

STM6600 STM6601

Smart push-button on/off controller with Smart ResetTM and power-on lockout

Features

- Operating voltage 1.6 V to 5.5 V
- Low standby current of 1 µA
- Adjustable Smart Reset[™] assertion delay time driven by external C_{SRD}
- Power-up duration determined primarily by push-button press (STM6600) or by fixed time period, t_{ON_BLANK} (STM6601)
- Debounced PB and SR inputs
- PB and SR ESD inputs withstand voltage up to ±15 kV (air discharge) ±8 kV (contact discharge)
- Active high or active low enable output option (EN or EN) provides control of MOSFET, DC-DC converter, regulator, etc.
- Secure startup, interrupt, Smart Reset[™] or power down driven by push-button
- Precise 1.5 V voltage reference with 1% accuracy
- Industrial operating temperature –40 to +85 °C
- Available in TDFN12 2 x 3 mm package

Applications

- Portable devices
- Terminals
- Audio and video players
- Cell phones and smart phones
- PDAs, palmtops, organizers

Device	RST	C _{SRD}	PB/SR	EN or EN	INT	Startup process
STM6600	open drain ⁽¹⁾	1	1	push-pull	open drain ⁽¹⁾	PB must be held low until the PS _{HOLD} ⁽²⁾ confirmation
STM6601	open drain ⁽¹⁾	1	1	push-pull	open drain ⁽¹⁾	PB can be released before the PS _{HOLD} ⁽²⁾ confirmation

Table 1.Device summary

1. External pull-up resistor needs to be connected to open drain outputs.

2. For a successful startup, the PS_{HOLD} (Power Supply Hold) needs to be pulled high within specific time, t_{ON_BLANK}.

Contents

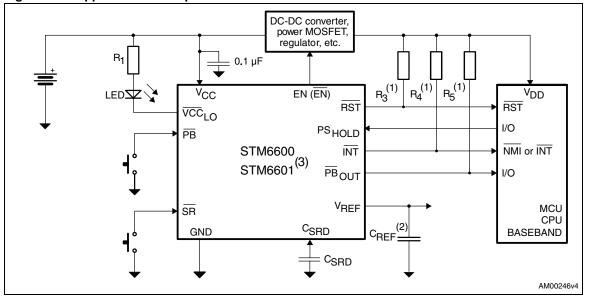
1	Description
2	Pin descriptions
3	Operation
4	Waveforms
5	Typical operating characteristics
6	Maximum ratings
7	DC and AC characteristics 39
8	Package mechanical data 42
9	Part numbering
10	Product selector
11	Revision history

List of tables

Device summary
Pin descriptions
Absolute maximum ratings
Operating and AC measurement conditions
DC and AC characteristics
TDFN12 (2 x 3 mm) package mechanical data
Carrier tape dimensions for TDFN12 (2 mm x 3 mm) package
STM6600 ordering information scheme 46
STM6601 ordering information scheme
STM6600 product selector
STM6601 product selector
Document revision history

List of figures

Figure 2.Basic functionality (option with RST assertion after long push)6Figure 3.Logic diagram6Figure 4.Logic diagram6Figure 5.TDFN12 pin connections7Figure 6.Block diagram8Figure 7.Successful power-up on STM66008(PB released prior to $t_{ON, BLANK}$ expiration)14Figure 9.Unsuccessful power-up on STM660015($O_{N, BLANK}$ expires prior to PB release)15Figure 9.Unsuccessful power-up on STM660016(PB released prior to $t_{ON, BLANK}$)16Figure 10.Unsuccessful power-up on STM660017($T_{ON, BLANK}$ expires prior to PB release)17Figure 11.Successful power-up on STM660119Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM660119Figure 14.PB interrupt21Figure 15.Long push, FB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 29.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 23.Supply current vs. temperature, normal state28Figure 34.Supply current vs. temperature, normal state29Figure 25.Supply current vs. temperature, V_{CC} = 3.6 V.31Figure 30.C_SRD charging curr</t_{srd}<></t_{srd}<>
Figure 4.Logic diagram6Figure 5.TDFN12 pin connections7Figure 6.Block diagram8Figure 7.Successful power-up on STM6600 (PE released prior to PB release)14Figure 8.Successful power-up on STM6600 (to_{N_BLANK} expires prior to PB release)15Figure 9.Unsuccessful power-up on STM6600 (to_{N_BLANK} expires prior to PB release)16Figure 10.Unsuccessful power-up on STM6600 (to_{N_BLANK} expires prior to PB release)17Figure 11.Successful power-up on STM660118Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM660122Figure 14.PB interrupt.21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 23.Supply current vs. temperature, standby state28Figure 24.Supply current vs. supply voltage, normal state29Figure 25.Supply current vs. temperature, V_{CC} = 3.6 V.31Figure 31.Output low voltage vs. output low current, TA = 25°C.32Figure 33.Intreshold hysteresis vs. temperature, V_{CC} = 3.6 V.31Figure 34.Nuthy voltage vs. output high current, TA = 25°C.32Figure 35.</t_{srd}<></t_{srd}<>
Figure 5.TDFN12 pin connections7Figure 6.Block diagram8Figure 7.Successful power-up on STM6600 (PB released prior to $t_{ON_{BLANK}}$ expiration)14Figure 8.Successful power-up on STM6600 ($t_{ON_{BLANK}}$ expires prior to PB release)15Figure 9.Unsuccessful power-up on STM6600 ($(PB released prior to t_{ON_{BLANK}})16Figure 10.Unsuccessful power-up on STM6600(t_{ON_{BLANK}} expires prior to PB release)17Figure 11.Successful power-up on STM660119Power-up on STM660119Figure 12.Unsuccessful power-up on STM660120Figure 13.Long push, PB pressed first22Figure 14.PB interrupt21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push25Figure 28.Undervoltage detected for 26Figure 21.Undervoltage detected for 26Figure 22.Supply current vs. temperature, normal state29Figure 23.Supply current vs. temperature, normal state29Figure 24.Supply current vs. temperature, VINYST = 200 mV (typ.)30Figure 31.Cotago vs. supply voltage, normal state29Figure 32.Dutput voltage vs. output low current, TA = 25°C32Figure 33.Reference output voltage vs. temperature, VCC = 2.0 V.34Figure 34.Nutput voltage vs. supply voltage, normal state33$
Figure 6.Block diagram.8Figure 7.Successful power-up on STM6600(PB released prior to $t_{ON_{BLANK}} expiration)$.14Figure 8.Successful power-up on STM6600($t_{ON_{BLANK}} expires prior to PB release)$.15Figure 10.Unsuccessful power-up on STM6600(PB released prior to $t_{ON_{BLANK}}$)Figure 11.Successful power-up on STM6601($t_{ON_{BLANK}} expires prior to PB release)$ 17Figure 12.Unsuccessful power-up on STM660118Figure 13.Power-up on STM6601 with voltage dropout19Power-up on STM660x with voltage dropout20Figure 15.Long push, PB pressed first21Figure 16.Long push (option with enable deasertion)23Figure 17.Invalid long push24Figure 21.Undervoltage detected for $Figure 23.Supply current vs. temperature, normal state.24Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 28.Supply current vs. temperature, VLYE = 3.6 V.29Figure 29.Debounce period vs. supply voltage, normal state29Pigure 20.29292920202020$
Figure 7.Successful power-up on STM6600 (PE released prior to $T_{ON BLANK}$ expiration)14Figure 8.Successful power-up on STM6600 ($T_{ON BLANK}$ expires prior to PE release)15Figure 9.Unsuccessful power-up on STM6600 (PE released prior to $T_{ON BLANK}$)16Figure 10.Unsuccessful power-up on STM6600 ($T_{ON BLANK}$ expires prior to PE release)17Figure 11.Successful power-up on STM660119Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM6601 with voltage dropout20Figure 14.PE interrupt.21Figure 15.Long push, FE pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output voltage vs. output low current, T_A = 25°C33Figure 33.Reference output voltage vs. long current, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. supply voltage, normal, T_A = 25°C33Figure 35.Reference output voltage vs. loutput low current, T_A</t_{srd}<></t_{srd}<>
Figure 7.Successful power-up on STM6600 (PE released prior to $t_{ON \ BLANK}$ expiration)14Figure 8.Successful power-up on STM6600 ($t_{ON \ BLANK}$ expires prior to PE release)15Figure 9.Unsuccessful power-up on STM6600 ($PE \ released prior to t_{ON \ BLANK})16Figure 10.Unsuccessful power-up on STM6600(t_{ON \ BLANK} expires prior to PE release)17Figure 11.Successful power-up on STM660119Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM6601 with voltage dropout20Figure 14.PE interrupt21Figure 15.Long push, PE pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)25Figure 20.Undervoltage detected for 26Figure 21.Undervoltage detected for 26Figure 22.PBOUT output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. temperature, VHYST = 200 mV (typ.)30Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output voltage vs. output low current, T_A = 25°C32Figure 33.Reference output voltage vs. long current, VCC = 2.0 V.34Figure 34.Input voltage vs. supply voltage, louT = 1 A, T_A = 25°C$
$ \begin{array}{ccccc} (\overline{PB} \mbox{ relation to } t_{ON \mbox{ BLANK}} \mbox{ expiration}) & \qquad 14 \\ Figure 8. Successful power-up on STM6600 \\ (t_{ON \mbox{ BLANK}} \mbox{ expires prior to } \overline{PB} \mbox{ release}) & \qquad 15 \\ Figure 9. Unsuccessful power-up on STM6600 \\ (\overline{PB} \mbox{ relation to } t_{ON \mbox{ BLANK}}) & \qquad 16 \\ Figure 10. Unsuccessful power-up on STM6601 & \qquad 18 \\ Figure 11. Successful power-up on STM6601 & \qquad 18 \\ Figure 12. Unsuccessful power-up on STM6601 & \qquad 19 \\ Figure 13. Power-up on STM6601 & \qquad 20 \\ Figure 14. \mbox{ PB} \mbox{ nerver} \mbox{ on STM6601} & \qquad 20 \\ Figure 15. \mbox{ Long push}, \overline{PB} \mbox{ presed first} & \qquad 22 \\ Figure 16. \mbox{ Long push}, \overline{SB} \mbox{ presed first} & \qquad 22 \\ Figure 17. \mbox{ Invalid long push} & \qquad 23 \\ Figure 18. \mbox{ Long push} (option with RST \mbox{ assertion}) & \qquad 24 \\ Figure 20. \mbox{ Undervoltage detected for <\mbox{ spn} & \qquad 26 \\ Figure 21. \mbox{ Undervoltage detected for <\mbox{ spn} & \qquad 26 \\ Figure 22. \mbox{ PB} \mbox{ output waveform} & \qquad 27 \\ Figure 23. \mbox{ Supply current vs. temperature, normal state} & \qquad 28 \\ Figure 24. \mbox{ Supply current vs. supply voltage, normal state} & \qquad 28 \\ Figure 25. \mbox{ Supply current vs. supply voltage, standby state} & \qquad 29 \\ Figure 27. \mbox{ Threshold vs. temperature, V}_{H+} = 3.4 V (typ.) & \qquad 30 \\ Figure 28. \mbox{ Threshold vs. temperature, V}_{H+} = 3.4 V (typ.) & \qquad 30 \\ Figure 30. \mbox{ C}_{SRD} \mbox{ charging current vs. temperature, V}_{H+} = 25^{\circ} C & \qquad 32 \\ Figure 31. \mbox{ Output voltage vs. output woltage} & \qquad 31 \\ Figure 31. \mbox{ Output voltage vs. output to wortage - model as a state} & \qquad 32 \\ Figure 33. \mbox{ Output voltage vs. output woltage} & \qquad 31 \\ Figure 31. \mbox{ Output voltage vs. output woltage} & \qquad 31 \\ Figure 31. \mbox{ Output voltage vs. output woltage} & \qquad 31 \\ Figure 32. \mbox{ Output voltage vs. output woltage} & \qquad 32 \\ Figure 33. \mbox{ Output voltage vs. output woltage} & \qquad 33 \\ Figure 34. \mbox{ Input voltage vs. temperature}, V_{CC} = 2.0 \ V, T_{A$
Figure 8.Successful power-up on STM6600 ($t_{ON, BLANK}$ expires prior to \overline{PB} release)15Figure 9.Unsuccessful power-up on STM6600 (\overline{PB} released prior to $t_{ON, BLANK}$)16Figure 10.Unsuccessful power-up on STM6600 (t_{ON_BLANK} expires prior to \overline{PB} release)17Figure 11.Successful power-up on STM660118Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM660120Figure 14.PB interrupt.21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invaid long push24Figure 18.Long push (option with RST assertion)25Figure 20.Undervoltage detected for <lsrd< td="">26Figure 21.Undervoltage detected for <lsrd< td="">26Figure 23.Supply current vs. temperature, normal state.27Figure 24.Supply current vs. temperature, normal state.29Figure 25.Supply current vs. supply voltage, normal state.29Figure 27.Threshold hysteresis vs. temperature, V_{MYST} = 200 mV (typ.).30Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V.31Figure 31.Output low voltage vs. output low current, TA = 25°C.32Figure 33.Nutput voltage vs. output low current, TA = 25°C.33Figure 34.Input voltage vs. supply voltage, I_OUT = 1 mA, TA = 25°C.33Figure 35.Reference output voltage vs. temperature, V_{CC} = 2.0 V, TA = 25°C.<td< td=""></td<></lsrd<></lsrd<>
Figure 9.Unsuccessful power-up on STM6600 (PB released prior to $t_{ON, BLANK}$)16Figure 10.Unsuccessful power-up on STM6601 ($t_{ON, BLANK}$ expires prior to PB release)17Figure 11.Successful power-up on STM6601 ($t_{ON, BLANK}$ expires prior to PB release)17Figure 12.Unsuccessful power-up on STM6601 ($t_{ON, BLANK}$)18Figure 13.Power-up on STM6601 ($t_{ON, BLANK}$)20Figure 14.PB interrupt.21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invaid long push23Figure 19.Long push (option with RST assertion).24Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, normal state.29Figure 25.Supply current vs. supply voltage, standby state29Figure 26.Supply current vs. temperature, V_{CC} = 3.6 V.30Figure 31.Output low voltage vs. output low current, TA = 25°C.32Figure 33.Output voltage vs. output high current, TA = 25°C.32Figure 34.Input voltage vs. load current, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V_{CC} = 2.0 V.34<</t_{srd}<></t_{srd}<>
Figure 9.Unsuccessful power-up on STM6600 (PB released prior to $t_{ON, BLANK}$)16Figure 10.Unsuccessful power-up on STM6601 ($t_{ON, BLANK}$ expires prior to PB release)17Figure 11.Successful power-up on STM6601 ($t_{ON, BLANK}$ expires prior to PB release)17Figure 12.Unsuccessful power-up on STM6601 ($t_{ON, BLANK}$)18Figure 13.Power-up on STM6601 ($t_{ON, BLANK}$)20Figure 14.PB interrupt.21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invaid long push23Figure 19.Long push (option with RST assertion).24Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, normal state.29Figure 25.Supply current vs. supply voltage, standby state29Figure 26.Supply current vs. temperature, V_{CC} = 3.6 V.30Figure 31.Output low voltage vs. output low current, TA = 25°C.32Figure 33.Output voltage vs. output high current, TA = 25°C.32Figure 34.Input voltage vs. load current, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V_{CC} = 2.0 V.34<</t_{srd}<></t_{srd}<>
Figure 10.Unsuccessful power-up on STM6600 ($t_{ON_{-}BLANK}$ expires prior to PB release)17Figure 11.Successful power-up on STM660118Figure 12.Unsuccessful power-up on STM660120Figure 13.Power-up on STM660x with voltage dropout20Figure 14.PB interrupt.21Figure 15.Long push, FB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, TA = 25°C32Figure 32.Output high voltage vs. output high current, TA = 25°C33Figure 33.Nutput voltage vs. supply voltage, 10UT = 1 mA, TA = 25°C34Figure 34.Input voltage vs. supply voltage, 10UT = 1 mA, TA = 25°C34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output</t_{srd}<></t_{srd}<>
$ \begin{array}{ccccc} (t_{\text{ON}_BLANK} \mbox{ expires prior to \overline{PB} release}) & \qquad 17 \\ Figure 11. Successful power-up on STM6601 & \qquad 18 \\ Figure 12. Unsuccessful power-up on STM6601 & \qquad 19 \\ Figure 13. Power-up on STM660x with voltage dropout & 20 \\ Figure 14. \overline{PB} interrupt & \qquad 21 \\ Figure 15. Long push, \overline{PB} pressed first & 22 \\ Figure 16. Long push, \overline{SR} pressed first & 22 \\ Figure 17. Invalid long push & \qquad 23 \\ Figure 18. Long push (option with RST assertion) & 24 \\ Figure 20. Undervoltage detected for $
Figure 11.Successful power-up on STM660118Figure 12.Unsuccessful power-up on STM660119Figure 13.Power-up on STM6601 with voltage dropout20Figure 14.PB interrupt21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)23Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, normal state29Figure 25.Supply current vs. temperature, standby state29Figure 26.Supply current vs. temperature, VTH+ = 3.4 V (typ.)30Figure 27.Threshold vs. temperature, VTH+ = 3.4 V (typ.)30Figure 28.Threshold vs. temperature, VCC = 3.6 V31Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, TA = 25 °C32Figure 33.Output voltage vs. temperature, VCC = 2.0 V, TA = 25 °C33Figure 34.Input voltage vs. temperature, VCC = 2.0 V, TA = 25 °C34Figure 35.Reference output voltage vs. temperature, VCC = 2.0 V, TA = 25 °C34Figure 36.Reference output voltage vs. temperature, VCC = 2.0 V, TA = 25 °C34<t< td=""></t<></t_{srd}<></t_{srd}<>
Figure 13.Power-up on STM660x with voltage dropout20Figure 14.PB interrupt21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{LC2} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output high voltage vs. output high current, T_A = 25°C33Figure 33.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V</t_{srd}<></t_{srd}<>
Figure 13.Power-up on STM660x with voltage dropout20Figure 14.PB interrupt21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{LC2} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output high voltage vs. output high current, T_A = 25°C33Figure 33.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V</t_{srd}<></t_{srd}<>
Figure 13.Power-up on STM660x with voltage dropout20Figure 14.PB interrupt21Figure 15.Long push, PB pressed first22Figure 16.Long push, SR pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.PB_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{LC2} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output high voltage vs. output high current, T_A = 25°C33Figure 33.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V</t_{srd}<></t_{srd}<>
Figure 15.Long push, \overline{PB} pressed first22Figure 16.Long push, \overline{SR} pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for >t_{SRD}26Figure 22.\overline{PB}_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, normal state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 33.Output voltage vs. output high current, T_A = 25°C33Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. supply voltage, T_A = 25°C34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C34Figure 36.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34<tr< td=""></tr<></t_{srd}<>
Figure 16.Long push, \overline{SR} pressed first22Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion).24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for <t_{srd}< td="">26Figure 22.\overline{PB}_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, standby state29Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 29.Debounce period vs. supply voltage.31Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output high current, T_A = 25°C32Figure 32.Output high voltage vs. output high current, T_A = 25°C33Figure 33.Output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. lead current, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. supply voltage, T_A = 25°C.34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C.34Figure 36.Reference output voltage vs. lead current, V_{CC} = 2.0 V.34<t< td=""></t<></t_{srd}<></t_{srd}<>
Figure 17.Invalid long push23Figure 18.Long push (option with RST assertion)24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for $26Figure 21.Undervoltage detected for >t_{SRD}26Figure 22.\overline{PB}_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, VTH+ = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, VHYST = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, VCC = 3.6 V31Figure 31.Output low voltage vs. output low current, TA = 25°C32Figure 33.Output voltage vs. supply voltage, IOUT = 1 mA, TA = 25 °C33Figure 34.Input voltage vs. temperature, VCC = 2.0 V.34Figure 35.Reference output voltage vs. load current, VCC = 2.0 V, TA = 25 °C34Figure 36.Reference output voltage vs. supply voltage, TA = 25 °C34Figure 37.Reference output voltage vs. temperature, VCC = 2.0 V, TA = 25 °C34Figure 36.Reference output voltage vs. supply voltage, TA = 25 °C34Figure 37.Reference output voltage vs. supply voltage, TA = 25 °C34Fig$
Figure 18.Long push (option with \overrightarrow{RST} assertion).24Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t<sub>SRD26Figure 21.Undervoltage detected for >t_{SRD}26Figure 22.$\overrightarrow{PB}_{OUT}$ output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 29.Debounce period vs. supply voltage31Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 32.Output high voltage vs. output high current, T_A = 25°C33Figure 33.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V.34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V, T_A = 25°C34Figure 36.Reference output voltage vs. supply voltage, T_A = 25°C34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C34Figure 36.Reference output voltage vs. supply voltage, T_A = 25°C34</t<sub>
Figure 19.Long push (option with enable deassertion)25Figure 20.Undervoltage detected for <t_{srd}< td="">26Figure 21.Undervoltage detected for >t_{SRD}26Figure 22.\overline{PB}_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 mV (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25°C32Figure 33.Output voltage vs. output high current, T_A = 25°C33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, V_{CC} = 2.0 V.34Figure 36.Reference output voltage vs. load current, V_{CC} = 2.0 V.34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C.34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C.34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C.34Figure 37.Reference output voltage vs. supply voltage, T_A = 25°C.34</t_{srd}<>
Figure 20.Undervoltage detected for $26Figure 21.Undervoltage detected for >t_{SRD}26Figure 22.\overline{PB}_{OUT} output waveform27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, V_{TH+} = 3.4 V (typ.)30Figure 28.Threshold hysteresis vs. temperature, V_{HYST} = 200 \text{ mV} (typ.)30Figure 30.C_{SRD} charging current vs. temperature, V_{CC} = 3.6 V31Figure 31.Output low voltage vs. output low current, T_A = 25^{\circ}C32Figure 33.Output voltage vs. output high current, T_A = 25^{\circ}C33Figure 34.Input voltage vs. temperature, V_{CC} = 2.0 V34Figure 35.Reference output voltage vs. load current, V_{CC} = 2.0 V, T_A = 25^{\circ}C34Figure 37.Reference output voltage vs. supply voltage, T_A = 25^{\circ}C34$
Figure 21.Undervoltage detected for >t_{SRD}26Figure 22. \overline{PB}_{OUT} output waveform .27Figure 23.Supply current vs. temperature, normal state.28Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state.29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, $V_{TH+} = 3.4 V$ (typ.)30Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.)30Figure 29.Debounce period vs. supply voltage.31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$ 33Figure 33.Input voltage vs. temperature.33Figure 34.Input voltage vs. temperature, $V_{CC} = 2.0 V$.34Figure 36.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 34
Figure 22. \overline{PB}_{OUT} output waveform
Figure 22. \overline{PB}_{OUT} output waveform
Figure 24.Supply current vs. temperature, standby state28Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, $V_{TH_+} = 3.4 V$ (typ.)30Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.)30Figure 29.Debounce period vs. supply voltage31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 V$ 31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$ 32Figure 33.Output high voltage vs. output high current, $T_A = 25^{\circ}C$ 33Figure 34.Input voltage vs. temperature, $V_{CC} = 2.0 V$ 34Figure 35.Reference output voltage vs. load current, $V_{CC} = 2.0 V$, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 35
Figure 25.Supply current vs. supply voltage, normal state29Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, $V_{TH+} = 3.4 V$ (typ.)30Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.)30Figure 29.Debounce period vs. supply voltage.31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 V$.31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$.32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$.33Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$.33Figure 34.Input voltage vs. temperature, $V_{CC} = 2.0 V$.34Figure 35.Reference output voltage vs. load current, $V_{CC} = 2.0 V$, $T_A = 25^{\circ}C$.34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$.35
Figure 26.Supply current vs. supply voltage, standby state29Figure 27.Threshold vs. temperature, $V_{TH_+} = 3.4 V$ (typ.)30Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.)30Figure 29.Debounce period vs. supply voltage31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 V$ 31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$ 32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$ 33Figure 34.Input voltage vs. temperature33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 V$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 V$, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 35
Figure 27.Threshold vs. temperature, $V_{TH_+} = 3.4 \text{ V}$ (typ.)30Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.)30Figure 29.Debounce period vs. supply voltage.31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 \text{ V}$ 31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$ 32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$ 33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$.34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 35
Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.).30Figure 29.Debounce period vs. supply voltage.31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 \text{ V}$.31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$.32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$.32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$.33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$.34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C$.34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$.35
Figure 28.Threshold hysteresis vs. temperature, $V_{HYST} = 200 \text{ mV}$ (typ.).30Figure 29.Debounce period vs. supply voltage.31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 \text{ V}$.31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$.32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$.32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$.33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$.34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C$.34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$.35
Figure 29.Debounce period vs. supply voltage31Figure 30. C_{SRD} charging current vs. temperature, $V_{CC} = 3.6 \text{ V}$ 31Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C$ 32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C$ 33Figure 34.Input voltage vs. temperature33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C$ 35
Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C.$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C.$ 32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C.$ 33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}.$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C.$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C.$ 35
Figure 31.Output low voltage vs. output low current, $T_A = 25^{\circ}C.$ 32Figure 32.Output high voltage vs. output high current, $T_A = 25^{\circ}C.$ 32Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25^{\circ}C.$ 33Figure 34.Input voltage vs. temperature.33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}.$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25^{\circ}C.$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25^{\circ}C.$ 35
Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25 ^{\circ}\text{C}$ 33Figure 34.Input voltage vs. temperature33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25 ^{\circ}\text{C}$ 35
Figure 33.Output voltage vs. supply voltage, $I_{OUT} = 1 \text{ mA}$, $T_A = 25 ^{\circ}\text{C}$ 33Figure 34.Input voltage vs. temperature33Figure 35.Reference output voltage vs. temperature, $V_{CC} = 2.0 \text{ V}$ 34Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25 ^{\circ}\text{C}$ 35
Figure 34.Input voltage vs. temperature
Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25 ^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25 ^{\circ}C$ 35
Figure 36.Reference output voltage vs. load current, $V_{CC} = 2.0 \text{ V}$, $T_A = 25 ^{\circ}C$ 34Figure 37.Reference output voltage vs. supply voltage, $T_A = 25 ^{\circ}C$ 35
Figure 37. Reference output voltage vs. supply voltage, $T_A = 25 \degree C$
Figure 38 Beference startup $I_{} = 15 \text{ uF} \text{ T}_{-} = 25 \text{ °C}$
Γ_{1} your ob. The definition static provide the static provided and $\Gamma_{1} = 10 \mu r$, $\Gamma_{2} = 20 O \dots \dots \dots \dots \dots \dots \dots \dots \dots$
Figure 39. Reference response to steps on supply voltage, $I_{REF} = 15 \mu A$, $T_A = 25 \degree C \dots 36$
Figure 40. Reference response to steps in load current, $V_{CC} = 3.6 \text{ V}$, $T_A = 25 \text{ °C} \dots 37$
Figure 41. TDFN12 (2 x 3 mm) package outline
Figure 41.TDFN12 (2 x 3 mm) package outline43Figure 42.TDFN12 (2 x 3 mm) recommended footprint44


1 Description

The STM6600-01 devices monitor the state of connected push-button(s) as well as sufficient supply voltage. An enable output controls power for the application through the MOSFET transistor, DC-DC converter, regulator, etc. If the supply voltage is above a precise voltage threshold, the enable output can be asserted by a simple press of the button. Factory-selectable supply voltage thresholds are determined by highly accurate and temperature-compensated references. An interrupt is asserted by pressing the push-button during normal operation and can be used to request a system power-down. The interrupt is also asserted if undervoltage is detected. By a long push of one button (\overline{PB}) or two buttons (\overline{PB} and \overline{SR}) either a reset is asserted or power for the application is disabled depending on the option used.

The device also offers additional features such as precise 1.5 V voltage reference with very tight accuracy of 1%, separate output indicating undervoltage detection and separate output for distinguishing between interrupt by push-button or undervoltage.

The device consumes very low current of 6 μA during normal operation and only 1 μA current during standby.

The STM6600-01 is available in the TDFN12 package and is offered in several options among features such as selectable threshold, hysteresis, timeouts, output types, etc. (see *Table 8* and *Table 9* for more information).

Figure 1. Application hookup

1. A resistor is required for open drain output type only. A 10 k Ω pull-up is sufficient in most applications.

2. Capacitor C_{REF} is mandatory on V_{REF} output (even if V_{REF} is not used). Capacitor value of 1 µF is recommended.

 For the STM6601 the processor has to confirm the proper power-on during the fixed time period, t_{ON_BLANK}. This failsafe feature prevents the user from turning on the system when there is a faulty power switch or an unresponsive microprocessor.

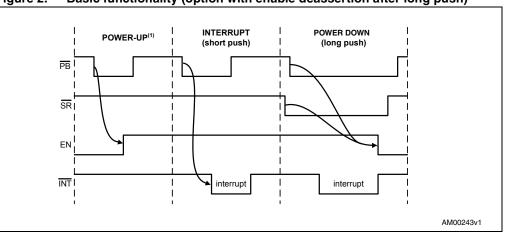
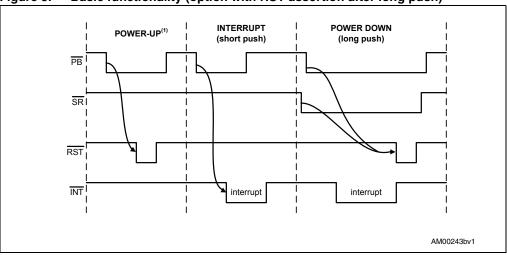



Figure 2. Basic functionality (option with enable deassertion after long push)

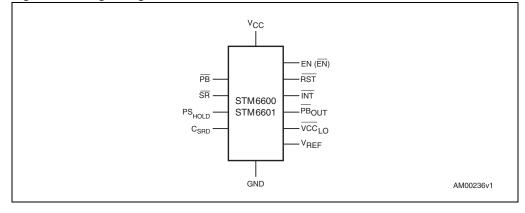
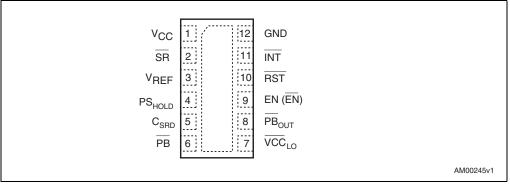

1. For power-up the battery voltage has to be above $V_{TH\scriptscriptstyle +}$ threshold.

Figure 3. Basic functionality (option with RST assertion after long push)

1. For power-up the battery voltage has to be above $V_{TH\scriptscriptstyle +}$ threshold.


6/51

Pin number	Symbol	Function	
1	V _{CC}	Power supply input	
2	SR	Smart Reset [™] button input	
3	V _{REF}	Precise 1.5 V voltage reference	
4	PS _{HOLD}	PS _{HOLD} input	
5	C _{SRD}	Adjustable Smart Reset [™] delay time input	
6	PB	Push-button input	
7	VCCLO	Output for high threshold comparator output (V_{TH+})	
8	PBOUT	Status of PB push-button input	
9	EN or EN	Enable output	
10	RST	Reset output	
11	INT	Interrupt output	
12	GND	D Ground	

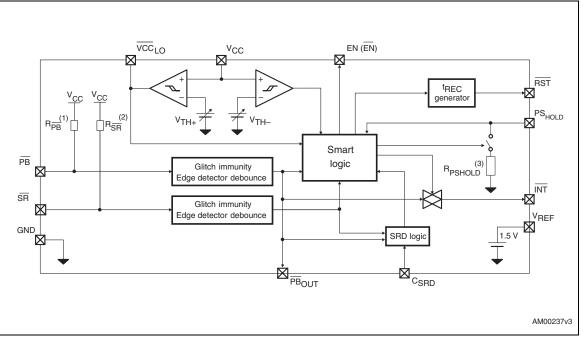

Table 2.Pin descriptions

Figure 5. TDFN12 pin connections

Figure 6. Block diagram

1. Internal pull-up resistor connected to PB input (see Table 5 for precise specifications).

2. Optional internal pull-up resistor connected to SR input (see *Table 5* for precise specifications and *Table 10* for detailed device options).

3. Internal pull-down resistor is connected to PS_{HOLD} input only during startup (see Figure 7, 8, 9, 10, 11, 12, 13, and 18).

2 Pin descriptions

V_{CC} - power supply input

 V_{CC} is monitored during startup and normal operation for sufficient voltage level. Decouple the V_{CC} pin from ground by placing a 0.1 μ F capacitor as close to the device as possible.

SR - Smart Reset[™] button input

This input is equipped with voltage detector with a factory-trimmed threshold and has $\pm 8 \text{ kV}$ HBM ESD protection.

Both \overline{PB} and \overline{SR} buttons have to be pressed and held for t_{SRD} period so the long push is recognized and the reset is asserted (or the enable output is deasserted depending on the option) - see *Figure 15*, *16*, and *17*.

Active low \overline{SR} input is usually connected to GND through the momentary push-button (see *Figure 1*) and it has an optional 100 k Ω pull-up resistor. It is also possible to drive this input using an external device with either open drain (recommended) or push-pull output. Open drain output can be connected in parallel with push-button or other open drain outputs, which is not possible with push-pull output.

V_{REF} - external precise 1.5 V voltage reference

This 1.5 V voltage reference is specified with very tight accuracy of 1% (see *Table 5*). It has proper output voltage as soon as the reset output is deasserted (i.e. after t_{REC} expires) and it is disabled when the device enters standby mode. A mandatory capacitor needs to be connected to V_{REF} output (even if V_{REF} is not used). Capacitor value of 1 μ F is recommended.

PS_{HOLD} input

This input is equipped with a voltage detector with a factory-trimmed threshold. It is used to confirm correct power-up of the device (if EN or \overline{EN} is not asserted) or to initiate a shutdown (if EN or \overline{EN} is asserted).

Forcing PS_{HOLD} high during power-up confirms the proper start of the application and keeps enable output asserted. Because most processors have outputs in high-Z state before initialization, an internal pull-down resistor is connected to PS_{HOLD} input during startup (see *Figure 7, 8, 9, 10, 11, 12, 13*, and *18*).

Forcing the PS_{HOLD} signal low during normal operation deasserts the enable output (see *Figure 14*). Input voltage on this pin is compared to an accurate voltage reference.

C_{SRD} - Smart Reset[™]delay time input

A capacitor to ground determines the additional time (t_{SRD}) that \overline{PB} with \overline{SR} must be pressed and held before a long push is recognized. The connected C_{SRD} capacitor is charged with I_{SRD} current. Additional Smart ResetTM delay time t_{SRD} ends when voltage on the C_{SRD} capacitor reaches the V_{SRD} voltage threshold. It is recommended to use a low ESR capacitor (e.g. ceramic). If the capacitor is not used, leave the C_{SRD} pin open. If no capacitor is connected, there is no t_{SRD} and a long push is recognized right after $t_{\overline{INT}}$ Min expires (see *Figure 18* and *19*).

PB - power ON switch

This input is equipped with a voltage detector with a factory-trimmed threshold and has \pm 8 kV HBM ESD protection.

When the \overline{PB} button is pressed and held, the battery voltage is detected and EN (or \overline{EN}) is asserted if the battery voltage is above the threshold V_{TH+} during the whole t_{DEBOUNCE} period (see *Figure 13*).

A short push of the push-button during normal operation can initiate an interrupt through debounced \overline{INT} output (see *Figure 14*) and a long push of \overline{PB} and \overline{SR} simultaneously can either assert reset output \overline{RST} (see *Figure 18*) or deassert the EN or \overline{EN} output (see *Figure 19*) based on the option used.

Note: A switch to GND must be connected to this input (e.g. mechanical push-button, open drain output of external circuitry, etc.), see Figure 1. This ensures a proper startup signal on \overline{PB} (i.e. a transition from full V_{CC} below specified V_{IL}). \overline{PB} input has an internal 100 k Ω pull-up resistor connected.

VCC_{LO} - high threshold detection output

During power-up, \overline{VCC}_{LO} is low when V_{CC} supply voltage is below the V_{TH+} threshold. After successful power-up (i.e. during normal operation) \overline{VCC}_{LO} is low anytime undervoltage is detected (see *Figure 13*).

Output type is active low and open drain by default. Open drain output type requires a pullup resistor. A 10 k Ω is sufficient in most applications.

 $\overline{\text{VCC}}_{\text{LO}}$ is floating when STM660x is in standby mode.

PB_{OUT} - **PB** input state

If the push-button \overline{PB} is pressed, the pin stays low during the $t_{DEBOUNCE}$ time period. If \overline{PB} is asserted for the entire $t_{DEBOUNCE}$ period, \overline{PB}_{OUT} will then stay low for at least $t_{\overline{INT}_Min}$. If \overline{PB} is asserted after $t_{\overline{INT}_Min}$ expires, \overline{PB}_{OUT} will return high as soon as \overline{PB} is deasserted (see *Figure 22*). \overline{PB}_{OUT} ignores \overline{PB} assertion during an undervoltage condition. At startup on the STM6601 \overline{PB}_{OUT} will respond only to the first \overline{PB} assertion and any other assertion will be ignored until t_{ON_BLANK} expires. This output is active low and open drain by default. Open drain output type requires a pull-up resistor. A 10 k Ω is sufficient in most applications.

EN or EN - enable output

This output is intended to enable system power (see *Figure 1*). EN is asserted **high** after a valid turn-on event has been detected and confirmed (i.e. push-button has been pressed and held for $t_{DEBOUNCE}$ or more and $V_{CC} > V_{TH+}$ voltage level has been detected - see *Figure 13*). EN is released **low** if any of the conditions below occur:

- a) the push-button is released before PS_{HOLD} is driven high (valid for STM6600, see *Figure 9*) or t_{ON_BLANK} expires before PS_{HOLD} is driven high during startup (valid for both STM6600 and STM6601, see *Figure 10* and *12*).
- b) PS_{HOLD} is driven low during normal operation (see *Figure 14*).
- c) an undervoltage condition is detected for more than t_{SRD} + t_{INT_Min} + t_{DEBOUNCE} (see *Figure 21*).
- a long push of the buttons is detected (only for the device with option "EN deasserted by long push" see *Figure 19*) or PS_{HOLD} is not driven high during t_{ON_BLANK} after a long push of the buttons (only for the device with option "RST asserted by long push" see *Figure 18*).

Described logic levels are inverted in case of EN output. Output type is push-pull by default.

RST - reset output

This output pulls low for t_{REC}:

- a) during startup. PB has been pressed (falling edge on the PB detected) and held for at least t_{DEBOUNCE} and V_{CC} > V_{TH+} (see *Figure 7, 8, 9, 10, 11, 12* and *13* for more details).
- b) after long push detection (valid only for the device with option "RST asserted by long push"). PB has been pressed (falling edge on the PB detected) and held for more than t_{DEBOUNCE} + t_{SRD} (additional Smart Reset[™] delay time can be adjusted by the external capacitor C_{SRD}) see *Figure 18*.

Output type is active low and open drain by default. Open drain output type requires a pullup resistor. A 10 k Ω is sufficient in most applications.

INT - interrupt output

While the system is under normal operation (PS_{HOLD} is driven high, power for application is asserted), the \overline{INT} is driven **low** if:

- a) V_{CC} falls below V_{TH}- threshold (i.e. undervoltage is detected see *Figure 20* and *21*).
- b) the falling edge on the PB is detected and the push-button is held for t_{DEBOUNCE} or more. INT is driven low after t_{DEBOUNCE} and stays low as long as PB is held. The INT signal is held high during power-up.

The state of the \overline{PB}_{OUT} output can be used to determine if the interrupt was caused by either the assertion of the \overline{PB} input, or was due to the detection of an undervoltage condition on V_{CC}.

INT output is asserted low for at least tint Min.

Output type is active low and open drain by default. Open drain output type requires a pullup resistor. A 10 k Ω is sufficient in most applications.

GND - ground

3 Operation

The STM6600-STM6601 simplified smart push-button on/off controller with Smart Reset[™] and power-on lockout enables and disables power for the application depending on push-button states, signals from the processor, and battery voltage.

Power-on

Because most of the processors have outputs in high-Z state before initialization, an internal pull-down resistor is connected to PS_{HOLD} input during startup (see *Figure 7, 8, 9, 10, 11, 12, 13*, and *18*).

To power up the device the push-button \overline{PB} has to be pressed for at least $t_{DEBOUNCE}$ and V_{CC} has to be above V_{TH+} for the whole $t_{DEBOUNCE}$ period. If the battery voltage drops below V_{TH+} during the $t_{DEBOUNCE}$, the counter is reset and starts to count again when $V_{CC} > V_{TH+}$ (see *Figure 13*). After $t_{DEBOUNCE}$ the enable signal is asserted (EN goes high, EN goes low), reset output \overline{RST} is asserted for t_{REC} and then the startup routine is performed by the processor. During initialization, the processor sets the PS_{HOLD} signal high.

On the STM6600 the PS_{HOLD} signal has to be set high prior to push-button release and t_{ON_BLANK} expiration, otherwise the enable signal is deasserted (EN goes low, EN goes high) - see *Figure 7, 8, 9*, and *10*. The time up to push-button release represents the maximum time allowed for the system to power up and initialize the circuits driving the PS_{HOLD} input. If the PS_{HOLD} signal is low at push-button release, the enable output is deasserted immediately, thus turning off the system power. If t_{ON_BLANK} expires prior to push-button release, the PS_{HOLD} state is checked at its expiration. This safety feature disables the power and prevents discharging the battery if the push-button is stuck or it is held for an unreasonable period of time and the application is not responding (see *Figure 8* and *10*). PB status, INT status and V_{CC} undervoltage detection are not monitored until power-up is completed.

On the STM6601 the PS_{HOLD} signal has to be set high before t_{ON_BLANK} expires, otherwise the enable signal is deasserted - see *Figure 11* and *12*. In this case the t_{ON_BLANK} period is the maximum time allowed for the power switch and processor to perform the proper poweron. If the PS_{HOLD} signal is low at the end of the blanking period, the enable output is released immediately, thus turning off the system power. PB status, INT status and V_{CC} undervoltage detection are not monitored during the entire t_{ON_BLANK} period. This failsafe feature prevents the user from turning on the system when there is a faulty power switch or an unresponsive microprocessor.

Push-button interrupt

If the device works under normal operation (i.e. PS_{HOLD} is high) and the push-button \overline{PB} is pressed for more than $t_{DEBOUNCE}$, a negative pulse with minimum $t_{\overline{INT}-Min}$ width is generated on the \overline{INT} output. By connecting \overline{INT} to the processor interrupt input (\overline{INT} or \overline{NMI}) a safeguard routine can be performed and the power can be shut down by setting PS_{HOLD} low - see *Figure 14*.

Forced power-down mode

The PS_{HOLD} output can be forced low anytime during normal operation by the processor and can deassert the enable signal - see *Figure 14*.

Undervoltage detection

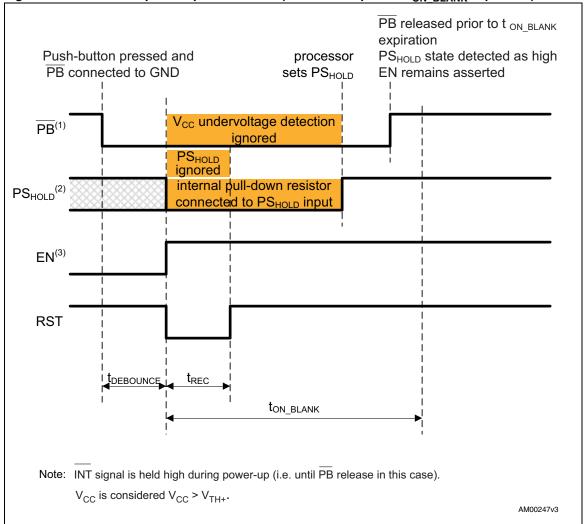
If V_{CC} voltage drops below V_{TH} voltage threshold during normal operation, the INT output is driven low (see *Figure 20* and *Figure 21*).

If an undervoltage condition is detected for $t_{\text{DEBOUNCE}} + t_{\text{INT}}$ and t_{SRD} , the enable output is deasserted (see *Figure 21*).

Hardware reset or power-down while system not responding

If the system is not responding and the system hangs, the \overline{PB} and \overline{SR} push-buttons can be pressed simultaneously longer than $t_{DEBOUNCE} + t_{\overline{INT}}$ Min + t_{SRD} , and then

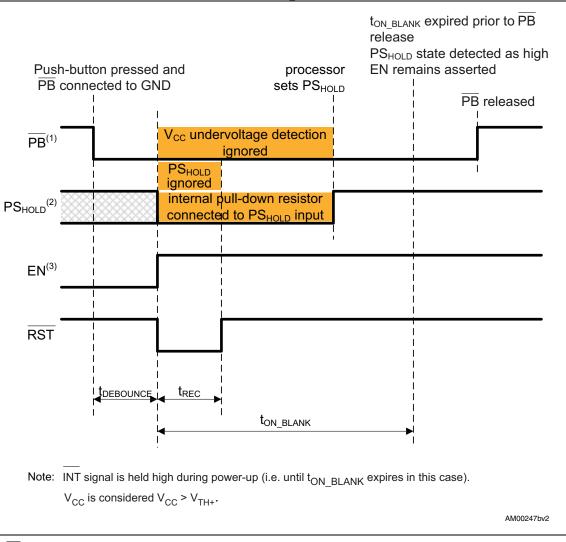
- either the reset output <u>RST</u> is asserted for t_{REC} and the processor is reset (valid only for the device with option "<u>RST</u> asserted by long push") – see *Figure 18*
- b) or the power is disabled by EN or EN signal (valid only for the device with option "EN deasserted by long push") – see *Figure 19*


The t_{SRD} is set by the external capacitor connected to the C_{SRD} pin.

Standby

If the enable output is deasserted (i.e. EN is low or \overline{EN} is high), the STM660x device enters standby mode with low current consumption (see *Table 5*). In standby mode \overline{PB} input is only monitored for the falling edge. The external 1.5 V voltage reference is also disabled in standby mode.

4 Waveforms


Figure 7. Successful power-up on STM6600 (PB released prior to t_{ON BLANK} expiration)

1. $\overline{\text{PB}}$ detection on falling and rising edges.

2. Internal pull-down resistor 300 k Ω is connected to PS_{HOLD} input during power-up.

3. EN signal is high even after \overline{PB} release, because processor sets PS_{HOLD} signal high before \overline{PB} is released.

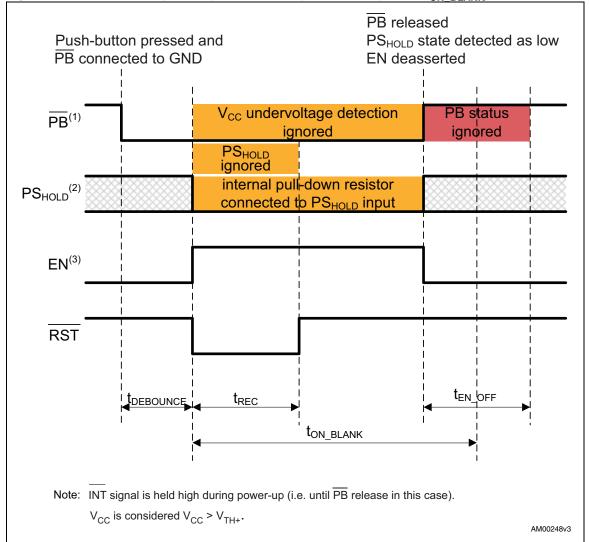
Figure 8. Successful power-up on STM6600 (t_{ON BLANK} expires prior to PB release)

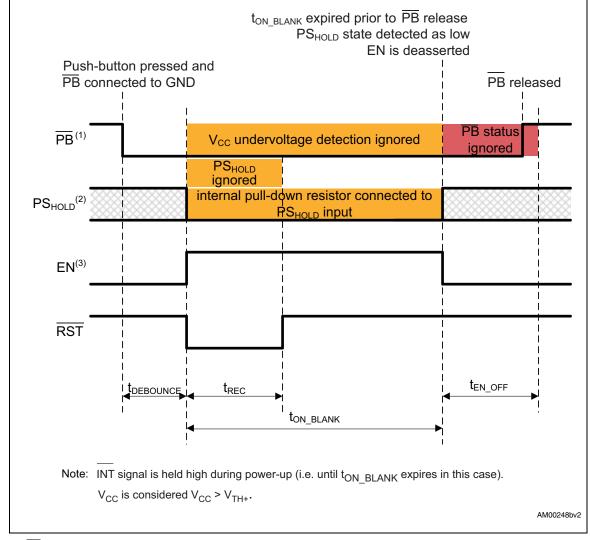
1. \overline{PB} detection on falling and rising edges.

2. Internal pull-down resistor 300 $k\Omega$ is connected to $\mathsf{PS}_{\mathsf{HOLD}}$ input during power-up.

3. t_{ON_BLANK} expires prior to \overline{PB} release so PS_{HOLD} is checked at its expiration.

Waveforms

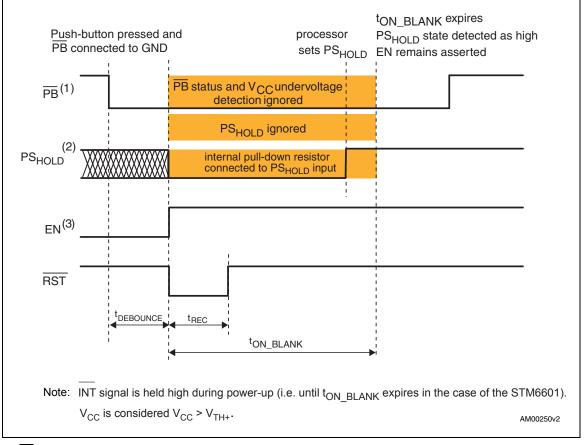



Figure 9. Unsuccessful power-up on STM6600 (PB released prior to t_{ON BLANK})

1. PB detection on falling and rising edges.

2. Internal pull-down resistor 300 k Ω is connected to PS_{HOLD} input during power-up.

3. EN signal goes low with $\overline{\text{PB}}$ release, because processor did not force PS_{HOLD} signal high.


Figure 10. Unsuccessful power-up on STM6600 (t_{ON_BLANK} expires prior to PB release)

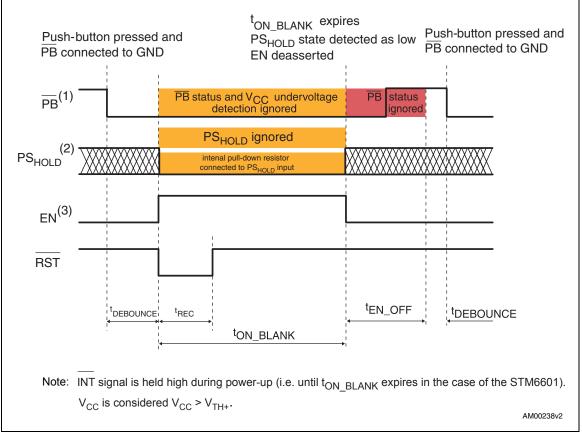
1. \overline{PB} detection on falling and rising edges.

3. t_{ON_BLANK} expires prior to \overline{PB} release so PS_{HOLD} is checked at its expiration.

^{2.} Internal pull-down resistor 300 $k\Omega$ is connected to PS_{HOLD} input during power-up.

Figure 11. Successful power-up on STM6601

1. PB detection on falling edge.


2. Internal pull-down resistor 300 k Ω is connected to PS_{HOLD} input during power-up.

 PS_{HOLD} signal is ignored during t_{ON_BLANK}. When t_{ON_BLANK} expires, the level of the PS_{HOLD} signal is high therefore the EN signal remains asserted.

18/51

1. PB detection on falling edge.

2. Internal pull-down resistor 300 k Ω is connected to $\mathsf{PS}_{\mathsf{HOLD}}$ input during power-up.

 PS_{HOLD} signal is ignored during t_{ON_BLANK}. When t_{ON_BLANK} expires, the level of the PS_{HOLD} signal is not high therefore the EN signal goes low. Even releasing the PB button after the t_{ON_BLANK} will not prevent this.

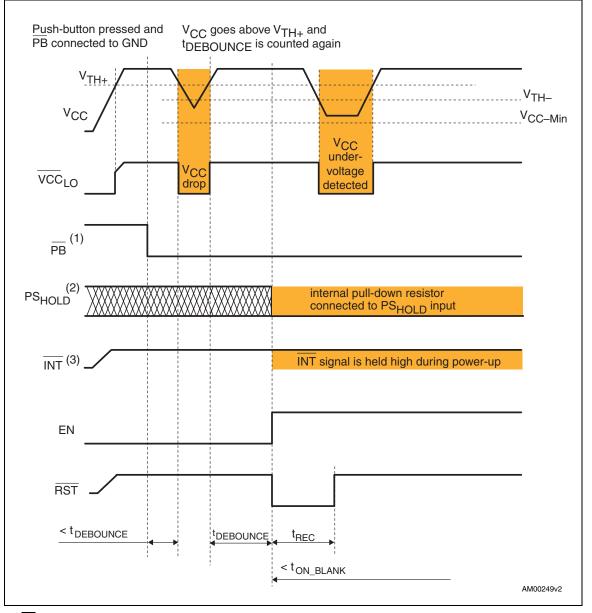
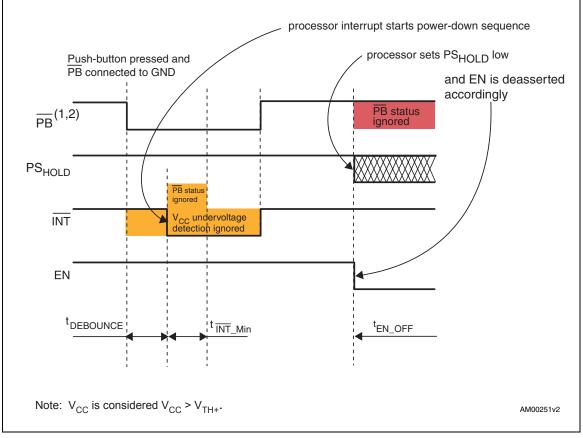
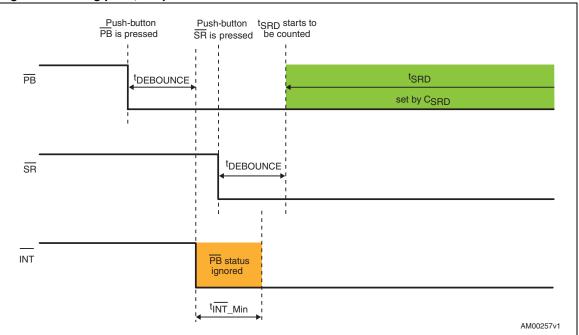


Figure 13. Power-up on STM660x with voltage dropout

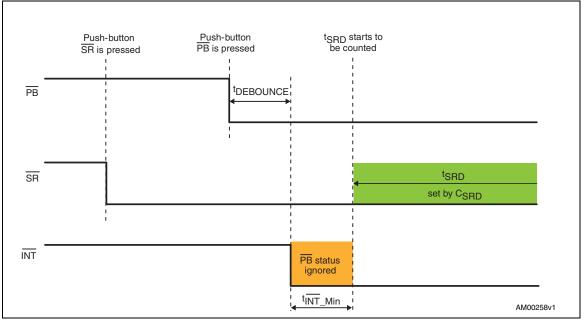

1. \overline{PB} detection on falling and rising edges.

2. Internal pull-down resistor 300 $k\Omega$ is connected to PS_{HOLD} input during power-up.

3. INT signal is held high during power-up.


Figure 14. PB interrupt

1. PB detection on falling edge.


2. $\overline{\text{PB}}$ is released within t_{SRD} and that is why NO reset is asserted and EN is NOT deasserted immediately.

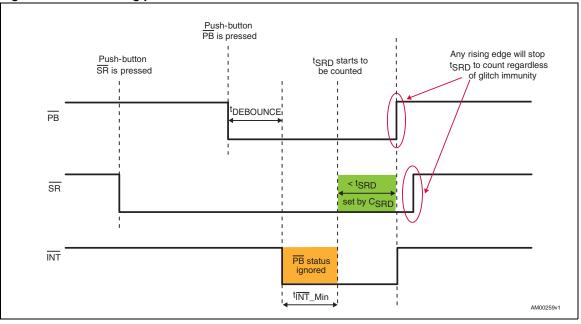

Figure 15. Long push, PB pressed first

Figure 16. Long push, SR pressed first

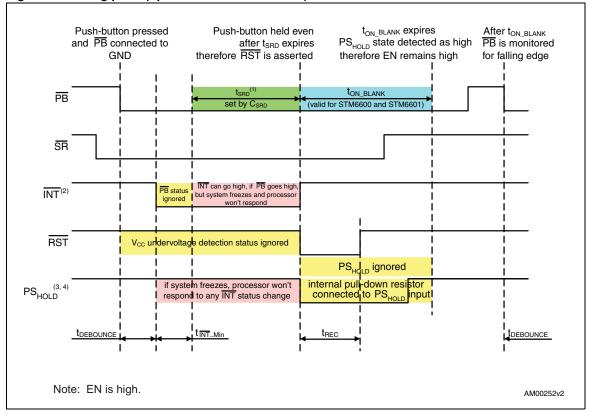


Figure 17. Invalid long push

Figure 18. Long push (option with \overline{RST} assertion)

1. t_{SRD} period is set by external capacitor C_{SRD} .

2. \overline{PB} ignored during $t_{\overline{INT}}$ _Min.

PS_{HOLD} signal is ignored during t_{ON_BLANK}. Its level is checked after t_{ON_BLANK} expires and if it is high the EN signal remains asserted, otherwise EN goes low.

4. Internal pull-down resistor 300 k Ω is connected to PS_{HOLD} input during startup when device is reset.

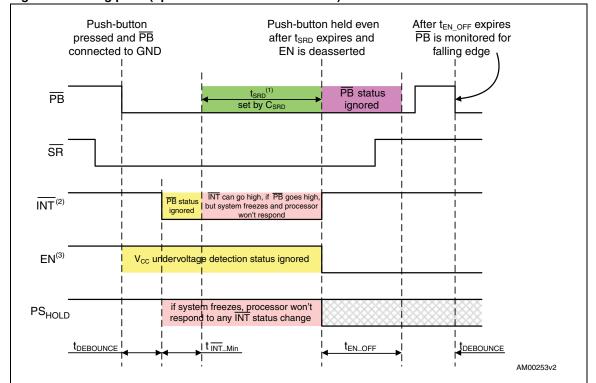


Figure 19. Long push (option with enable deassertion)

1. t_{SRD} period is set by external capacitor C_{SRD} .

2. \overline{PB} ignored during $t_{\overline{INT}_Min}$.

3. After $t_{\mbox{\scriptsize SRD}}$ expires EN is forced low.

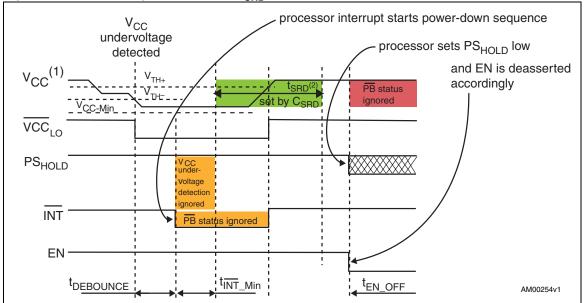
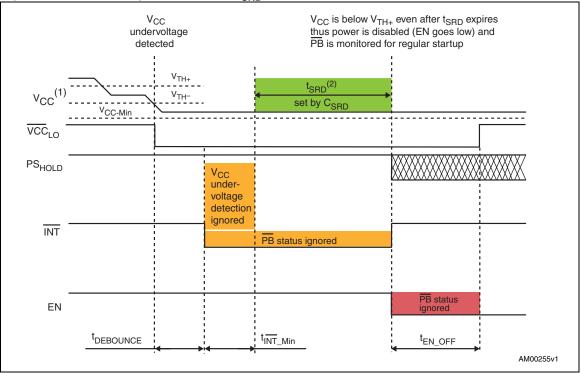
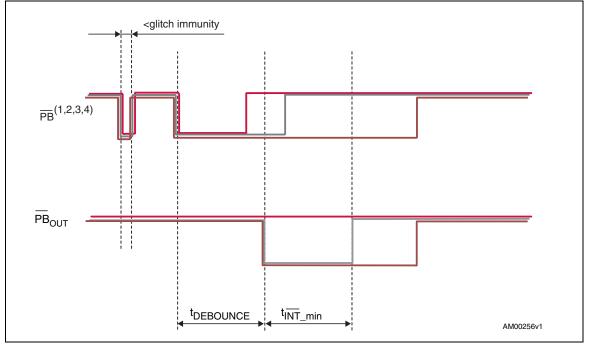



Figure 20. Undervoltage detected for <t SRD

1. V_{CC} goes above V_{TH+} within t_{SRD} thus power is not disabled after t_{SRD} expires.

2. t_{SRD} period is set by external capacitor C_{SRD}.

Figure 21. Undervoltage detected for >t_{SRD}



1. After t_{SRD} expires V_{CC} is still insufficient (below V_{TH+}) thus power is disabled (EN goes low or \overline{EN} goes high).

2. t_{SRD} period is set by external capacitor C_{SRD} .

1. Pulses on \overline{PB} shorter than glitch immunity are ignored.

2. Pulses on \overline{PB} shorter than t_{DEBOUNCE} are not recognized by $\overline{PB}_{\text{OUT}}.$

3. Minimum pulse width on $\overline{\text{PB}}_{\text{OUT}}$ is $t_{\overline{\text{INT}}_{-}\text{Min}}$.

4. If push-button is held longer than $t_{DEBOUNCE} + t_{\overline{INT}_Min}$, \overline{PB}_{OUT} goes high when the push-button is released.

5 Typical operating characteristics

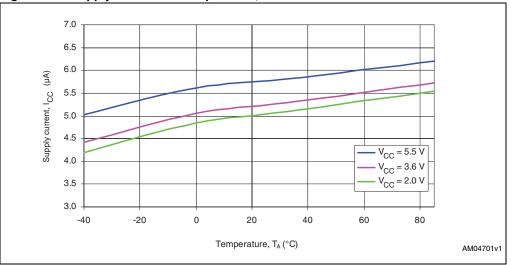
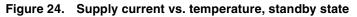
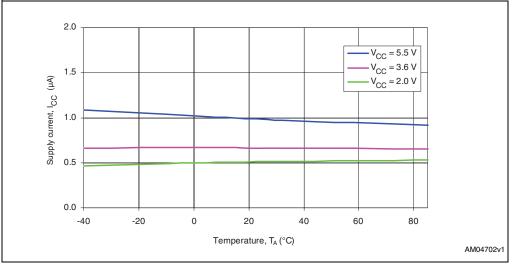




Figure 23. Supply current vs. temperature, normal state

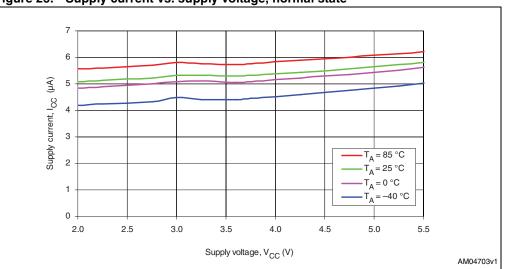
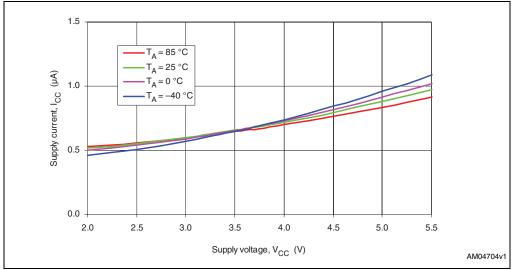
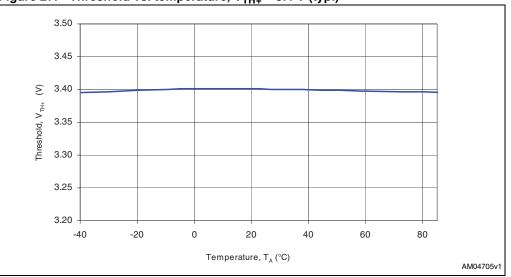
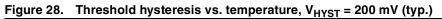
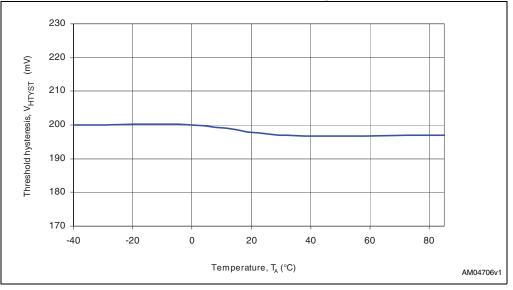
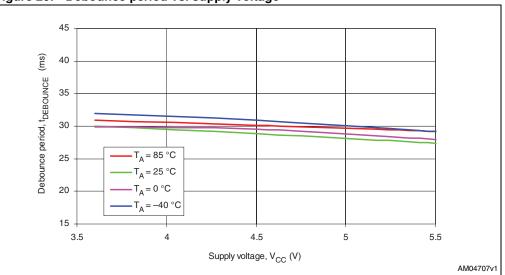
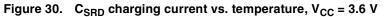
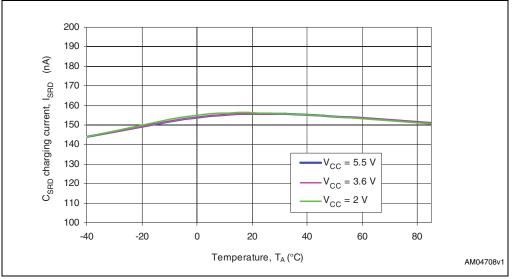



Figure 25. Supply current vs. supply voltage, normal state


Figure 27. Threshold vs. temperature, $V_{TH+} = 3.4 V$ (typ.)




30/51

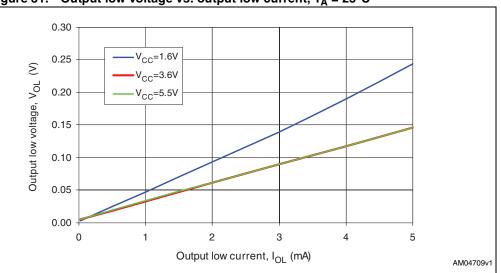
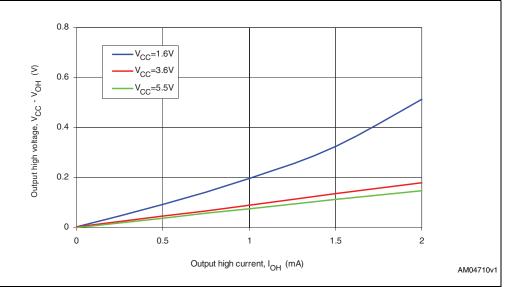



Figure 31. Output low voltage vs. output low current, $T_A = 25^{\circ}C$

Note:

Characteristics valid for all the outputs (EN, \overline{EN} , \overline{RST} , \overline{INT} , \overline{PB}_{OUT} and \overline{VCC}_{LO}).

Figure 32. Output high voltage vs. output high current, $T_A = 25^{\circ}C$

Characteristics valid for EN and EN outputs.

32/51

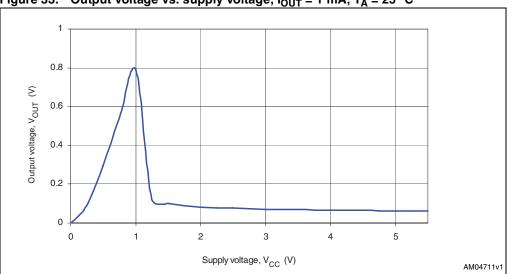


Figure 33. Output voltage vs. supply voltage, I_{OUT} = 1 mA, T_A = 25 °C

Characteristics valid for all the outputs (EN, \overline{EN} , \overline{RST} , \overline{INT} , \overline{PB}_{OUT} and \overline{VCC}_{LO}).

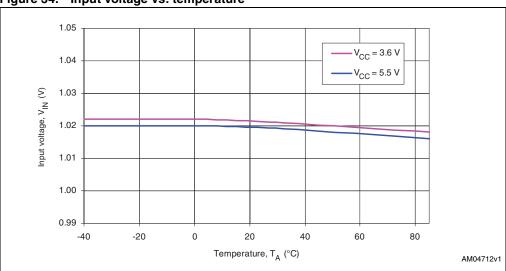


Figure 34. Input voltage vs. temperature

Characteristics valid for \overline{PB} , \overline{SR} and PS_{HOLD} inputs.

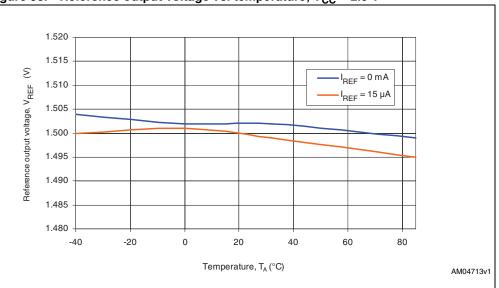


Figure 35. Reference output voltage vs. temperature, $V_{CC} = 2.0 V$

Note:

1 μ F capacitor is connected to the V_{REF} pin.

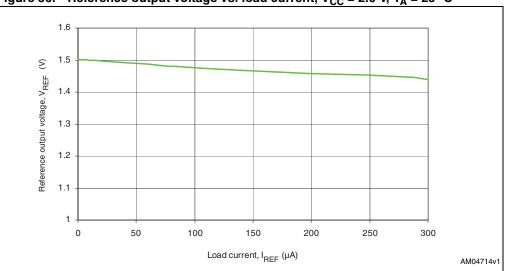


Figure 36. Reference output voltage vs. load current, V_{CC} = 2.0 V, T_A = 25 °C

Note:

1 μ F capacitor is connected to the V_{REF} pin.

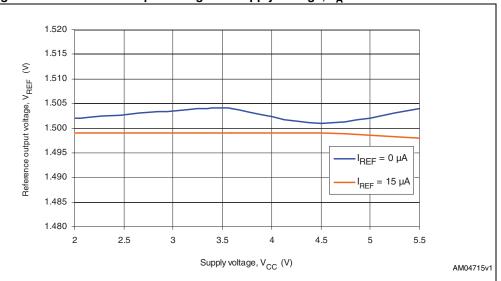
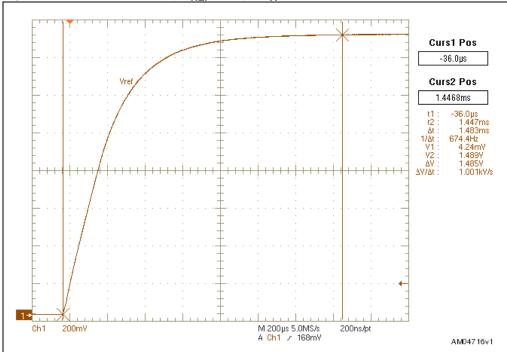



Figure 37. Reference output voltage vs. supply voltage, T_A = 25 °C

Note:

1 μ F capacitor is connected to the V_{REF} pin.

Figure 38. Reference startup, $I_{REF} = 15 \ \mu F$, $T_A = 25 \ ^{\circ}C$

Note:

1 μ F capacitor is connected to the V_{REF} pin.

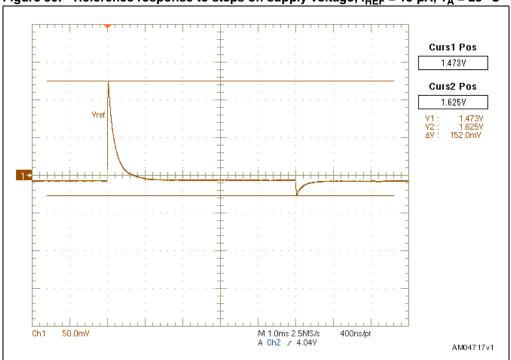


Figure 39. Reference response to steps on supply voltage, $I_{REF} = 15 \mu A$, $T_A = 25 \degree C$

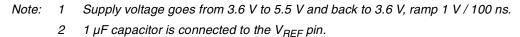


Figure 40. Reference response to steps in load current, V_{CC} = 3.6 V, T_A = 25 °C

- Note: 1 Supply voltage goes from 0 μ A to 15 μ A and back to 0 μ A, ramp 1 μ A / 100 ns.
 - 2 1 μ F capacitor is connected to the V_{REF} pin.

6 Maximum ratings

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Symbol	Parameter	Min.	Max.	Unit	Remarks
V _{CC}	Input supply voltage	-0.3	+7.0	V	
	Input voltages on \overline{PB} , \overline{SR} , PS_{HOLD} and C_{SRD}	-0.3	V _{CC} + 0.3	V	
	Output voltages on EN (\overline{EN}), \overline{RST} and \overline{INT}	-0.3	V _{CC} + 0.3	V	
V.	Electrostatic protection	-2 +2 kV		kV	Human body model (all pins)
V _{ESD}		-8	+8	kV	Human body model (PB and SR)
V _{ESD}	Electrostatic protection	-1000	+1000	V	Charged device model
V _{ESD}	Electrostatic protection	-200	+200	V	Machine model
V _{ESD}	Point discharge on \overline{PB} and \overline{SR} inputs	-8	+8	kV	IEC61000-4-2
V _{ESD}	Air discharge on \overline{PB} and \overline{SR} inputs	-15	+15	kV	IEC61000-4-2
T _A	Operating ambient temperature	-40	+85	°C	
T _{STG}	Storage temperature	-45	+150	°C	
T _{SLD} ⁽¹⁾	Lead solder temperature for 10 seconds		+260	°C	
θ_{JA}	Thermal resistance (junction to ambient)		+132.4	°C/W	

Table 3.Absolute maximum ratings

1. Reflow at peak temperature of 260°C. The time above 255°C must not exceed 30 seconds.

38/51

7 DC and AC characteristics

This section summarizes the operating measurement conditions and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics tables that follow are derived from tests performed under the measurement conditions summarized in *Table 4*. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Table 4. Operating and AC measurement conditions

Parameter	Condition	Unit
V _{CC} supply voltage	1.6 to 5.5	V
Ambient operating temperature (T _A)	-40 to 85	°C
Input rise and fall times	≤ 5	ns

Table 5. DC and AC characteristics

Symbol	Parameter	Test condition ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Unit
V _{CC}	Supply voltage		1.6		5.5	V
		V _{CC} = 3.6 V, no load		6	8	μA
I _{CC}	Supply current	Standby mode, enable deasserted, V _{CC} = 3.6 V			1	μA
			2.40	2.50	2.60	
	Power-on lockout voltage (see <i>Table 10</i> for detailed listing)		3.00	3.10	3.20	
V_{TH+}			3.20	3.30	3.40	V
			3.29	3.40	3.51	
			3.39	3.50	3.61	-
V	Threshold hysteresis (see			200		mV
V _{HYST}	<i>Table 10</i> for detailed listing)			500		- 111V
V _{TH-}	Forced power-off voltage (see <i>Table 10</i> for detailed listing)			V _{TH+} – V _{HYST}		v
t _{TH-}	Undervoltage detection to INT delay	$V_{CC} \ge 2.0 V$	20	32	44	ms
	Blanking period (see		1.4	2.2	3.0	
t _{ON_BLANK}	Table 10 for detailed		5.6	8.8	12.0	s
	listing) ⁽³⁾		11.2	17.6	24.0	
	RST assertion to EN (EN) assertion delay during power-up	V _{CC} = 3.6 V		100		ns

Symbol	Parameter	Test condition ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Unit
PB	1	1			L	1
V _{IL}	Input low voltage	$V_{CC} \ge 2.0$ V, enable asserted			0.99	V
V _{IH}	Input high voltage	$V_{CC} \ge 2.0$ V, enable asserted	1.05			V
t _{DEBOUNCE}	Debounce period	$V_{CC} \ge 2.0 V$	20	32	44	ms
R _{PB}	Internal pull-up resistor	V _{CC} = 5.5 V, input asserted	65	100	135	kΩ
SR	L		I			
V _{IL}	Input low voltage				0.99	V
V _{IH}	Input high voltage		1.05			V
t _{DEBOUNCE}	Debounce period		20	32	44	ms
$R_{\overline{SR}}^{(4)}$	Internal pull-up resistor	V _{CC} = 5.5 V, input asserted	65	100	135	kΩ
PB _{OUT}	L					
V _{OL}	Output low voltage	$V_{CC} = 2 \text{ V}, \text{ I}_{SINK} = 1 \text{ mA},$ \overline{PB}_{OUT} asserted			0.3	v
	PB _{OUT} leakage current	V _{PBOUT} = 3 V, PB _{OUT} open drain	-0.1		+0.1	μA
VCCLO			1			
V _{OL}	Output low voltage	$\frac{V_{CC}}{VCC} = 2 \text{ V, } I_{SINK} = 1 \text{ mA},$ VCC _{LO} asserted			0.3	v
	VCC _{LO} leakage current	V _{VCCLO} = 3 V, VCC _{LO} open drain	-0.1		+0.1	μA
PS _{HOLD}	L					
V _{IL}	Input low voltage	$V_{CC} \ge 2.0 V$			0.99	V
V _{IH}	Input high voltage	$V_{CC} \ge 2.0 V$	1.05			V
	Glitch immunity		1	80		μs
	PS _{HOLD} leakage current	V _{PSHOLD} = 0.6 V	-0.1		0.1	μA
	PS _{HOLD} to enable propagation delay				30	μs
R _{PSHOLD}	Pull-down resistor connected internally during power-up	V _{PSHOLD} = 5.5 V	195	300	405	kΩ

Table 5. DC and AC characteristics (continued)

40/51

Symbol	Parameter	Test condition ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
C _{SRD}						
I _{SRD}	C _{SRD} charging current		100	150	200	nA
V _{SRD}	C _{SRD} voltage threshold	V_{CC} = 3.6 V, load on V_{REF} pin 100 k Ω and mandatory 1 μ F capacitor, T _A = 25 °C		1.5		v
t _{SRD}	Additional Smart Reset [™] delay time	External C _{SRD} connected		10		s/μF
EN, EN						<u> </u>
V _{OL}	Output low voltage	$V_{CC} = 2 V$, $I_{SINK} = 1 mA$, enable asserted			0.3	V
V _{OH} ⁽⁵⁾	Output high voltage	$V_{CC} = 2 V, I_{SOURCE} = 1 mA,$ enable asserted	V _{CC} – 0.3			V
t _{EN_OFF} ⁽⁶⁾	enable off to enable on	$V_{CC} \ge 2.0 V$	40	64	88	ms
	EN, EN leakage current	V _{EN} = 2 V, enable open drain	-0.1		+0.1	μA
RST					•	_
V _{OL}	Output low voltage	V _{CC} = 2 V, I _{SINK} = 1 mA, RST asserted			0.3	V
t _{REC}	RST pulse width	$V_{CC} \ge 2.0 V$	240	360	480	ms
	RST leakage current	V _{RST} = 3V	-0.1		+0.1	μA
INT	•	+	••		•	-
V _{OL}	Output low voltage	$V_{CC} = 2 \text{ V}, \text{ I}_{SINK} = 1 \text{ mA},$ INT asserted			0.3	v
t _{INT_Min}	Minimum INT pulse width	$V_{CC} \ge 2.0 V$	20	32	44	ms
	INT leakage current	V _{INT} = 3 V	-0.1		+0.1	μA
V _{REF}			· ·			<u> </u>
V _{REF}	1.5 V voltage reference	V_{CC} = 3.6 V, load on V _{REF} pin 100 k Ω and mandatory 1 µF capacitor, T _A = 25 °C	1.485 -1%	1.5	1.515 +1%	v

Table 5.	DC and AC	characteristics ((continued)	

1. Valid for ambient operating temperature: $T_A = -40$ to 85 °C; $V_{CC} = 1.6$ V to 5.5 V (except where noted).

2. Typical values are at $T_A = +25$ °C.

3. This blanking time allows the processor to start up correctly (see Figure 7, 8, 9, 10, 11, 12).

4. The internal pull-up resistor connected to the SR input is optional (see Table 10 for detailed device options).

5. Valid for push-pull only.

6. Minimal delay between enable off and enable on allows the application to power down properly. PB is ignored during this period.

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

42/51

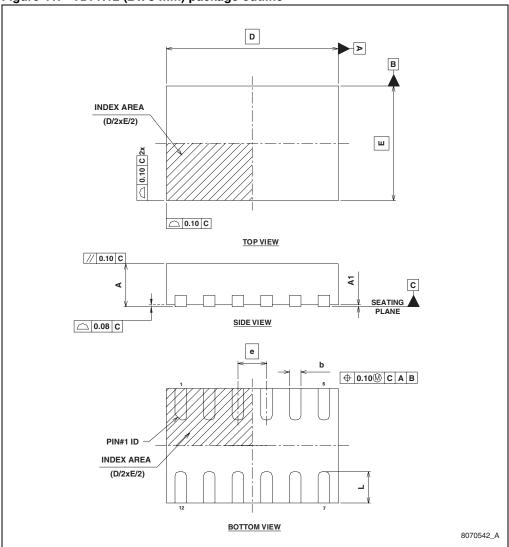


Figure 41. TDFN12 (2 x 3 mm) package outline

Table 6. TDFN12 (2 x 3 mm) package mechanical data

Symbol		mm		inches				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
A	0.70	0.75	0.80	0.028	0.030	0.031		
A1	0.00	0.02	0.05	0.000	0.001	0.002		
b	0.15	0.20	0.25	0.006	0.008	0.010		
D		3.00 BSC			0.118			
E		2.00 BSC			0.079			
е		0.50			0.020			
L	0.45	0.55	0.65	0.018	0.022	0.026		

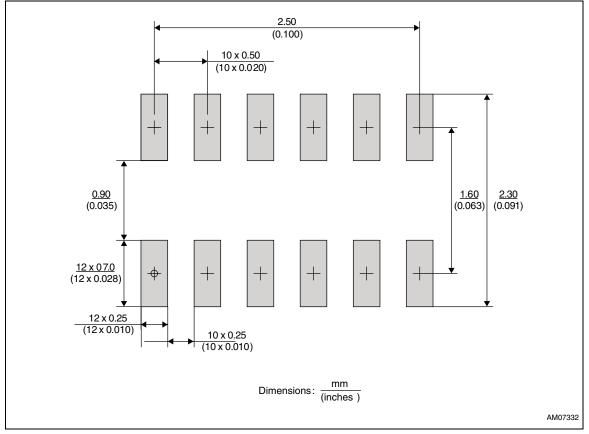
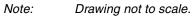



Figure 42. TDFN12 (2 x 3 mm) recommended footprint

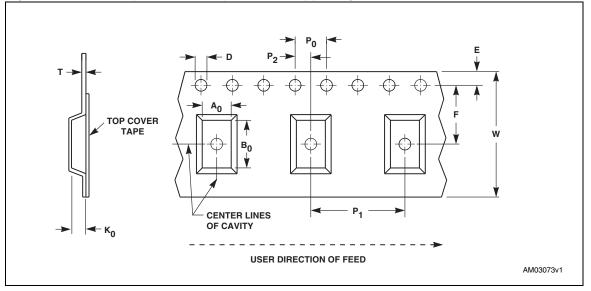


Figure 43. Carrier tape for TDFN12 (2 mm x 3 mm) package

Table 7.	Carrier tape dimensions for TDFN12 (2 mm x 3 mm) package
----------	--

Package	w	D	Е	P ₀	P ₂	F	A ₀	B ₀	K ₀	P ₁	Т	Unit	Bulk Qty.
TDFN12	12.00 ±0.30	1.50 +0.10/ -0.00	1.75 ±0.10	4.00 ±0.10	2.00 ±0.10	5.50 ±0.05	2.30 ±0.10	3.20 ±0.10	1.10 ±0.01	4.00 ±0.10	0.30 ±0.05	mm	3000

9 Part numbering

Table 8. STM6600	ordering information	tion sc	heme						
Example:	STM660	0	F	Q	2	4	DM	6	F
Device type									
STM660									
Startup process									
0: PB must be held low t	until the PS _{HOLD} conf	irmation	1						
Input and output types	<u>(</u> 1)								
A: active high EN output	, long push asserts R	ST, pull	-up on SR						
E: active high EN output	, long push asserts \overline{R}	ST, no i	resistor on	SR					
F: active low $\overline{\text{EN}}$ output,	long push asserts RS	ST, no re	esistor on 3	SR					
G: active high EN output	i, long push deasserts	s EN, no	o resistor c	n SR					
H: active low \overline{EN} output,	long push deasserts	EN, no	resistor or	n SR					
V _{TH+} threshold voltage	<u>(</u> 1)								
A: 2.50 V									
Q: 3.30 V									
S: 3.40 V									
U: 3.50 V									
V _{HYST} voltage hysteres	sis ⁽¹⁾								
2: 200 mV									
5: 500 mV									
t _{ON_BLANK} blanking pe	riod ⁽¹⁾								
2: 1.4 s (min.)									
4: 5.6 s (min.)									
5: 11.2 s (min.)									
Package									
DM: TDFN12									
Temperature range									
6: –40 °C to +85 °C									
Shipping method									
E: ECOPACK [®] package	tubes								

F: ECOPACK[®] package, tape and reel

1. Other options are offered. Minimum order quantities may apply. Please contact local ST sales office for availability.

Example:	STM660 1	G	U	2	в	DM	6	F
Device type								
STM660								
Startup process								
1: PB can be released b	pefore the PS _{HOLD} confirmation	ation						
Input and output types	s ⁽¹⁾							
A: active high EN output	t, long push asserts RST, p	oull-up on SF	Ī					
B: active low EN output	, long push asserts RST , pι	ull-up on SR						
C: active high EN output	it, long push deasserts EN,	pull-up on \overline{S}	R					
D: active low EN output	, long push deasserts EN,	pull-up on S	7					
G: active high EN output	it, long push deasserts EN,	no resistor o	on SR					
V _{TH+} threshold voltage	e ⁽¹⁾							
M: 3.10 V								
Q: 3.30 V								
S: 3.40 V								
U: 3.50 V								
V _{HYST} voltage hystere	sis ⁽¹⁾							
2: 200 mV								
t _{ON_BLANK} blanking pe	eriod ⁽¹⁾							
B: 1.4 s (min.)								
D: 5.6 s (min.)								
Package								
DM: TDFN12								
Temperature range								
6: –40 °C to +85 °C							I	
Shipping method								
E: ECOPACK [®] package	e tubes]

Table 9. STM6601 ordering information scheme

F: ECOPACK[®] package, tape and reel

1. Other options are offered. Minimum order quantities may apply. Please contact local ST sales office for availability.

10 Product selector

Full part number	EN or EN ⁽¹⁾	After long push ⁽²⁾	Internal resistor on SR input	Power-on lockout voltage V _{TH+} (V)	Forced power-off voltage V _{TH-} (V)	t _{ON_BLANK} (s) at startup (min.)	t _{ON_BLANK} (s) at reset (min.)	Top marking ⁽³⁾
STM6600AS24DM6F	EN	RST	pull-up	3.40	3.20	5.6	5.6	pyww AS24
STM6600ES24DM6F ⁽⁴⁾	EN	RST	_	3.40	3.20	5.6	5.6	pyww ES24
STM6600FQ24DM6F ⁽⁴⁾	ĒN	RST	_	3.30	3.10	5.6	5.6	pyww FQ24
STM6600GS22DM6F ⁽⁴⁾	EN	EN	_	3.40	3.20	1.4	_	pyww GS22
STM6600GS25DM6F ⁽⁴⁾	EN	EN	_	3.40	3.20	11.2	_	pyww GS25
STM6600GU22DM6F ⁽⁴⁾	EN	EN	_	3.50	3.30	1.4	_	pyww GU22
STM6600HA55DM6F ⁽⁴⁾	EN	EN	_	2.50	2.00	11.2	_	pyww HA55
STM6600HQ25DM6F ⁽⁴⁾	EN	EN		3.30	3.10	11.2	_	pyww HQ25
STM6600HU25DM6F ⁽⁴⁾	EN	EN	_	3.50	3.30	11.2	_	pyww HU25

Table 10.	STM6600	product	selector
-----------	---------	---------	----------

1. EN (or \overline{EN}) output is push-pull. \overline{RST} , \overline{INT} , \overline{PB}_{OUT} and \overline{VCC}_{LO} outputs are open drain.

After t_{SRD} expires through long push, either device reset (RST) will be activated for t_{REC} (240 ms min.) or the EN (or EN) pin will be deasserted. The additional Smart Reset[™] delay time, t_{SRD}, can be adjusted by the user at 10 s/µF (typ.) by connecting the external capacitor to the C_{SRD} pin.

3. Where "p" = assembly plant, "y" = assembly year (0 to 9) and "ww" = assembly work week (01 to 52).

4. Please contact local ST sales office for availability.

48/51

Full part number	EN or EN ⁽¹⁾	After long push ⁽²⁾	Internal resistor on SR input	Power-on lockout voltage V _{TH+} (V)	Forced power-off voltage V _{TH-} (V)	t _{ON_BLANK} (s) at startup (min.)	t _{ON_BLANK} (s) at reset (min.)	Top marking ⁽³⁾
STM6601AQ2BDM6F	EN	RST	pull-up	3.30	3.10	1.4	1.4	pyww AQ2B
STM6601AU2DDM6F	EN	RST	pull-up	3.50	3.30	5.6	5.6	pyww AU2D
STM6601BM2DDM6F	EN	RST	pull-up	3.10	2.90	5.6	5.6	pyww BM2D
STM6601BS2BDM6F	ĒN	RST	pull-up	3.40	3.20	1.4	1.4	pyww BS2B
STM6601CM2DDM6F	EN	EN	pull-up	3.10	2.90	5.6	_	pyww CM2D
STM6601CQ2BDM6F	EN	EN	pull-up	3.30	3.10	1.4	_	руww CQ2B
STM6601DS2BDM6F	EN	ĒN	pull-up	3.40	3.20	1.4	_	pyww DS2B
STM6601GU2BDM6F ⁽⁴⁾	EN	RST	_	3.50	3.30	5.6	5.6	pyww GU2B

 Table 11.
 STM6601 product selector

1. EN (or \overline{EN}) output is push-pull. \overline{RST} , \overline{INT} , \overline{PB}_{OUT} and \overline{VCC}_{LO} outputs are open drain.

After t_{SRD} expires through long push, either device reset (RST) will be activated for t_{REC} (240 ms min.) or the EN (or EN) pin will be deasserted. The additional Smart Reset[™] delay time, t_{SRD}, can be adjusted by the user at 10 s/µF (typ.) by connecting the external capacitor to the C_{SRD} pin.

3. Where "p" = assembly plant, "y" = assembly year (0 to 9) and "ww" = assembly work week (01 to 52).

4. Please contact local ST sales office for availability.

11 Revision history

Date	Revision	Changes
04-Mar-2009	1	Initial release.
05-Jun-2009	2	Updated text in <i>Section 2, Section 3, Figure 11, 12</i> ; updated <i>Figure 1, 7, 9, 14, 18, 19, 43, Table 3, 5, 8, 9, 10</i> ; added <i>Figure 8, 10, Table 7</i> ; reformatted document.
23-Jul-2009	3	Updated text in Features, Table 1, 8, 9, and 10; reformatted document.
22-Oct-2009	4	Updated Section 2, Table 5, Table 10, Figure 1, 7, 8, 9, 10, 11, 12, 14, 18, title of Section 10; added Section 5: Typical operating characteristics (Figure 23 through 40); document status upgraded to full datasheet.
25-Jan-2010	5	Updated <i>Figure 6</i> , <i>Section 2</i> , <i>Table 5</i> ; textual update to "Smart Reset™".
13-Apr-2010	6	Updated Figure 1, 6, 7, 8, 9, 10, 11, 12, 13, Section 2, Section 3, Table 3, 5, 8, 9, 10.
07-Jun-2010	7	Reformatted <i>Figure 1</i> and <i>Figure 42</i> , corrected typo in <i>Section 3</i> , added option A to <i>Table 8</i> , updated <i>Table 10</i> and separated <i>Table 10</i> to <i>Table 10</i> and <i>Table 11</i> .

 Table 12.
 Document revision history

50/51

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

