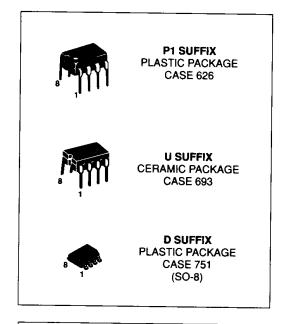
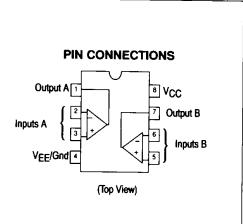
Dual, Low Power Operational Amplifiers

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The MC3558 Series is equivalent to one-half of a MC3505.


These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 V or as high as 36 V with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.


- Short Circuit Protected Outputs
- True Differential Input Stage •
- Single Supply Operation: 3.0 V to 36 V
- Low Input Bias Currents •
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Class AB Output Stage for Minimum Crossover Distortion .
- Single and Split Supply Operations Available
- Similar Performance to the Popular MC1458/1558

MC3458 MC3558 MC3358

DUAL DIFFERENTIAL INPUT **OPERATIONAL AMPLIFIERS**

SILICON MONOLITHIC **INTEGRATED CIRCUIT**

ORDERING INFORMATION

Device	Temperature Range	Package			
MC3358P1	-40° to +85°C	Plastic DIP			
MC3458D MC3458P1 MC3458U	0° to +70°C	SO-8 Plastic DIP Ceramic DIP			
MC3558U	-55° to +125°C	Ceramic DIP			

MAXIMUM RATINGS

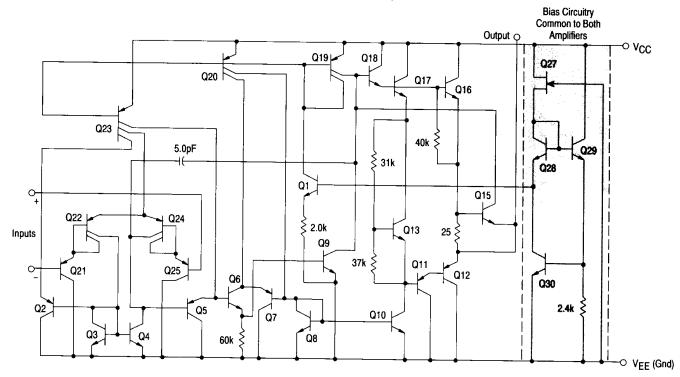
Rating	Symbol	Value	Unit Vdc Vdc	
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	36 ±18		
Input Differential Voltage Range (1)	VIDR	±30		
Input Common Mode Voltage Range (2)	VICR	±15	Vdc	
Junction Temperature Ceramic Package Plastice Package	Tj	175 150	°C	
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C	
Operating Ambient Temperature Range MC3458 MC3558 MC3358	TA	0 to +70 -55 to +125 -40 to +85	°¢	

2. For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.

MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

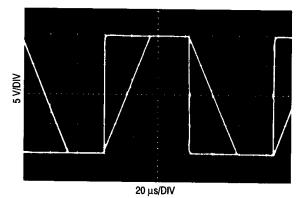
MC3458, MC3558, MC3358

ELECTRICAL CHARACTERISTICS (For MC3558, MC3458, V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C, unless otherwise noted.)


	(For MC3358, V _{CC} = +14 V, V _{EE} = G							MC3358			· · · · ·
		MC3558			MC3458			A.C.			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}		2.0	5.0 6.0		2.0	10 12	_	2.0	8.0 10	mV
$T_A = T_{high}$ to T_{low} (Note 1)			. —				50		30	75	nA
Input Offset Current	10	=	30	50 200	_	30	200	-	30	250	
$T_{A} = T_{high} \text{ to } T_{low}$									-		V/mV
Large Signal Open-Loop Voltage Gain $V_{O} = \pm 10 V, R_{L} = 2.0 k\Omega$	AVOL	50	200	_	20	200		20	200	_	•////•
$T_A = T_{high} \frac{to T_{low}}{T_{low}}$		25	300	-	15	_		15	-	-	
Input Bias Current	Чв	_	-200	-500	_	-200	-500	_	-200	-500	nA
T _A = T _{high} to T _{low}		—	-300	-1500	_	-	-800	-	—	-1000	
Output impedance	² O		75	_	—	75		-	75	- 1	Ω
f = 20 Hz											
Input Impedance	zı	0.3	1.0	- 1	0.3	1.0		0.3	1.0	-	MΩ
f = 20 Hz											
Output Voltage Range	VOR								10.5		V
$R_{L} = 10 k\Omega$		±12 ±10	±13.5 ±13	_	±12 ±10	±13.5 ±13	_	12 10	12.5 12	_	
R _L = 2.0 kΩ R _L = 2.0 kΩ, T _A ≠ T _{high} to T _{low}	i i	±10	±13	_	±10		_	10	_	1	
Input Common Mode Voltage Range	N	+13	+13.5		+13	+13.5	<u> </u>	+13	+13.5	-	V V
Input Common Mode Voltage Range	VICR		-V _{EE}		-V _{EE}	-VEE		-VEE	-V _{EE}		.
Common Mode Rejection Ratio	CMR	70	90	<u> </u>	70	90		70	90	_	dB
$R_S \le 10 k\Omega$	0										
Power Supply Current (VO = 0)	ICC ^{, I} EE		1.6	2.2	<u> </u>	1.6	3.7		1.6	3.7	mA
	ICC, EE					-					
Individual Output Short Circuit Current (Note 2)	Isc	±10	±30	±45	±10	±20	±45	±10	±30	±45	mA
Positive Power Supply Rejection Ratio	PSRR+		30	150	_	30	150		30	150	μV/V
	PSRR-		30	150	<u> </u>	30	150	<u>+</u>		+ _	μV/V
Negative Power Supply Rejection Ratio									50	-	DA/°C
Average Temperature Coefficient of Input Offset Current	ΔI _{IO} /ΔT		50	—	-	50	-	-	50	_	proc
$T_A = T_{high}$ to T_{low}											
Average Temperature Coefficient of Input	Δνιο/Δτ	<u>+ </u>	10	<u> </u>	_	10	_		10	-	µV/°C
Offset Current											
T _A = T _{high} to T _{low}											
Power Bandwidth	BWp	—	9.0	-	-	9.0	-		9.0		kHz
$A_V = 1$, $R_L = 2.0$ kΩ, $V_O = 20$ V_{p-p} , THD = 5%]						
				+		+		+-	1.0	<u> </u>	MHz
Small Signal Bandwidth $A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_O = 50 \text{ mV}$	BW	-	1.0	-		1.0		-	1.0	-	NITZ
	SR	-	0.6	-	<u> </u>	0.6		+-	0.6	<u> </u>	V/µs
Slew Rate A _V = 1, V _I = -10 V to +10 V	SH	-	0.6	-		0.0			0.0		• <i>'</i> µ5
Rise Time			0.35	+		0.35	<u> </u>	<u>+</u>	0.35	<u>+ _</u>	μs
Av = 1, R _L = 10 kΩ, V _O = 50 mV	tteh	-	0.55			0.55			0.00		μο
Fall Time	t _{THL}	<u> </u>	0.35		<u>+ _</u>	0.35		- 1	0.35	- 1	μs
$A_V = 1, R_L = 10 \text{ k}\Omega, V_O = 50 \text{ mV}$	THL	1								ļ	
Overshoot	OS	-	20	+ _	<u> </u>	20	- 1	- 1	20	- 1	%
$A_V = 1, R_L = 10 \text{ k}\Omega, V_O = 50 \text{ mV}$											
Phase Margin	φm		60		- 1	60		- 1	60		Degrees
$A_V = 1, R_L = 2.0 \text{ k}\Omega, C_L = 200 \text{ pF}$								I			
Crossover Distortion		- 1	1.0	<u> </u>	-	1.0	- 1	1 —	1.0		%
(V _{in} = 30 mVp-p, V _{out} = 2.0 Vp-p,											1
f = 10 kHz)						1	1	1	l		1

NOTES: 1. T_{high} = 125°C for MC3558, 70°C for MC3458, 85°C for MC3358 2. Not to exceed maximum package power dissipation. $T_{iow} = -55°C$ for MC3558, 0°C for MC3458, -40°C for MC3358

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = \text{Gnd}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)


Characteristics		MC3558			MC3458			MC3358			
	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO		2.0	5.0	—	2.0	5.0	—	2.0	10	mV
Input Offset Current	10	_	30	50	—	30	50	-		75	nA
Input Bias Current	ÌВ	_	-200	-500	—	200	-500	-	-	-500	nA
Large Signal Open-Loop Voltage Gain $R_L = 2.0 \ k\Omega$,	AVOL	20	200		20	200	_	20	200	-	V/mV
Power Supply Rejection Ratio	PSRR	_	- 1	150	_	-	150	-	-	150	μ٧/٧
$\begin{array}{l} \text{Output Voltage Range (Note 3)} \\ \text{R}_L = 10 \ \text{k}\Omega, \ \text{V}_{CC} = 5.0 \ \text{V} \\ \text{R}_L = 10 \ \text{k}\Omega, \ 5.0 \ \text{V} \leq \text{V}_{CC} \leq 30 \ \text{V} \end{array}$	VOR	3.3 	3.5 V _{CC} -1.7	-	3.3 —	3.5 V _{CC} -1.7		3.3 —	35 V _{CC} –1.7	-	∨р-р
Power Supply Current	lcc	-	2.5	4.0	-	2.5	7.0	—	2.5	4.0	mA
Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced)	CS		-120		—	120			-120	_	dB

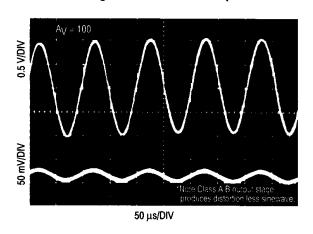
NOTES: 3. Output will swing to ground with a 10 k Ω pull down resistor.

Representative Circuit Schematic (1/4 of Circuit Shown)

Inverter Pulse Response

CIRCUIT DESCRIPTION

The MC3558 Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input Common Mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.


The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because Class AB operation is utilized.

Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

MC3458, MC3558, MC3358

Figure 1. Sine Wave Response

Figure 2. Open-Loop Frequency Response

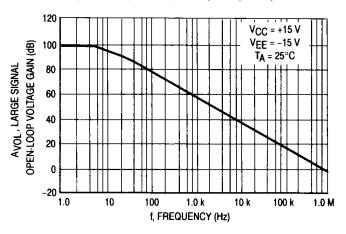
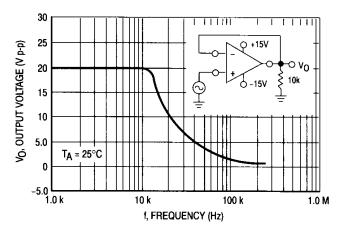
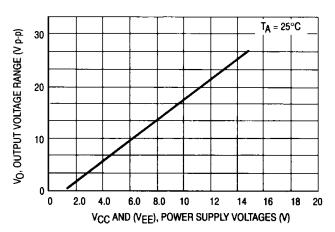




Figure 3. Power Bandwidth

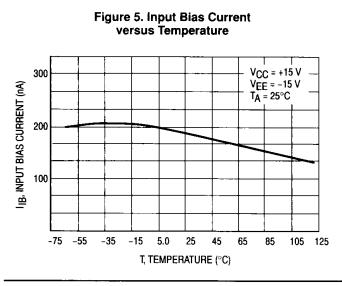
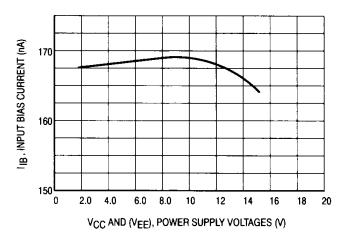



Figure 6. Input Bias Current versus Supply Voltage

MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

Figure 7. Voltage Reference

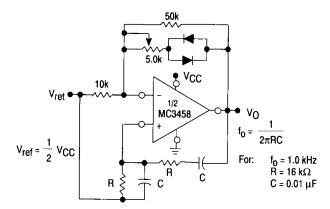
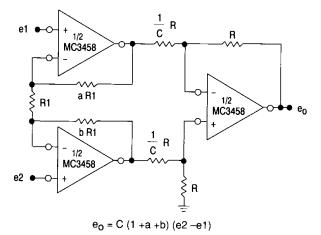
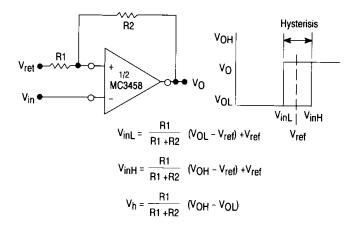
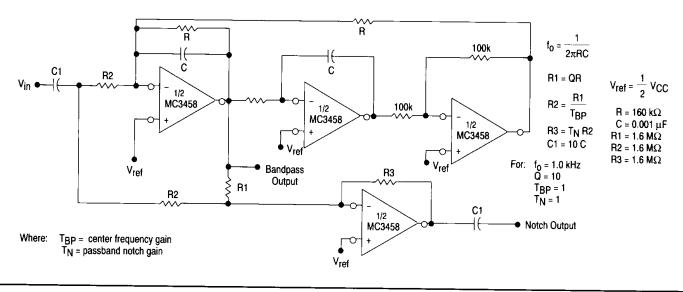
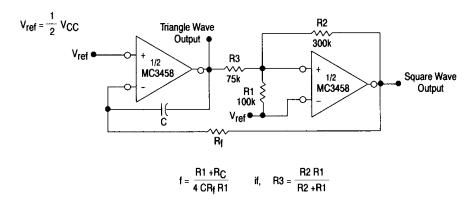
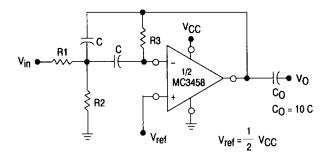




Figure 8. Wien Bridge Oscillator


Figure 9. High Impedance Differential Amplifier




MOTOROLA LINEAR/INTERFACE ICs DEVICE DATA

MC3458, MC3558, MC3358

Figure 12. Function Generator

Figure 13. Multiple Feedback Bandpass Filter

Given: f_0 = center frequency A(f_0) = gain at center frequency

Choose value fo, C.

Then: R3 = $\frac{Q}{\pi f_0 C}$ R1 = $\frac{R3}{2 A(f_0)}$ R2 = $\frac{R1 R5}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier $\frac{Q_0 t_0}{BW} < 0.1$ where, f_0 and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.