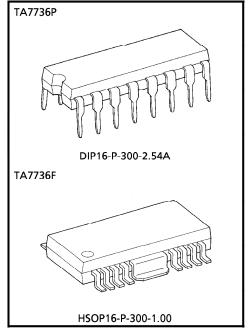
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7736P, TA7736F


DC MOTOR DRIVER IC

The TA7736P is a 3 phase Bi-directional motor driver IC. It designed for use VCR, tape deck, floppy disk and record player motor drivers.

It contains output power drivers, position sensing circuits, control amplifier and CW/CCW control circuit.

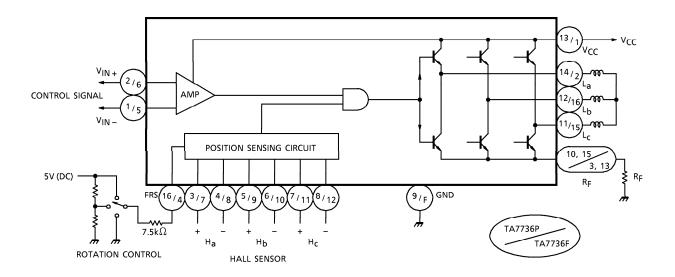
FEATURES

- 3 Phase Bi-Directional Driver and Output Current Up to
- Few External Parts Required.
- Wide Operating Supply Voltage Range : $V_{CC (opr)} (Min.) = 7 \sim 20V$
- Forward and Reverse Rotation is Controlled Simply by Means of a CW/CCW Control Signal Fed Into 16PIN.
- High Sensitivity of Position Sensing Amplifier. $(V_H = 10 \text{mV}_{p-p})$ (Typ.), Recommend to Use TOSHIBA Ga-As Hall Sensor "THS" Series.)
- Surge Protect Diode Connected for All Input Terminals. (Position Sensing, Control, CW/CCW Control Inputs.)

Weight

DIP16-P-300-2.54A : 1.11g (Typ.) HSOP16-P-300-1.00 : 0.50g (Typ.)

961001EBA2

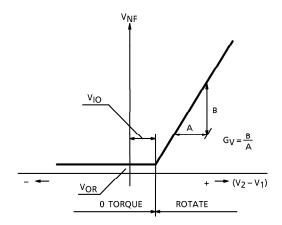

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws.

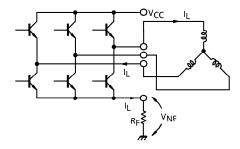
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM



PIN FUNCTION


PIN No.		SYMBOL	FUNCTIONAL DESCRIPTION		
Р	F	STIVIBUL			
1	5	V _{IN} –	Control Amp. negative terminal		
2	6	V _{IN} +	Control Amp. positive terminal		
3	7	H _a +	a-phase Hall Amp. positive input terminal		
4	8	H _a –	a-phase Hall Amp. negative input terminal		
5	9	H _b +	b-phase Hall Amp. positive input terminal		
6	10	H _b –	b-phase Hall Amp. negative input terminal		
7	11	H _c +	c-phase Hall Amp. positive input terminal		
8	12	H _c –	c-phase Hall Amp. negative input terminal		
9	FIN	GND	GND terminal		
10	3	R _F	Output current detection terminal		
11	15	L _C	c-phase drive output terminal		
12	16	Lb	b-phase drive output terminal		
13	1	Vcc	power supply input terminal		
14	2	La	a-phase drive output terminal		
15	13	R _F	Output current detection terminal		
16	4	FRS	Forward rotation / Reverse rotation switch		
10	-	11/3	terminal		

F: 4 Pin: No connection

INPUT VS OUTPUT

 V_{NF} shows voltage drop at R_F. This is in the case of star connection, when coil current is I_L $V_{NF} = R_F \cdot I_L$ See the following circuit.

Further, if inputs (pin①, ⑤, pin②, ⑥) are shorted or $V_1 \ge V_2$, torque at the circuit, becomes zero. However, this zero torque state also can be obtained by setting FRS input (pin⑥, ④) to specified voltage or by placing the circuit in open state and this is rather advantageous as current con sumption is less.

FUNCTION

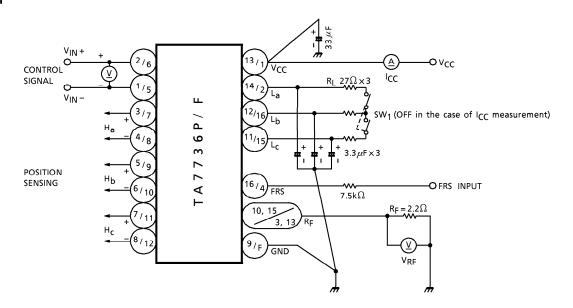
FRS	POSITION SENSING INPUT			COIL OUTPUT		
FRS (PIN⑯, ④)	Ha	Нb	H _C	L _a	Lb	Lc
	1	0	1	Н	L	М
	1	0	0	Н	М	L
	1	1	0	М	Н	L
L	0	1	0	L	Н	М
	0	1	1	L	M	Н
	0	0	1	М	L	Н
	1	0	1	L	Н	М
	1	0	0	L	М	Н
Н	1	1	0	М	L	Н
"	0	1	0	Н	L	М
	0	1	1	Н	М	L
	0	0	1	М	Н	L
	1	0	1	High Impedance		
	1	0	0			
M	1	1	0			
l IVI	0	1	0			
	0	1	1			
	0	0	1			

(Note) "1" of Hole element input means that voltage above +10mV is applied to the positive side of each hall element from the negative side and "0" means that voltage above +10mV is applied to the negative side from the positive side. In this case, needless to say, DC potential must be within the specified common mode voltage range of hell element input.

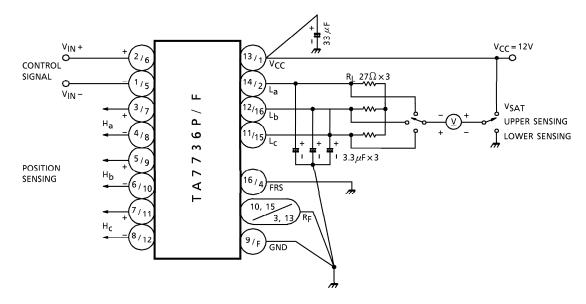
range of hell element input. Further, "H", "M" and "L" of output mean $V_{CC} - V_{SAT1} = \frac{1}{2} V_{CC}$ and V_{SAT2} , respectively, and "L", "H" and "M" of FRS input mean application of voltage within specified values of V_F , V_R and V_S , respectively.

Further, by applying required voltage for control input $(V_{IN} +, V_{IN} -)$, measure the circuit in operating state.

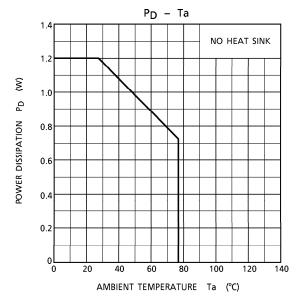
MAXIMUM RATINGS (Ta = 25°C)

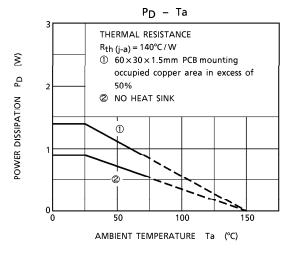

CHARACTER	ISTIC	SYNBOL	RATING	UNIT		
Supply Voltage		Vcc	26	V		
Output Current		lo	1.0	Α		
Power Dissipation	TA7736P	D- (Noto)	1.2	W		
Prower Dissipation	TA7736F	P _D (Note)	0.9			
Operating Temperating	ature	T _{opr}	- 30∼75	°C		
Storage Temperatu	ire	T _{stg}	- 55∼150	°C		

(Note) No heat sink

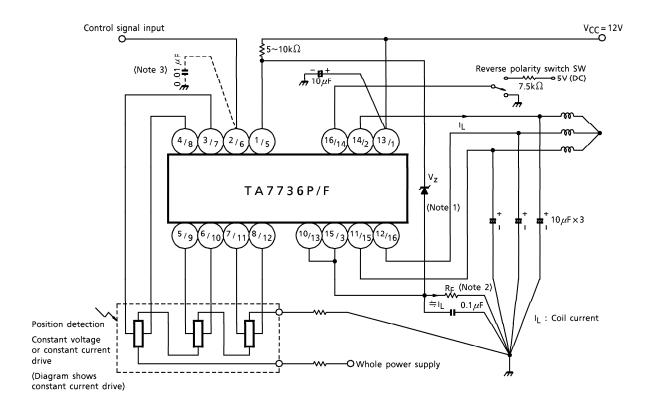

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 12V$, Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		l _{CC1}		FRS = Open	2	4	7	
Quiescent Current		I _{CC2}	1	FRS = 5V	2	5	9	mA
		ICC3		$V_{CC} = 22V$, FRS = GND	2	5	9	
Input Offset Voltage		V _{IO}	1		-	40	_	mV
Residual Output Voltage		VOR	1	$V_1 = V_2 = 7V$	_	0	10	mV
Voltage Gain		GV	1	$R_{NF} = 2.2\Omega$	-	15.0	_	
Saturation Voltage	Upper	V _{SAT1}	- 2	I _L = 400mA	_	1.0	1.5	V
Saturation Voltage	Lower	V _{SAT2}	_	I _L = 400mA	-	0.4	1.0	
Cut-off Current	Upper	loc1		V = 20V	_	_	20	μΑ
Cut-on Current	Lower	lOC2	_	V = 20V	_	_	20	
Position Sensing Input Sensitivity		VΗ	1		_	10	_	mV
Maximum Position Sensing Input Voltage		V _H MAX.	1		_	_	400	mV
Innut Operating Voltage	Position	CMRH	1		2.0	_	V _{CC} – 2.5	V
Input Operating Voltage	Control	CMRC	1		2.0	_	V _{CC} – 2.5	V
Potation Control Innut	cw	VF	1		-	0	0.4	٧
Rotation Control Input Voltage	STOP	VS	1		2.2	2.7	3.2	V
voitage	CCW	V _R	1		4.8	5.0	5.8	V


TEST CIRCUIT 1

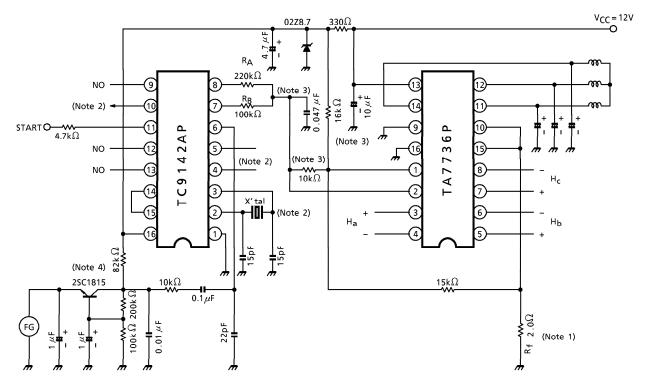

TEST CIRCUIT 2

TA7736P



TA7736F

APPLICATION CIRCUIT 1


(Basic application circuit)

- (Note 1) Set the Zener diode V_Z to the control signal input DC level. (V_Z setting recommended at 2.5 to 9.0V; 5.0V depending on temperature characteristics. With load control input pins (1) and (5), the DC electric potential becomes $V_Z + R_F$, I_L .)
- (Note 2) R_F is set depending on the coil impedance, F/V transfer voltage (control input) and required starting torque. Set between 0.3 and 5Ω .
- (Note 3) Connect when dive to control input occurs.

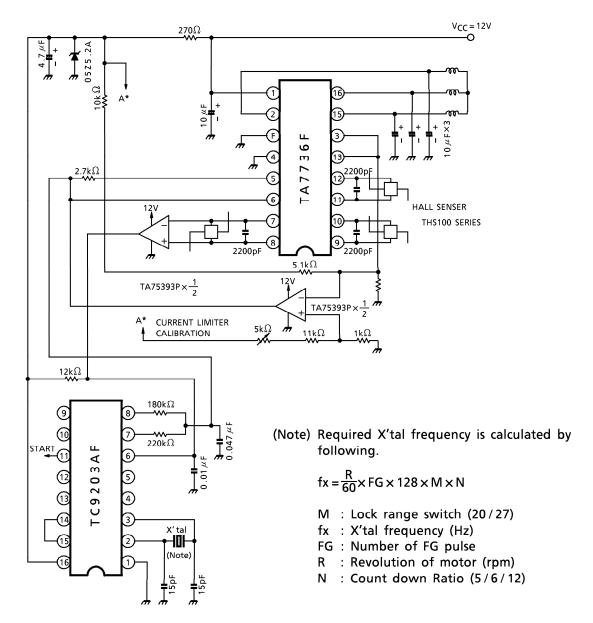
APPLICATION CIRCUIT 2

 $(TC9142AP + TA7736P 3 \frac{1}{2} PLL FDD)$

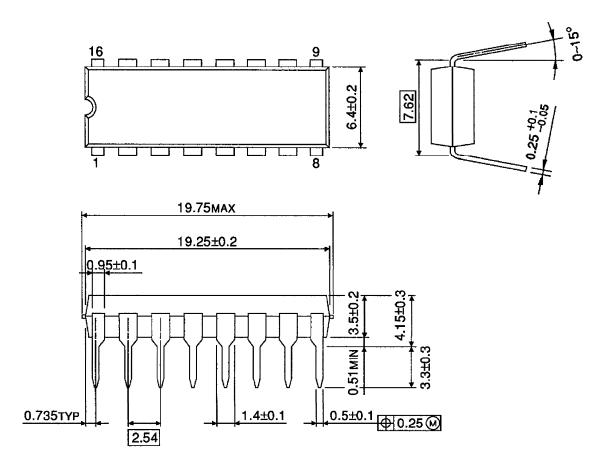
- (Note 1) R_f is a feed back Resistor that's voltage drop is equal to Input Voltage $(V_2 V_1)$ in this application with feed back by Zoner Diode.
- (Note 2) Required X'tal frequency is calculated by following $f_X = (no \cdot a / 60) \cdot 128 \cdot 20 \text{ N} = 42.6 \text{ no} \cdot a \cdot \text{N}$ (at PIN® "High" state) $f_X = (no \cdot a / 60) \cdot 128 \cdot 27 \text{ N} = 57.6 \text{ no} \cdot a \cdot \text{N}$ (at PIN® "Low" state)

PIN4	PIN®	N
Н	Н	32
L	Н	128
Н	L	4

Where


no : Required Rotation Speed (rpm)a : Number of FG pulse (pulse / rotation)N : Count Down Ratio (4.32 or 128)

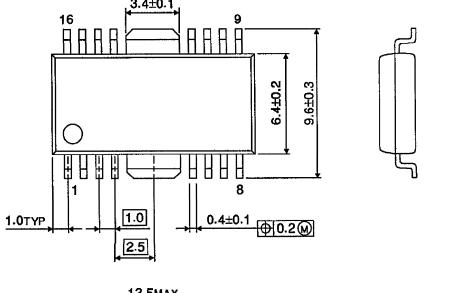
- (Note 3) Recommended value of R_A and R_B is $50k\Omega$ to $300k\Omega$. The combination ratio of F/V and P/V output is designed by changing these value. For example, if you want more F/V conversion gain compare to P/V's one for fast system initial start up. Use a higher value of R_B compare to R_A .
- (Note 4) TC9142P's FG Amplifier gain is 30dB (Typ.) and required input signal is over 30mV_{rms}.

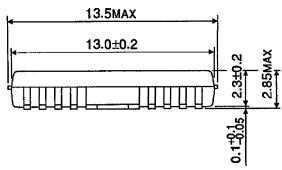

If the FG doesn't output over this value. Required a Front Amplifier.

APPLICATION CIRCUIT 3

(TC9203AF + TA7736F 3.5 PLL HDD)

OUTLINE DRAWING




Weight: 1.11g (Typ.)

OUTLINE DRAWING

HSOP16-P-300-1.00

Weight: 0.50g (Typ.)