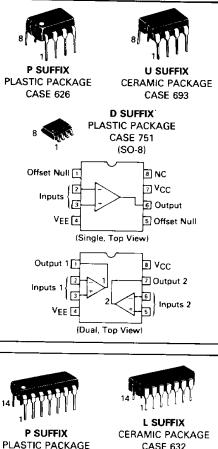


LOW POWER, HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS

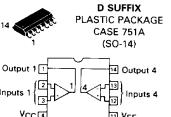
Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4, MC35181/2/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operate at 210 μ A per amplifier and offer 4.0 MHz of gain bandwidth product and 10 V/ μ s slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.

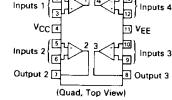
The MC33181/2/4, MC34181/2/4, MC35181/2/4 series of devices are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages.

- Low Supply Current: 210 μA (Per Amplifier)
- Wide Supply Operating Range: ±1.5 V to ±18 V
- Wide Bandwidth: 4.0 MHz
- High Slew Rate: 10 V/µs
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14 V to +14 V (with ±15 V Supplies)
- Large Capacitance Drive Capability: 0 to 500 pF
- Low Total Harmonic Distortion: 0.04%
- Excellent Phase Margin: 67°
- Excellent Gain Margin: 6.7 dB
- Output Short Circuit Protection


Op Amp Function	Device	Test Temperature Range	Package
Single	MC34181P MC34181D	0 to +70°C	Plastic DIP SO-8
	MC33181P MC33181D	− 40 to +85°C	Plastic DIP SO-8
	MC35181U	-55 to +125°C	Ceramic DIP
Dual	MC34182P MC34182D	0 to +70°C	Plastic DIP SO-8
	MC33182P MC33182D	-40 to +85°C	Plastic DIP SO-8
	MC35182U	-55 to +125°C	Ceramic DIP
Quad	MC34184P MC34184D	0 to +70°C	Plastic DIP SO-14
	MC33184P MC33184D	– 40 to + 85°C	Plastic DIP SO-14
	MC35184L	- 55 to + 125°C	Ceramic DIP

ORDERING INFORMATION

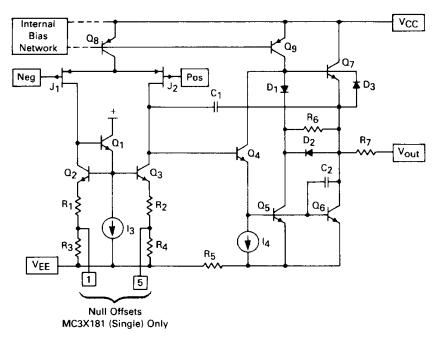

MC34181,2,4 MC35181,2,4 MC33181,2,4


LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS

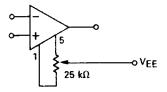
SILICON MONOLITHIC

PLASTIC PACKAGE CASE 646

MOTOROLA LINEAR/INTERFACE DEVICES


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	Vs	+ 36	Volts
Input Differential Voltage Range	VIDR	Note 1	Volts
Input Voltage Range	VIR	Note 1	Volts
Output Short-Circuit Duration (Note 2)	ts	Indefinite	Seconds
Operating Junction Temperature Ceramic Package Plastic Package	τ	+ 160 + 150	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	- 65 to + 160 - 60 to + 150	°C


NOTES:

1. Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE}.

2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1).

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)

MC3X181 Input Offset Voltage Null Circuit

MC34181,2,4, MC35181,2,4, MC33181,2,4


DC ELECTRICAL CHARACTERISTICS (V _{CC} = +15 V, V _{EE} = -15 V, T _A	$\chi = 25^{\circ}$ C unless otherwise noted)
---	---

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S = 50 Ω , V _O = 0 V)	VIO				mV
Single					
$T_A = +25^{\circ}C$	ł	-	0.5	2.0	
$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C (MC34181)$				3.0	
$T_A = -40^{\circ}$ C to +85°C (MC33181) $T_A = -55^{\circ}$ C to +125°C (MC35181)		-	-	3.5	
Dual		-	-	4.5	
$T_A = +25^{\circ}C$		_	1.0	3.0	
$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ (MC34182)}$		_		4.0	
$T_A = -40^{\circ}C$ to $+85^{\circ}C$ (MC33182)		_	- 1	4.5	
T _A = −55°C to +125°C (MC35182) Quad			-	5.5	·
$T_{\Delta} = +25^{\circ}C$		ĺ	40	10	
$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ (MC34184)}$			4.0	10	
$T_A = -40^{\circ}C \text{ to } +85^{\circ}C (MC33184)$		_		11.5	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C \text{ (MC35184)}$		_	_	12.5	
Average Temperature Coefficient of V_{IO} (R _S = 50 Ω , V_O = 0 V)	Δνιο/Δτ	_	10		μV/°C
Input Offset Current (V _{CM} = 0 V, V _O = 0 V)	10				nA
$T_A = +25^{\circ}C$			0.001	0.05	
$T_A = 0^{\circ}C$ to $+70^{\circ}C$		-	-	1.0	
$T_A = -40^{\circ}C$ to $+85^{\circ}C$		-	-	2.0	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$				13	
Input Bias Current ($V_{CM} = 0 V, V_O = 0 V$)	^I IB				nA
$T_{A} = +25^{\circ}C$		-	0.003	0.1	
$T_A = 0^{\circ}C$ to $+70^{\circ}C$ $T_A \approx -40^{\circ}C$ to $+85^{\circ}C$		-	-	2.0	
$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$				4.0	
Input Common Mode Voltage Range				25	······
	VICR	(V _{EE} + 4.0		<u> </u>	v
Large Signal Voltage Gain ($R_L = 10 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$) $T_A = +25^{\circ}\text{C}$	AVOL	05			V/mV
$T_A = T_{low}$ to T_{high}		25 15	60		
		15			
Output Voltage Swing (V _{ID} = 1.0 V, R _L = 10 k Ω) T _A = +25°C	Vo+	+ 13.5	+ 14	-	v
	Vo-	—	- 14	- 13.5	
Common Mode Rejection (Rs = 50 Ω , V _{CM} = V _{ICR} , V _O = 0 V)	CMR	70	86		dB
Power Supply Rejection (R _S = 50 Ω , V _{CM} = 0 V, V _O = 0 V)	PSR	70	84		dB
Output Short Circuit Current (VID = 1.0 V, Output to Ground)					
Source	Isc	3.0	8.0	_	mA
Sink		8.0	11	_	
Power Supply Current (No Load, $V_0 = 0 V$)					μA
Single	0.				μπ
$T_A = +25^{\circ}C$		_	210	250	
TA = Tiow to Thigh		-		250	
Dual $T_{\Delta} = +25^{\circ}C$					
		-	420	500	
T _A = T _{low} to Thigh Quad		-	-	500	
$T_A = +25^{\circ}C$			840	1000	
$T_A = T_{low}$ to Thigh		_	540	1000	

MC34181,2,4, MC35181,2,4, MC33181,2,4

Characteristic	Symbol	Min	Тур	Max	Unit
Slew Rate (V _{in} = -10 V to $+10$ V, R _L = 10 k Ω , C _L = 100 pF) A _V = $+1.0$ A _V = -1.0	SR	7.0	10 10	_	V/µs
Settling Time (Ay = $-$ 1.0, RL = 10 kΩ, VO = 0 V to $+$ 10 V Step) To Within 0.10% To Within 0.01%	t _s	_	1.1 1.5		μs
Gain Bandwidth Product ($f = 100 \text{ kHz}$)	GBW	3.0	4.0	_	MHz
Power Bandwidth (A _V = +1.0, R _L = 10 k Ω , V _O = 20 V _{p-p} , THD = 5%)	вw _р	_	200	_	kHz
Phase Margin (– 10 V < V _O < + 10 V) $R_L = 10 k\Omega$ $R_L = 10 k\Omega$, $C_L = 100 pF$	Øm	_	67 34	_	Degrees
Gain Margin (-10 V < V _O < +10 V) $R_L = 10 k\Omega$ $R_L = 10 k\Omega$, $C_L = 100 pF$	A _m		6.7 3.4	_	dB
Equivalent Input Noise Voltage R _S = 100 Ω , f = 1.0 kHz	en		38		nV/√Hz
Equivalent Input Noise Current f = 1.0 kHz	ⁱ n		0.01	_	pA⁄√Hz
Differential Input Capacitance	Ci	_	3.0	_	pF
Differential Input Resistance	Ri		1012	_	Ω
Total Harmonic Distortion $A_V =$ 10, $R_L =$ 10 k Ω , 2 $V_{p\text{-}p} < V_Q <$ 20 $V_{p\text{-}p}$, f = 10 kHz	THD	_	0.04	_	%
Channel Separation (RL = 10 kΩ, $-$ 10 V $<$ V_O $<$ + 10 V, 0 Hz $<$ f $<$ 10 kHz)	_	_	120		dB
Open-Loop Output Impedance (f = 1.0 MHz)	Z _o	_	200	_	Ω

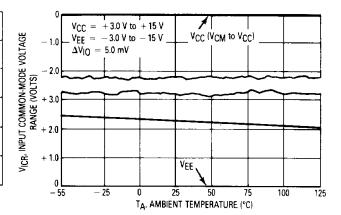
AC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted)

80

T_A, AMBIENT TEMPERATURE (°C)

100 120 140 160

8 & 14 PIN CERAMIC PKG.


20 40 60

0

& 14 PIN PLASTIC PKG.

FIGURE 2 — INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE

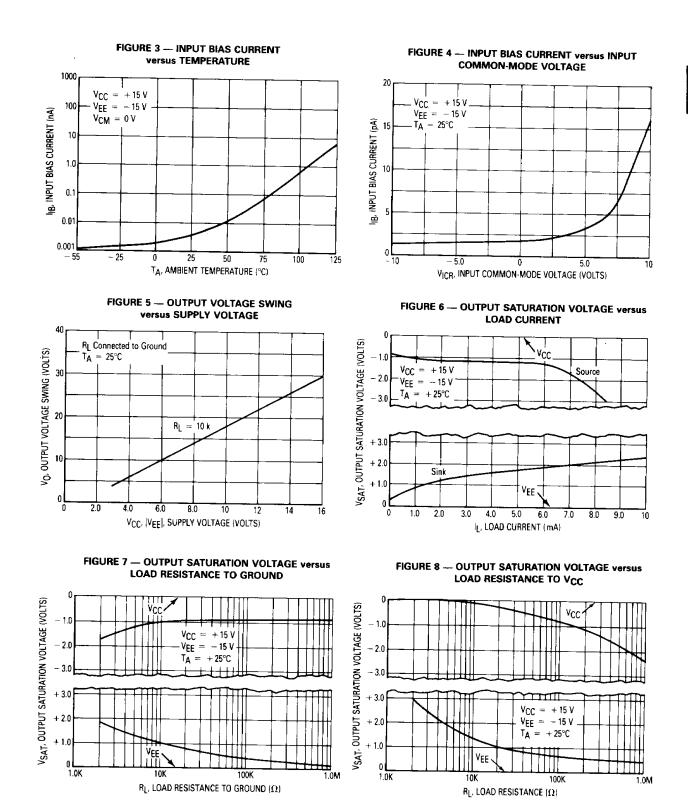
4

MOTOROLA LINEAR/INTERFACE DEVICES

2400

2000

1600


1200

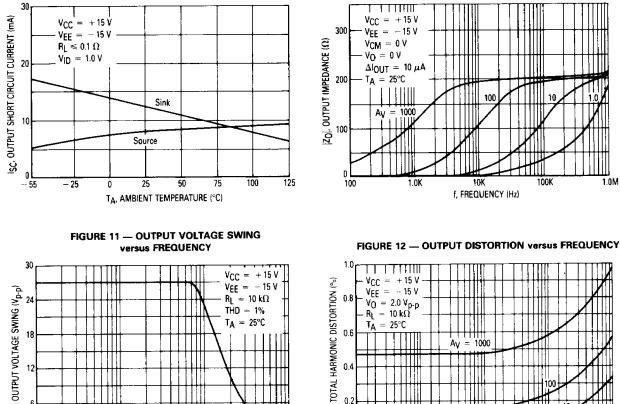
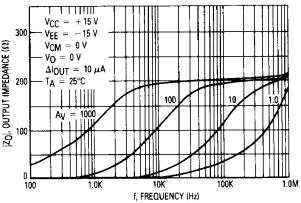
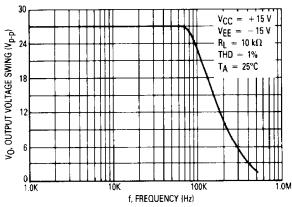
800

400

SO-14 PKG.

PD, MAXIMUM POWER DISSIPATION (mW)

2

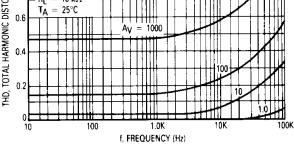

FIGURE 9 - OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 10 --- OUTPUT IMPEDANCE versus FREQUENCY

÷

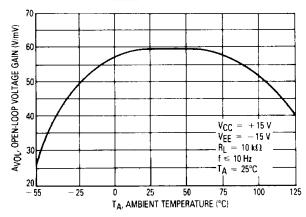
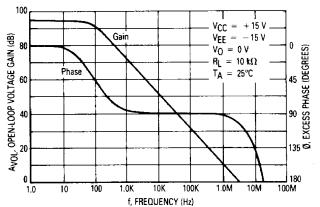
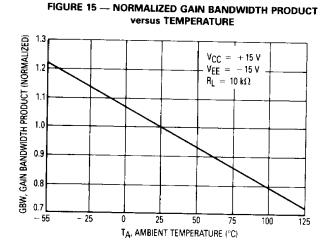




FIGURE 14 --- OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

LOAD CAPACITANCE

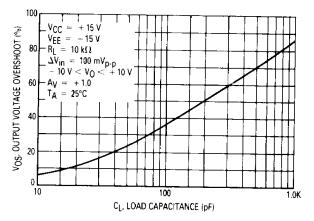


FIGURE 17 — PHASE MARGIN versus LOAD CAPACITANCE

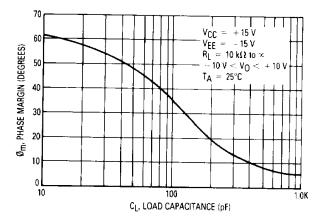


FIGURE 19 — PHASE MARGIN versus TEMPERATURE

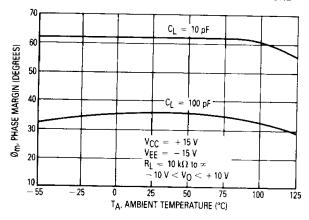
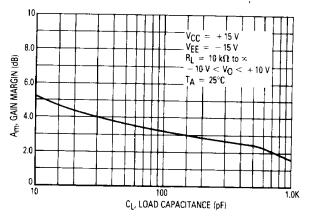



FIGURE 18 - GAIN MARGIN versus LOAD CAPACITANCE

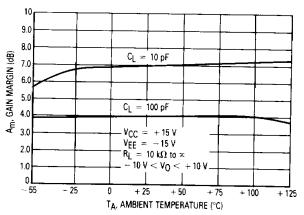
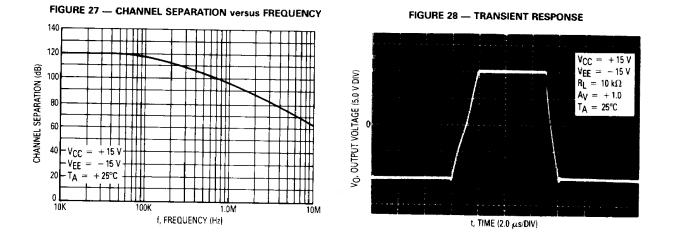
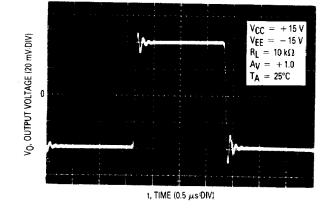




FIGURE 16 - OUTPUT VOLTAGE OVERSHOOT versus

·	
-	-
12	
τ	
2 1	
- ,	
1 ⁴	
1	
· ·	
*/ >=	
• <u>} </u>	
7 .	
	,
	

