FFA6, \$FFA7 | CAN2 wake-up | I-Bit | CAN2RIER (WUPIE) | \$A6 | | | | \$FFA4, \$FFA5 | CAN2 errors | I-Bit | CAN2RIER (CSCIE, OVRIE) | \$A4 | | | | \$FFA2, \$FFA3 | CAN2 receive | I-Bit | CAN2RIER (RXFIE) | \$A2 | | | | \$FFA0, \$FFA1 | CAN2 transmit | I-Bit | CAN2TIER (TXEIE2-TXEIE0) | \$A0 | | | | \$FF9E, \$FF9F | CAN3 wake-up | I-Bit | CAN3RIER (WUPIE) | \$9E | | | | \$FF9C, \$FF9D | CAN3 errors | I-Bit | CAN3RIER (TXEIE2-TXEIE0) | \$9C | | | | \$FF9A, \$FF9B | CAN3 receive | I-Bit | CAN3RIER (RXFIE) | \$9A | | | | \$FF98, \$FF99 | CAN3 transmit | I-Bit | CAN3TIER (TXEIE2-TXEIE0) | \$98 | | | | \$FF96, \$FF97 | CAN4 wake-up | I-Bit | CAN4RIER (WUPIE) | \$96 | | | | \$FF94, \$FF95 | CAN4 errors | I-Bit | CAN4RIER (CSCIE, OVRIE) | \$94 | | | | \$FF92, \$FF93 | CAN4 receive | I-Bit | CAN4RIER (RXFIE) | \$92 | | | | \$FF90, \$FF91 | CAN4 transmit | I-Bit | CAN4TIER (TXEIE2-TXEIE0) | \$90 | | | | \$FF8E, \$FF8F | Port P Interrupt | I-Bit | PTPIF (PTPIE) | \$8E | | | | \$FF8C, \$FF8D | PWM Emergency Shutdown | I-Bit | PWMSDN (PWMIE) | \$8C | | | | \$FF80 to
\$FF8B | Pacaryad | | | | | | ## 5.3 Effects of Reset When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states. ## 5.3.1 I/O pins Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of reset. Refer to the PIM Block User Guide for reset configurations of all peripheral module ports. # Freescale Semiconductoria Device User Guide — V02.15 **NOTE:** F For devices assembled in 80-pin QFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to **Table 2-1** for affected pins. ## **5.3.2 Memory** Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset. The RAM array is not automatically initialized out of reset. # **Section 6 HCS12 Core Block Description** Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus interface (MEBI), breakpoint module (BKP) and background debug mode module (BDM). Table 6-1 Configuration of HCS12 Core | Name | Description | MC9S12DP256B Configuration | | | |-----------------|-------------------------------------|---|--|--| | PUCR_RESET | PUCR reset state | \$90 | | | | NUM_INT | Interrupt Request Bus Width | 56 | | | | INITEE_RST | INITEE reset state | \$01 | | | | INITEE_WOK | INITEE Write anytime in normal mode | INITEE register is writeable once in normal modes | | | | PPAGE_SMOD_ONLY | PPAGE Write only in special mode | PPAGE register is writable in all modes,reset state of the PPAGE register is \$00 | | | # Section 7 Clock and Reset Generator (CRG) Block Description Consult the CRG Block User Guide for information about the Clock and Reset Generator module. ## 7.1 Device-specific information ## **7.1.1 XCLKS** The $\overline{\text{XCLKS}}$ input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7). # Section 8 Enhanced Capture Timer (ECT) Block Description Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. # Section 9 Analog to Digital Converter (ATD) Block Description There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DP256B. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module. MC9S12DP256B Device User & Reescale Semiconductor, Inc. # Section 10 Inter-IC Bus (IIC) Block Description Consult the IIC Block User Guide for information about the Inter-IC Bus module. # Section 11 Serial Communications Interface (SCI) Block Description There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DP256B device. Consult the SCI Block User Guide for information about each Serial Communications Interface module. # Section 12 Serial Peripheral Interface (SPI) Block Description There are three Serial Peripheral Interfaces(SPI2, SPI1 and SPI0) implemented on MC9S12DP256B. Consult the SPI Block User Guide for information about each Serial Peripheral Interface module. # Section 13 J1850 (BDLC) Block Description Consult the BDLC Block User Guide for information about the J1850 module. # Section 14 Pulse Width Modulator
(PWM) Block Description Consult the PWM 8B8C Block User Guide for information about the Pulse Width Modulator module. # Section 15 Flash EEPROM 256K Block Description Consult the FTS256K Block User Guide for information about the flash module. ## Section 16 EEPROM 4K Block Description Consult the EETS4K Block User Guide for information about the EEPROM module. # **Section 17 RAM Block Description** (M) MOTOROLA This module supports single-cycle misaligned word accesses. # **Section 18 MSCAN Block Description** There are five MSCAN modules (CAN4, CAN3, CAN2, CAN1 and CAN0) implemented on the MC9S12DP256B. Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module. # Section 19 Port Integration Module (PIM) Block Description Consult the PIM_9DP256 Block User Guide for information about the Port Integration Module. # Section 20 Voltage Regulator (VREG) Block Description Consult the VREG Block User Guide for information about the dual output linear voltage regulator. | Component | Purpose | Туре | Value | | | |-----------|---------------------|---------------|------------------|--|--| | C1 | VDD1 filter cap | ceramic X7R | 100 220nF | | | | C2 | VDD2 filter cap | ceramic X7R | 100 220nF | | | | C3 | VDDA filter cap | ceramic X7R | 100nF | | | | C4 | VDDR filter cap | X7R/tantalum | >=100nF | | | | C5 | VDDPLL filter cap | ceramic X7R | 100nF | | | | C6 | VDDX filter cap | X7R/tantalum | >=100nF | | | | C7 | OSC load cap | | | | | | C8 | OSC load cap | | | | | | C9 | PLL loop filter cap | | | | | | C10 | PLL loop filter cap | Soo DLL angei | fication chapter | | | | C11 | DC cutoff cap | See FLL speci | ilcation chapter | | | | R1 | PLL loop filter res | 1 | | | | | Q1 | Quartz | | | | | The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: # MC9S12DP256B Device User of the escale Semiconductor, Inc. - Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins(C1 - C6). - Central point of the ground star should be the VSSR pin. - Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. - VSSPLL must be directly connected to VSSR. - Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. - Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. - Central power input should be fed in at the VDDA/VSSA pins. VSSA C3 VDDA VDD1[□] VSS1 VSS2 C2 VDD2 VDDR VSSPLL VDDPLL Figure 20-1 Recommended PCB Layout 112 LQFP # MC9S12DP256B Device User of reescale Semiconductor, Inc. Figure 20-2 Recommended PCB Layout for 80QFP # **Appendix A Electrical Characteristics** ## A.1 General NOTE: The electrical characteristics given in this section are preliminary and should be used as a guide only. Values cannot be guaranteed by Motorola and are subject to change without notice. This supplement contains the most accurate electrical information for the MC9S12DP256B microcontroller available at the time of publication. The information should be considered **PRELIMINARY** and is subject to change. This introduction is intended to give an overview on several common topics like power supply, current injection etc. ## A.1.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. **NOTE:** This classification is shown in the column labeled "C" in the parameter tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T: Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations. ## A.1.2 Power Supply The MC9S12DP256B utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL as well as the digital core. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. ## MC9S12DP256B Device User & Rees @ Semiconductor, Inc. The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection. NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2. ### A.1.3 Pins There are four groups of functional pins. ### A.1.3.1 5V I/O pins Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. ## A.1.3.2 Analog Reference This group is made up by the VRH and VRL pins. #### A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. #### **A.1.3.4 TEST** This pin is used for production testing only. #### A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator. (M) MOTOROLA ## A.1.4 Current Injection Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption. ## A.1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}). Table A-1 Absolute Maximum Ratings¹ | Num | Rating | Symbol | Min | Max | Unit | |-----|--|-------------------------|-------------|------|------| | 1 | I/O, Regulator and Analog Supply Voltage | V _{DD5} -0.3 | | 6.0 | V | | 2 | Digital Logic Supply Voltage ² | V _{DD} | -0.3 | 3.0 | V | | 3 | PLL Supply Voltage ² | V _{DDPLL} | -0.3 | 3.0 | V | | 4 | Voltage difference VDDX to VDDR and VDDA | Δ_{VDDX} | -0.3 | 0.3 | V | | 5 | Voltage difference VSSX to VSSR and VSSA | Δ_{VSSX} | -0.3 | 0.3 | V | | 6 | Digital I/O Input Voltage | V _{IN} | -0.3 | 6.0 | V | | 7 | Analog Reference | $V_{RH,}V_{RL}$ | -0.3 | 6.0 | V | | 8 | XFC, EXTAL, XTAL inputs | V _{ILV} | -0.3 | 3.0 | V | | 9 | TEST input | V _{TEST} | -0.3 | 10.0 | V | | 10 | Instantaneous Maximum Current Single pin limit for all digital I/O pins ³ | I _D | -25 | +25 | mA | | 11 | Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴ | I _{DL} | -25 | +25 | mA | | 12 | Instantaneous Maximum Current Single pin limit for TEST ⁵ | I _{DT} -0.25 0 | | 0 | mA | | 13 | Storage Temperature Range | T _{stg} | – 65 | 155 | °C | #### NOTES: ^{1.} Beyond absolute maximum ratings device might be damaged. # MC9S12DP256B Device User of kees@16 Semiconductor, Inc. - 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. - 3. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX} , V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA} . - 4. Those pins are internally clamped to V_{SSPLL} and V_{DDPLL}. 5. This pin is clamped low to V_{SSPLL}, but not clamped high. This pin must be tied low in applications. ## A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions | Model | Description | Symbol | Value | Unit |
------------|---|--------|-------------|------| | | Series Resistance | R1 | 1500 | Ohm | | l | Storage Capacitance | С | 100 | pF | | Human Body | Number of Pulse per pin positive negative | - | -
3
3 | | | | Series Resistance | R1 | 0 | Ohm | | | Storage Capacitance | С | 200 | pF | | Machine | Number of Pulse per pin positive negative | - | -
3
3 | | | Latch up | Minimum input voltage limit | | -2.5 | V | | Latch-up | Maximum input voltage limit | | 7.5 | V | Table A-3 ESD and Latch-Up Protection Characteristics | Num | С | Rating | Symbol | Min | Max | Unit | |-----|---|--|------------------|--------------|-----|------| | 1 | С | Human Body Model (HBM) | V _{HBM} | 2000 | - | V | | 2 | С | Machine Model (MM) | V _{MM} | 200 | - | V | | 3 | С | Charge Device Model (CDM) | V _{CDM} | 500 | - | V | | 4 | С | Latch-up Current at T _A = 125°C positive negative | I _{LAT} | +100
-100 | - | mA | | 5 | С | Latch-up Current at T _A = 27°C positive negative | I _{LAT} | +200
-200 | - | mA | (M) MOTOROLA ## A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. **NOTE:** Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation calculations refer to **Section A.1.8 Power Dissipation and Thermal** Characteristics. **Table A-4 Operating Conditions** | Rating | Symbol | Min | Тур | Max | Unit | |--|--------------------|------|-----|------|------| | I/O, Regulator and Analog Supply Voltage | V_{DD5} | 4.5 | 5 | 5.25 | V | | Digital Logic Supply Voltage ¹ | V_{DD} | 2.35 | 2.5 | 2.75 | ٧ | | PLL Supply Voltage ² | V _{DDPLL} | 2.35 | 2.5 | 2.75 | ٧ | | Voltage Difference VDDX to VDDR and VDDA | Δ_{VDDX} | -0.1 | 0 | 0.1 | V | | Voltage Difference VSSX to VSSR and VSSA | Δ_{VSSX} | -0.1 | 0 | 0.1 | V | | Oscillator | f _{osc} | 0.5 | - | 16 | MHz | | Bus Frequency | f _{bus} | 0.5 | - | 25 | MHz | | MC9S12DP256B C | | | | | | | Operating Junction Temperature Range | T_J | -40 | - | 100 | °C | | Operating Ambient Temperature Range ² | T _A | -40 | 27 | 85 | °C | | MC9S12DP256B V | | | | | | | Operating Junction Temperature Range | T_J | -40 | - | 120 | °C | | Operating Ambient Temperature Range ² | T _A | -40 | 27 | 105 | °C | | MC9S12DP256B M | | | | | | | Operating Junction Temperature Range | T_J | -40 | - | 140 | °C | | Operating Ambient Temperature Range ² | T _A | -40 | 27 | 125 | °C | #### NOTES: ## A.1.8 Power Dissipation and Thermal Characteristics Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in ${}^{\circ}C$ can be obtained from: The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source. ^{2.} Please refer to **Section A.1.8 Power Dissipation and Thermal Characteristics** for more details about the relation between ambient temperature T_A and device junction temperature T_J. MC9S12DP256B Device User of the escale Semiconductor, Inc. $$T_J = T_A + (P_D \bullet \Theta_{JA})$$ $T_J = Junction Temperature, [°C]$ $T_A = Ambient Temperature, [°C]$ P_D = Total Chip Power Dissipation, [W] Θ_{JA} = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: $$P_D = P_{INT} + P_{IO}$$ P_{INT} = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled $$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$ $$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$ P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR. For R_{DSON} is valid: $$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$; for outputs driven low respectively $$R_{DSON} = \frac{V_{DD5} - V_{OH}}{I_{OH}}$$; for outputs driven high 2. Internal voltage regulator enabled $$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA}$$ I_{DDR} is the current shown in **Table A-7** and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. $$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_i}^2$$ P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR. Table A-5 Thermal Package Characteristics¹ | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|---|--|---------------|-----|-----|-----|------| | 1 | Т | Thermal Resistance LQFP112, single sided PCB ² | θ_{JA} | - | - | 54 | °C/W | | 2 | Т | Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³ | θ_{JA} | - | - | 41 | °C/W | | 3 | Т | Thermal Resistance LQFP 80, single sided PCB | θ_{JA} | - | - | 51 | °C/W | | 4 | Т | Thermal Resistance LQFP 80, double sided PCB with 2 internal planes | θ_{JA} | - | - | 41 | °C/W | #### NOTES: - 1. The values for thermal resistance are achieved by package simulations - 2. PC Board according to EIA/JEDEC Standard 51-2 - 3. PC Board according to EIA/JEDEC Standard 51-7 ### A.1.9 I/O Characteristics This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. # MC9S12DP256B Device User of kees@16 Semiconductor, Inc. Table A-6 5V I/O Characteristics | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|---|--|--------------------------------------|------------------------|-----|-----------------------|------| | 1 | Р | Input High Voltage | V _{IH} | 0.65*V _{DD5} | - | - | V | | | Т | Input High Voltage | V _{IH} | - | - | VDD5 + 0.3 | V | | 2 | Р | Input Low Voltage | V _{IL} | - | - | 0.35*V _{DD5} | V | | | Т | Input Low Voltage | V _{IL} | VSS5 - 0.3 | - | - | V | | 3 | С | Input Hysteresis | V _{HYS} | | 250 | | mV | | 4 | Р | Input Leakage Current (pins in high impedance input mode) ¹ $V_{in} = V_{DD5}$ or V_{SS5} | I _{in} | -2.5 | - | 2.5 | μΑ | | 5 | Р | Output High Voltage (pins in output mode) Partial Drive $I_{OH} = -2mA$ Full Drive $I_{OH} = -10mA$ | V _{OH} | V _{DD5} – 0.8 | - | - | V | | 6 | Р | Output Low Voltage (pins in output mode) Partial Drive I _{OL} = +2mA Full Drive I _{OL} = +10mA | V _{OL} | - | - | 0.8 | V | | 7 | Р | Internal Pull Up Device Current, tested at V _{IL} Max. | I _{PUL} | - | - | -130 | μА | | 8 | Р | Internal Pull Up Device Current, tested at V _{IH} Min. | I _{PUH} | -10 | - | - | μА | | 9 | Р | Internal Pull Down Device Current, tested at V _{IH} Min. | I _{PDH} | - | - | 130 | μА | | 10 | Р | Internal Pull Down Device Current, tested at V _{IL} Max. | I _{PDL} | 10 | - | - | μΑ | | 11 | D | Input Capacitance | C _{in} | | 6 | - | pF | | 12 | Т | Injection current ² Single Pin limit Total Device Limit. Sum of all injected currents | I _{ICS}
I _{ICP} | -2.5
-25 | - | 2.5
25 | mA | | 13 | Р | Port H, J, P Interrupt Input Pulse filtered ³ | t _{PULSE} | | | 3 | μs | | 14 | Р | Port H, J, P Interrupt Input Pulse passed ³ | t _{PULSE} | 10 | | | μs | #### NOTES: - 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C. - 2. Refer to Section A.1.4 Current Injection, for more details - 3. Parameter only applies in STOP or Pseudo STOP mode. MOTOROLA ## A.1.10 Supply Currents This section describes the current consumption characteristics of the device as well as the conditions for the measurements. #### A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. #### A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be # MC9S12DP256B Device User of reescale Semiconductor, Inc. given. A very good estimate is to take the single chip currents and add the currents due to the external loads. **Table A-7 Supply Current Characteristics** | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|-----------|--|-------------------|-----|--|-----------------------------|------| | 1 | Р | Run supply currents Single Chip, Internal regulator enabled | I _{DD5} | | | 65 | mA | | 2 | P
P | Wait Supply current All modules enabled, PLL on only RTI enabled ¹ | I _{DDW} | | | 40
5 | mA | | 3 | OPOOPOPOP | Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C | I _{DDPS} | | 370
400
450
550
600
650
800
850
1200 | 500
1600
2100
5000 | μА | | 4 | 0000000 | Pseudo Stop Current (RTI and COP enabled) 1, 2 -40°C 27°C 70°C 85°C 105°C 125°C 140°C | I _{DDPS} | | 570
600
650
750
850
1200
1500 | | μА |
| 5 | OPOOPOPOP | Stop Current ² -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C | I _{DDS} | | 12
25
100
130
160
200
350
400
600 | 100
1200
1700
5000 | μА | NOTES: 1. PLL off 2. At those low power dissipation levels $T_J = T_A$ can be assumed ## A.2 ATD Characteristics This section describes the characteristics of the analog to digital converter. ## A.2.1 ATD Operating Characteristics The **Table A-8** shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics | Condit | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |--------|---|--|--|---|------|---|--------------|--|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | | 1 | D | Reference Potential Low High | V _{RL}
V _{RH} | V _{SSA}
V _{DDA} /2 | | V _{DDA} /2
V _{DDA} | V | | | | 2 | С | Differential Reference Voltage ¹ | $V_{RH}-V_{RL}$ | 4.50 | 5.00 | 5.25 | V | | | | 3 | D | ATD Clock Frequency | f _{ATDCLK} | 0.5 | | 2.0 | MHz | | | | 4 | D | ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK} | | 14
7 | | 28
14 | Cycles
μs | | | | 5 | D | ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK} | N _{CONV8}
T _{CONV8} | 12
6 | | 26
13 | Cycles
μs | | | | 6 | D | Recovery Time (V _{DDA} =5.0 Volts) | t _{REC} | | | 20 | μs | | | | 7 | Р | Reference Supply current 2 ATD blocks on | I _{REF} | | | 0.750 | mA | | | | 8 | Р | Reference Supply current 1 ATD block on | I _{REF} | | | 0.375 | mA | | | #### NOTES: - 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V - The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. ## A.2.2 Factors influencing accuracy Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD. #### A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S ## MC9S12DP256B Device User of reescale Semiconductor, Inc. specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. ## A.2.2.2 Source Capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage \leq 1LSB, then the external filter capacitor, $C_f \geq$ 1024 * $(C_{INS}$ - $C_{INN})$. ## A.2.2.3 Current Injection There are two cases to consider. - A current is injected into the channel being converted. The channel being stressed has conversion values of \$3FF (\$FF in 8-bit mode) for analog inputs greater than V_{RH} and \$000 for values less than V_{RL} unless the current is higher than specified as disruptive condition. - 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as V_{ERR} = K * R_S * I_{INJ}, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel. **Table A-9 ATD Electrical Characteristics** | Condit | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | |--------|---|---|--------------------------------------|------|-----|------------------|------|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | 1 | С | Max input Source Resistance | R _S | - | - | 1 | ΚΩ | | | 2 | Т | Total Input Capacitance Non Sampling Sampling | C _{INN}
C _{INS} | | | 10
22 | pF | | | 3 | С | Disruptive Analog Input Current | I _{NA} | -2.5 | | 2.5 | mA | | | 4 | С | Coupling Ratio positive current injection | K _p | | | 10 ⁻⁴ | A/A | | | 5 | С | Coupling Ratio negative current injection | K _n | | | 10 ⁻² | A/A | | ## A.2.3 ATD accuracy **Table A-10** specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. #### Table A-10 ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted V_{REF} = V_{RH} - V_{RL} = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV $f_{ATDCLK} = 2.0MHz$ | Num | С | Rating | Symbol | Min | Тур | Max | Unit | |-----|---|------------------------------------|--------|------|------|-----|--------| | 1 | Р | 10-Bit Resolution | LSB | | 5 | | mV | | 2 | Р | 10-Bit Differential Nonlinearity | DNL | -1 | | 1 | Counts | | 3 | Р | 10-Bit Integral Nonlinearity | INL | -2.5 | ±1.5 | 2.5 | Counts | | 4 | Р | 10-Bit Absolute Error ¹ | AE | -3 | ±2.0 | 3 | Counts | | 5 | Р | 8-Bit Resolution | LSB | | 20 | | mV | | 6 | Р | 8-Bit Differential Nonlinearity | DNL | -0.5 | | 0.5 | Counts | | 7 | Р | 8-Bit Integral Nonlinearity | INL | -1.0 | ±0.5 | 1.0 | Counts | | 8 | Р | 8-Bit Absolute Error ¹ | AE | -1.5 | ±1.0 | 1.5 | Counts | #### NOTES: For the following definitions see also **Figure A-1**. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. $$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$ The Integral Non-Linearity (INL) is defined as the sum of all DNLs: $$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$ ^{1.} These values include the quantization error which is inherently 1/2 count for any A/D converter. Figure A-1 ATD Accuracy Definitions **NOTE:** Figure A-1 shows only definitions, for specification values refer to Table A-10. MOTOROLA ## A.3 NVM, Flash and EEPROM **NOTE:** Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM. ## A.3.1 NVM timing The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} . The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz. ## A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula. $$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$ ## A.3.1.2 Burst Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as: $$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$ The time to program a whole row is: $$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$ Burst programming is more than 2 times faster than single word programming. ## MC9S12DP256B Device User of the escale Semiconductor, Inc. #### A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes: $$t_{era} \approx 4000 \cdot \frac{1}{f_{NVMOP}}$$ The setup time can be ignored for this operation. ### A.3.1.4 Mass Erase Erasing a NVM block takes: $$t_{mass} \approx 20000 \cdot \frac{1}{f_{NVMOP}}$$ The setup time can be ignored for this operation. #### A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command. $$t_{check} \approx location \cdot t_{cyc} + 10 \cdot t_{cyc}$$ Table A-11 NVM Timing Characteristics | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |---|---|--|---------------------|--------------------|-----|---------------------|------------------|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | 1 | D | External Oscillator Clock | f _{NVMOSC} | 0.5 | | 50 ¹ | MHz | | | 2 | D | Bus frequency for Programming or Erase Operations | f _{NVMBUS} | 1 | | | MHz | | | 3 | D | Operating Frequency | f _{NVMOP} | 150 | | 200 | kHz | | | 4 | Р |
Single Word Programming Time | t _{swpgm} | 46 ² | | 74.5 ³ | μs | | | 5 | D | Flash Burst Programming consecutive word ⁴ | t _{bwpgm} | 20.4 ² | | 31 ³ | μs | | | 6 | D | Flash Burst Programming Time for 32 Words ⁴ | t _{brpgm} | 678.4 ² | | 1035.5 ³ | μs | | | 7 | Р | Sector Erase Time | t _{era} | 20 ⁵ | | 26.7 ³ | ms | | | 8 | Р | Mass Erase Time | t _{mass} | 100 ⁵ | | 133 ³ | ms | | | 9 | D | Blank Check Time Flash per block | t _{check} | 11 ⁶ | | 32778 ⁷ | t _{cyc} | | | 10 | D | Blank Check Time EEPROM per block | t _{check} | 11 ⁶ | | 2058 ⁷ | t _{cyc} | | #### NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency f_{NVMOP} and maximum bus frequency f_{bus} . (M) MOTOROLA ## Freescale Semiconductorn Device User Guide — V02.15 - 3. Maximum Erase and Programming times are achieved under particular combinations of f_{NVMOP} and bus frequency f_{bus}. Refer to formulae in Sections **A.3.1.1 A.3.1.4** for guidance. - 4. urst Programming operations are not applicable to EEPROM - 5. Minimum Erase times are achieved under maximum NVM operating frequency f_{NVMOP}. - 6. Minimum time, if first word in the array is not blank - 7. Maximum time to complete check on an erased block ## A.3.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed. **NOTE:** All values shown in **Table A-12** are target values and subject to further extensive characterization. Table A-12 NVM Reliability Characteristics | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | |--|---|-------------------------------|--------|-------------------------------|-------|--|--| | Num | С | Rating | Cycles | Data
Retention
Lifetime | Unit | | | | 1 | С | Flash/EEPROM (-40C to + 125C) | 10 | 15 | Years | | | | 2 | С | EEPROM (-40C to + 125C) | 10,000 | 5 | Years | | | **NOTE:** Flash cycling performance is 10 cycles at -40C to + 125C. Data retention is specified for 15 years. **NOTE:** EEPROM cycling performance is 10K cycles at -40C to +125C. Data retention is specified for 5 years on words after cycling 10K times. However if only 10 cycles are executed on a word the data retention is specified for 15 years. # A.4 Voltage Regulator The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed. Table A-13 Voltage Regulator Recommended Load Capacitances | Rating | Symbol | Min | Тур | Max | Unit | |-----------------------------|------------------------|-----|-----|-----|------| | Load Capacitance on VDD1, 2 | C _{LVDD} | | 220 | | nF | | Load Capacitance on VDDPLL | C _{LVDDfcPLL} | | 220 | | nF | ## A.5 Reset, Oscillator and PLL This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL). ## A.5.1 Startup **Table A-14** summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide. **Table A-14 Startup Characteristics** | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |---|---|--|--------------------|------|-----|------|------------------|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | 1 | Т | POR release level | V _{PORR} | | | 2.07 | V | | | 2 | Т | POR assert level | V _{PORA} | 0.97 | | | V | | | 3 | D | Reset input pulse width, minimum input time | PW _{RSTL} | 2 | | | t _{osc} | | | 4 | D | Startup from Reset | n _{RST} | 192 | | 196 | n _{osc} | | | 5 | D | Interrupt pulse width, IRQ edge-sensitive mode | PW _{IRQ} | 20 | | | ns | | | 6 | D | Wait recovery startup time | t _{WRS} | | | 14 | t _{cyc} | | ## A.5.1.1 POR The release level V_{PORR} and the assert level V_{PORA} are derived from the VDD supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} . #### A.5.1.2 SRAM Data Retention Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set. #### A.5.1.3 External Reset When external reset is asserted for a time greater than PW_{RSTL} the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset. # MC9S12DP256B Device User of the escale Semiconductor, Inc. ## A.5.1.4 Stop Recovery Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system. ## A.5.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector. #### A.5.2 Oscillator The device features an internal Colpitts oscillator. By asserting the \overline{XCLKS} input during reset this oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency t_{CMFA} . **Table A-15 Oscillator Characteristics** | Condit | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | | |--------|--|--|---------------------|------|----------------|------------------|------|--|--| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | | | 1 | С | Crystal oscillator range | f _{OSC} | 0.5 | | 16 | MHz | | | | 2 | Р | Startup Current | iosc | 100 | | | μА | | | | 3 | С | Oscillator start-up time | t _{UPOSC} | | 8 ¹ | 100 ² | ms | | | | 4 | D | Clock Quality check time-out | tcQOUT | 0.45 | | 2.5 | S | | | | 5 | Р | Clock Monitor Failure Assert Frequency | f _{CMFA} | 50 | 100 | 200 | KHz | | | | 6 | Р | External square wave input frequency ³ | f _{EXT} | 0.5 | | 50 | MHz | | | | 7 | D | External square wave pulse width low | t _{EXTL} | 9.5 | | | ns | | | | 8 | D | External square wave pulse width high | t _{EXTH} | 9.5 | | | ns | | | | 9 | D | External square wave rise time | t _{EXTR} | | | 1 | ns | | | | 10 | D | External square wave fall time | t _{EXTF} | | | 1 | ns | | | | 11 | D | Input Capacitance (EXTAL, XTAL pins) | C _{IN} | | 9 | | pF | | | | 12 | С | DC Operating Bias in Colpitts Configuration on EXTAL Pin | V _{DCBIAS} | | 1.1 | | V | | | #### NOTES: - 1. $f_{osc} = 4MHz$, C = 22pF. - 2. Maximum value is for extreme cases using high Q, low frequency crystals - 3. XCLKS =0 during reset ## A.5.3 Phase Locked Loop The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode. ## A.5.3.1 XFC Component Selection This section describes the selection of the XFC components to achieve a good filter characteristics. Figure A-2 Basic PLL functional diagram The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**. The VCO Gain at the desired VCO output frequency is approximated by: $$K_V = K_1 \cdot e^{\frac{(f_1 - f_{vco})}{K_1 \cdot 1V}}$$ The phase detector relationship is given by: $$K_{\Phi} = -|i_{ch}| \cdot K_{V}$$ i_{ch} is the current in tracking mode. # MC9S12DP256B Device User dikees@21@ Semiconductor, Inc. The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response. $$f_C < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^2}\right)} \frac{1}{50} \rightarrow f_C < \frac{f_{ref}}{4 \cdot 50}; (\zeta = 0.9)$$ And finally the frequency relationship is defined as $$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1)$$ With the above inputs the resistance can be calculated as: $$R = \frac{2 \cdot \pi \cdot n \cdot f_C}{K_{\Phi}}$$ The capacitance C_s can now be calculated as: $$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9)$$ The capacitance C_p should be chosen in the range of: $$C_s/20 \le C_p \le C_s/10$$ The stabilization delays shown in **Table A-16** are dependant on PLL operational settings and external component selection (e.g. crystal, XFC filter). #### A.5.3.2 Jitter Information The basic functionality of the PLL is shown in **Figure A-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock
f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure A-3**. Figure A-3 Jitter Definitions The relative deviation of t_{nom} is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as: $$J(N) = \max \left(\left| 1 - \frac{t_{max}(N)}{N \cdot t_{nom}} \right|, \left| 1 - \frac{t_{min}(N)}{N \cdot t_{nom}} \right| \right)$$ For N < 100, the following equation is a good fit for the maximum jitter: $$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$ Figure A-4 Maximum bus clock jitter approximation ### MC9S12DP256B Device User dikees@16 Semiconductor, Inc. This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent. Table A-16 PLL Characteristics | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | |--|---|--|-------------------|-----|------|------|----------------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 1 | Р | Self Clock Mode frequency | f _{SCM} | 1 | | 5.5 | MHz | | 2 | D | VCO locking range | f _{VCO} | 8 | | 50 | MHz | | 3 | D | Lock Detector transition from Acquisition to Tracking mode | $ \Delta_{trk} $ | 3 | | 4 | % ¹ | | 4 | D | Lock Detection | Δ _{Lock} | 0 | | 1.5 | % ¹ | | 5 | D | Un-Lock Detection | Δ _{unl} | 0.5 | | 2.5 | % ¹ | | 6 | D | Lock Detector transition from Tracking to Acquisition mode | $ \Delta_{unt} $ | 6 | | 8 | %1 | | 7 | С | PLLON Total Stabilization delay (Auto Mode) ² | t _{stab} | | 0.5 | | ms | | 8 | D | PLLON Acquisition mode stabilization delay ² | t _{acq} | | 0.3 | | ms | | 9 | D | PLLON Tracking mode stabilization delay ² | t _{al} | | 0.2 | | ms | | 10 | D | Fitting parameter VCO loop gain | K ₁ | | -120 | | MHz/V | | 11 | D | Fitting parameter VCO loop frequency | f ₁ | | 75 | | MHz | | 12 | D | Charge pump current acquisition mode | i _{ch} | | 38.5 | | μА | | 13 | D | Charge pump current tracking mode | i _{ch} | | 3.5 | | μА | | 14 | С | Jitter fit parameter 1 ² | j ₁ | | | 1.1 | % | | 15 | С | Jitter fit parameter 2 ² | j ₂ | | | 0.13 | % | #### NOTES: 1. % deviation from target frequency ^{2.} f_{REF} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K Ω . ## A.6 MSCAN #### **Table A-17 MSCAN Wake-up Pulse Characteristics** | Conditions are shown in Table A-4 unless otherwise noted | | | | | | | | |--|---|---------------------------------------|------------------|-----|-----|-----|------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 1 | Р | MSCAN Wake-up dominant pulse filtered | t _{WUP} | | | 2 | μs | | 2 | Р | MSCAN Wake-up dominant pulse pass | t _{WUP} | 5 | | | μs | ### A.7 SPI #### A.7.1 Master Mode Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18. ^{1.} If configured as output. Figure A-5 SPI Master Timing (CPHA = 0) ^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. ### MC9S12DP256B Device User & Reescale Semiconductor, Inc. - 1. If configured as output - 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-6 SPI Master Timing (CPHA =1) ## Table A-18 SPI Master Mode Timing Characteristics¹ | Condit | Conditions are shown in Table A-4 unless otherwise noted, C _{LOAD} = 200pF on all outputs | | | | | | | |--------|---|--|-------------------|-----------------------|-----|-----------------------|------------------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 1 | Р | Operating Frequency | f _{op} | DC | | 1/4 | f _{bus} | | 1 | Р | SCK Period t _{sck} = 1./f _{op} | t _{sck} | 4 | | 2048 | t _{bus} | | 2 | D | Enable Lead Time | t _{lead} | 1/2 | | _ | t _{sck} | | 3 | D | Enable Lag Time | t _{lag} | 1/2 | | | t _{sck} | | 4 | D | Clock (SCK) High or Low Time | t _{wsck} | t _{bus} – 30 | | 1024 t _{bus} | ns | | 5 | D | Data Setup Time (Inputs) | t _{su} | 25 | | | ns | | 6 | D | Data Hold Time (Inputs) | t _{hi} | 0 | | | ns | | 9 | D | Data Valid (after Enable Edge) | t _v | | | 25 | ns | | 10 | D | Data Hold Time (Outputs) | t _{ho} | 0 | | | ns | | 11 | D | Rise Time Inputs and Outputs | t _r | | | 25 | ns | | 12 | D | Fall Time Inputs and Outputs | t _f | | | 25 | ns | #### NOTES: 1. The numbers 7, 8 in the column labeled "Num" are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in **Table A-19**. (M) MOTOROLA #### A.7.2 Slave Mode Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19. Figure A-7 SPI Slave Timing (CPHA = 0) Figure A-8 SPI Slave Timing (CPHA =1) # MC9S12DP256B Device User of reescale Semiconductor, Inc. **Table A-19 SPI Slave Mode Timing Characteristics** | Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs | | | | | | | | |---|---|--|-------------------|-----------------------|-----|------|------------------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 1 | Р | Operating Frequency | f _{op} | DC | | 1/4 | f _{bus} | | 1 | Р | SCK Period t _{sck} = 1./f _{op} | t _{sck} | 4 | | 2048 | t _{bus} | | 2 | D | Enable Lead Time | t _{lead} | 1 | | | t _{cyc} | | 3 | D | Enable Lag Time | t _{lag} | 1 | | | t _{cyc} | | 4 | D | Clock (SCK) High or Low Time | t _{wsck} | t _{cyc} – 30 | | | ns | | 5 | D | Data Setup Time (Inputs) | t _{su} | 25 | | | ns | | 6 | D | Data Hold Time (Inputs) | t _{hi} | 25 | | | ns | | 7 | D | Slave Access Time | t _a | | | 1 | t _{cyc} | | 8 | D | Slave MISO Disable Time | t _{dis} | | | 1 | t _{cyc} | | 9 | D | Data Valid (after SCK Edge) | t _v | | | 25 | ns | | 10 | D | Data Hold Time (Outputs) | t _{ho} | 0 | | | ns | | 11 | D | Rise Time Inputs and Outputs | t _r | | | 25 | ns | | 12 | D | Fall Time Inputs and Outputs | t _f | | | 25 | ns | ### A.8 External Bus Timing A timing diagram of the external multiplexed-bus is illustrated in **Figure A-9** with the actual timing values shown on table **Table A-20**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle. #### A.8.1 General Muxed Bus Timing The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs. ### MC9S12DP256B Device User & Reescale Semiconductor, Inc. Figure A-9 General External Bus Timing # Freescale Semiconducton 2 Device User Guide — V02.15 ### **Table A-20 Expanded Bus Timing Characteristics** | Num | | s are shown in Table A-4 unless otherwise noted, C _L | Symbol | Min | Тур | Max | Unit | |-----|---|--|-------------------|-----|-------|------|------| | 1 | P | | f _o | 0 | 1 7 1 | 25.0 | MHz | | 2 | P | . , , , | t _{cyc} | 40 | | | ns | | 3 | D | Pulse width, E low | PW _{EL} | 19 | | | ns | | 4 | D | Pulse width, E high ¹ | PW _{EH} | 19 | | | ns | | 5 | D | | t _{AD} | | | 8 | ns | | 6 | D | Address valid time to E rise (PW _{EL} -t _{AD}) | t _{AV} | 11 | | | ns | | 7 | D | Muxed address hold time | t _{MAH} | 2 | | | ns | | 8 | D | Address hold to data valid | t _{AHDS} | 7 | | | ns | | 9 | D | Data hold to address | t _{DHA} | 2 | | | ns | | 10 | D | Read data setup time | t _{DSR} | 13 | | | ns | | 11 | D | Read data hold time | t _{DHR} | 0 | | | ns | | 12 | D | Write data delay time | t _{DDW} | | | 7 | ns | | 13 | D | Write data hold time | t _{DHW} | 2 | | | ns | | 14 | D | Write data setup time ¹ (PW _{EH} -t _{DDW}) | t _{DSW} | 12 | | | ns | | 15 | D | Address access time ¹ (t _{cyc} -t _{AD} -t _{DSR}) | t _{ACCA} | 19 | | | ns | | 16 | D | E high access time ¹ (PW _{EH} ^{-t} _{DSR}) | t _{ACCE} | 6 | | | ns | | 17 | D | Non-multiplexed address delay time | t _{NAD} | | | 6 | ns | | 18 | D | Non-muxed address valid to E rise (PW _{EL} -t _{NAD}) | t _{NAV} | 15 | | | ns | | 19 | D | Non-multiplexed address hold time | t _{NAH} | 2 | | | ns | | 20 | D | Chip select delay time | t _{CSD} | | | 16 | ns | | 21 | D | Chip select access time ¹ (t _{cyc} -t _{CSD} -t _{DSR}) | t _{ACCS} | 11 | | | ns | | 22 | D | Chip select hold time | t _{CSH} | 2 | | | ns | | 23 | D | Chip select negated time | t _{CSN} | 8 | | | ns | | 24 | D | Read/write delay time | t _{RWD} | | | 7 | ns | | 25 | D | Read/write valid time to E rise (PW _{EL} -t _{RWD}) | t _{RWV} | 14 | | | ns | | 26 | D | Read/write hold time | t _{RWH} | 2 | | | ns | | 27 | D | Low strobe delay time | t _{LSD} | | | 7 | ns | | 28 | D | Low strobe valid time to E rise (PW _{EL} -t _{LSD}) | t _{LSV} | 14 | | | ns | | 29 | D | Low strobe hold time | t _{LSH} | 2 | | | ns | | 30 | D | NOACC strobe delay time | t _{NOD} | | | 7 | ns | | 31 | D | NOACC valid time to E rise (PW _{EL} -t _{NOD}) | t _{NOV} | 14 | | | ns | ## MC9S12DP256B Device User direcs@16 Semiconductor, Inc. ### **Table A-20 Expanded Bus Timing Characteristics** | Condit | Conditions are shown in Table A-4 unless otherwise noted, C _{LOAD} = 50pF | | | | | | | |--------
---|--|------------------|-----|-----|-----|------| | Num | С | Rating | Symbol | Min | Тур | Max | Unit | | 32 | D | NOACC hold time | t _{NOH} | 2 | | | ns | | 33 | D | IPIPO[1:0] delay time | t _{P0D} | 2 | | 7 | ns | | 34 | D | IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D}) | t _{P0V} | 11 | | | ns | | 35 | D | IPIPO[1:0] delay time ¹ (PW _{EH} -t _{P1V}) | t _{P1D} | 2 | | 25 | ns | | 36 | D | IPIPO[1:0] valid time to E fall | t _{P1V} | 11 | | | ns | #### NOTES: ^{1.} Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches. # **Appendix B Package Information** #### **B.1 General** This section provides the physical dimensions of the MC9S12DP256B packages. ### B.2 112-pin LQFP package #### NOTES: - LO. I. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. **ROTATED 90 ° COUNTERCLOCKWISE** - 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS I, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE - MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.46. | | MILLIMETERS | | | | | |-----|-------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 20.000 BSC | | | | | | A1 | 10.00 | BSC | | | | | В | 20.00 | | | | | | B1 | 10.00 |) BSC | | | | | С | | 1.600 | | | | | C1 | 0.050 | 0.150 | | | | | C2 | 1.350 | 1.450 | | | | | D | 0.270 | 0.370 | | | | | E | 0.450 | 0.750 | | | | | F | 0.270 | 0.330 | | | | | G | 0.650 | BSC | | | | | J | 0.090 | 0.170 | | | | | K | 0.500 | | | | | | P | 0.325 | BSC | | | | | R1 | 0.100 | 0.200 | | | | | R2 | 0.100 | 0.200 | | | | | S | 22.00 |) BSC | | | | | S1 | 11.00 | BSC | | | | | ٧ | 22.00 | BSC | | | | | V1 | 11.00 |) BSC | | | | | Υ | 0.250 | REF | | | | | Z | 1.000 REF | | | | | | AA | 0.090 | 0.160 | | | | | θ | 0° | 8 ° | | | | | θ1 | 3 ° | 7 ° | | | | | θ2 | 11 ° 13 | | | | | | θ3 | 11 ° | 13 ° | | | | Figure B-1 112-pin LQFP mechanical dimensions (case no. 987) ### B.3 80-pin QFP package Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B) # **User Guide End Sheet** FINAL PAGE OF 128 PAGES 128 MOTOROLA