
MOTOROLA SC {TELECOM} OLE D 📲 6367253 0080608 4

Bating Symbol

Rating	Symbol	MC1558S	MC1458S	Unit Vdc	
Power Supply Voltage	V _{CC} V _{EE}	+22 -22	+18 -18		
Input Differential Voltage Range (1)	VIDR	±	Volts		
Input Common-Mode Voltage Range (2)	VICR	±.	Volts		
Output Short Circuit Duration	ts	Conti			
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	oC	
Storage Temperature Range	Tstg	-65 to +150	-65 to +150	°C	
Junction Temperature Ceramic and Metal Package Plastic Package	Tj	175 150	175 150	°C °C	

Note 1. For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage. Note 2. Supply voltage equal to or less than 15 Vdc.

MOTOROLA SC {TELECOM} DLE D 📕 6367253 0080610 2

6367253 MOTOROLA SC (TELECOM)

MC1458S, MC1558S

Characteristic	Symbol	MC1558S			MC1458S			
		Min	Тур	Max	Min	Тур	Max	Unit
Power Bandwidth (See Figure 3)	BWp							kHz
$A_v = 1, R_L = 2.0 k\Omega, THD = 5\%, V_O = 20 V(p-p)$	1	150	200	-	150	200	-	
Large-Signal Transient Response	1				1			
Slew Rate (Figures 10 and 11)	SR							
V(-) to V(+)		10	20	-	10	20	_	V/µs
V(+) to V(~)		10	12		10	12	-	
Settling Time (Figures 10 and 11) (to within 0.1%)	^t setlg	-	3.0	-	-	3.0	-	μs
Small Signal Transient Response	1							
(Gain 4, 1, E _{in} 4, 20 mV, see Figures 7 and 8)			1					
Rise Time	TLH	-	0.25		-	0.25	-	μs
Fall Time	TTHL .	-	0.25	-	-	0.25	-	μs
Propagation Delay Time	THI-THL	-	0.25	-	-	0.25	-	μs
Overshoot	OS	-	20	-	-	20	~	%
Short-Circuit Output Currents	los	±10	-	±45	±10		±45	mА
Open-Loop Voltage Gain (RL 2.0 k 1) (See Figure 4)	AVOL							-
V _O ±10 V		50,000	200,000	-	20,000	100,000	~	
Output Impedance (f 20 Hz)	z _o	-	75	. –	-	75		Ω
Input Impedance (f 20 Hz)	zi	0.3	1.0		0.3	1.0	-	MΩ
Output Voltage Swing	Vo							V _{pk}
RL 10 k 12		±12	±14	-	±12	±14	-	1
RL 2.0 k 🕸		±10	±13	~	±10	±13		
Input Common-Mode Voltage Swing	VICR	±12	±13	-	±12	±13	-	Vpk
Common-Mode Rejection Ratio (f 20 Hz)	CMRR	70	90	-	70	90		dB
Input Bias Current (See Figure 2)	¹ IB	-	200	500	_	200	500	nA
Input Offset Current	101	-	30	200	~	30	200	nA
Input Offset Voltage (RS < 10 k 32)	Iviol	-	1.0	5.0	-	2.0	6.0	mV
DC Power Consumption (See Figure 9) (Power Supply - ±15 V, V _Q = 0)	PC	_	70	150	_	70	170	mW
Positive Voltage Supply Sensitivity (VEE constant)	PSS+	_	2.0	150	_	2.0	150	μV/V
Negative Voltage Supply Sensitivity (VCC constant)	PSS-	_	10	150	_	10	150	√/۷

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25^oC unless otherwise noted.)

** Plastic package offered in limited temperature range device only.

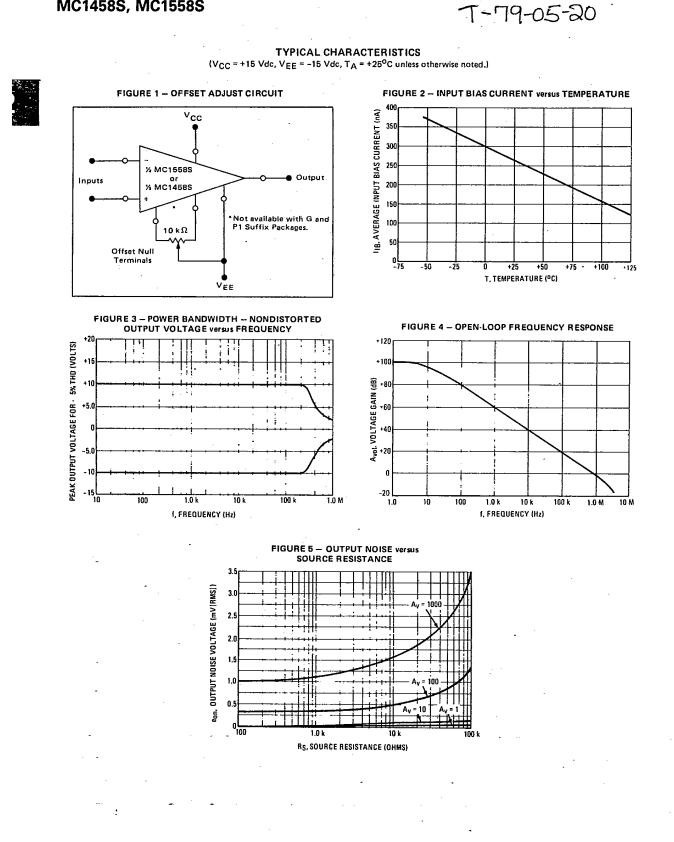
ELECTRICAL CHARACTERISTICS ($V_{CC} = +15$ Vdc, $V_{EE} = -15$ Vdc, $T_A = -55$ to $+125^{\circ}$ C for MC1558S and $T_A = 0$ to 70°C for MC1458S, unless otherwise noted.)

Characteristic			MC1558S			MC1458S		
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain V _O = ±10 V	Avol	25,000	-	-	15,000	-	-	VIV
Output Voltage Swing RL = 10 kΩ RL = 2 kΩ	Vo	:12 :10	-	-	±12 ±10	_		Vpk
Input Common-Mode Voltage Range	VICR	±12	-			-	- 1	Vpk
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	70	-	-	- 1	-	-	dB
Input Bias Current $T_A \approx 126^{\circ}C$ $T_A = -55^{\circ}C$ $T_A = 0 \text{ to } 70^{\circ}C$	1 ^{1B}		200 500	500 1500 -			- - 800	nA
Input Offset Current $T_A = 125^{\circ}C$ $T_A = -55^{\circ}C$ $T_A = 0$ to $70^{\circ}C$	10	-	30 - -	200 500				nA
Input Offset Voltage RS ≤ 10 kΩ	VIO	-	-	6.0	-	-	7.5	m∨
DC Power Consumption VO = 0 V	PC	-	-	200	-	-	-	mW
Positive Power Supply Sensitivity VEE = -15 V	PSS+	-	-	150	-	-	-	μV/V
Negative Power Supply Sensitivity V _{CC} = 15 V	PSS-	-	-	150	-	-	-	μV/V

01E 80610

T-79-05-20

D


6367253 0080611 Ч MOTOROLA SC {TELECOM} DLE D

01E 80611

D

6367253 MOTOROLA SC (TELECOM)

MC1458S, MC1558S

10TOROLA SC {TELECOM} OLE D 📕 6367253 0080612 6

TYPICAL CHARACTERISTICS

6367253 MOTOROLA SC (TELECOM)

MC1458S, MC1558S

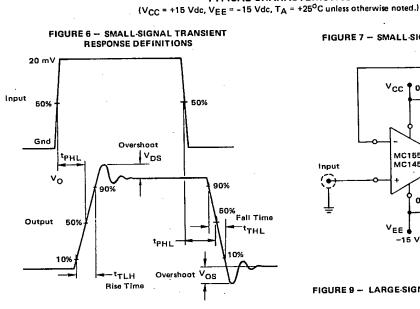
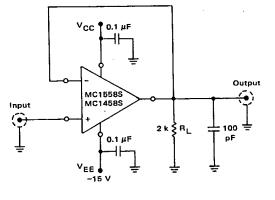
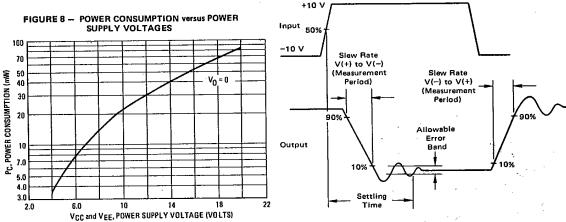
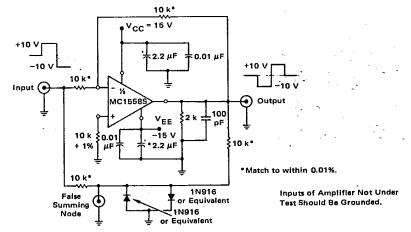



FIGURE 7 – SMALL-SIGNAL TRANSIENT RESPONSE

2



D1E 80612


T-79-05-20

Ð

FIGURE 9 - LARGE-SIGNAL TRANSIENT WAVEFORMS

6367253 0080613 MOTOROLA SC {TELECOM} DLE D

5367253 MOTOROLA SC (TELECOM) د معادی کار از استان در از در ۲۰۰۰ کارو بر میشو در د

MC1458S, MC1558S

SETTLING TIME

÷t...

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time,

SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

-79-05-20

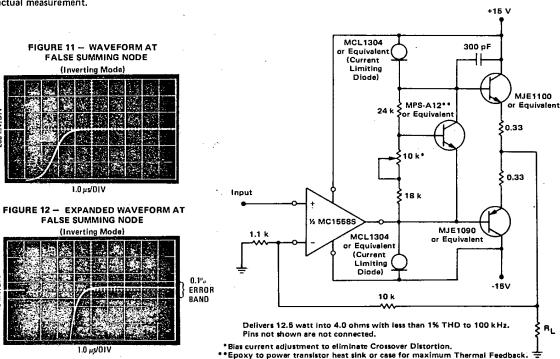
01E 80613

setlg =
$$\sqrt{x^2 + y^2 + z^2}$$

can be used to determine the actual amplifier settling time, where

tsetlg = observed settling time

x = amplifier settling time (to be determined)


- y = false summing junction settling time
- z = oscilloscope settling time

It should be remembered that to settle within ±0.1% requires 7RC time constants.

The ±0.1% factor was chosen for the MC1558S settling time as it is compatible with the $\pm 1/2$ LSB accuracy of the MC1508L-8 digital-to-analog converter. This D-to-A converter features ±0.19% maximum error.

TYPICAL APPLICATION

FIGURE 13 - 12.5 WATT WIDEBAND POWER AMPLIFIER

MOTOROLA LINEAR/INTERFACE DEVICES

8