

AH287

General Description

The AH287 is an integrated Hall sensor with output drivers for brushless DC motor application. This IC consists of two complementary outputs for motor's coil driving and has automatic lock protection and auto- restart function relatively. To avoid coil burning, rotor lock shutdown protection circuit shut down the output driver if the rotor blocked and then the automatic recovery circuit will try to restart the motor. This function repeats while rotor is blocked. Until the blocking is removed, the motor recovers running normally. In addition, the auto-restart time is flexible by adjusting the capacitance ($C_{\rm CT}$).

Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold B_{OP} , the DO is turned to sink and DOB is turned to drive. This output state is held until a magnetic flux density reversal falls below B_{RP} , causing DO to be turned to drive and DOB turned to sink.

This IC is available in TO-94 package.

Features

- On-chip Hall Sensor
- Operating Voltage: 4V to 18V
- Maximum Output Current: 350mA (ave)
- Rotor-locked Protection
- Automatic Restart
- Adjustable Auto-restart Time
- Internal Band-gap Regulator for Temperature Compensation
- Operating Temperature: -20°C to 85°C
- Low Profile TO-94 Package
- ESD Rating: 300V (Machine Model)

Application

Dual-coil Brushless DC Fan

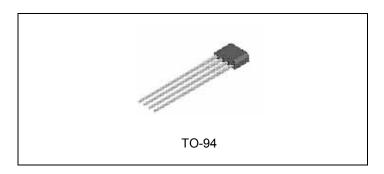


Figure 1. Package Type of AH287

AH287

Pin Configuration

Z4 Package (TO-94)

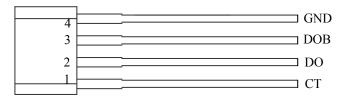


Figure 2. Pin Configuration of AH287 (Front View)

Pin Description

Pin Number	Pin Name	Function
1	СТ	Timing capacitance
2	DO	Output 1
3	DOB	Output 2
4	GND	Ground

AH287

Functional Block Diagram

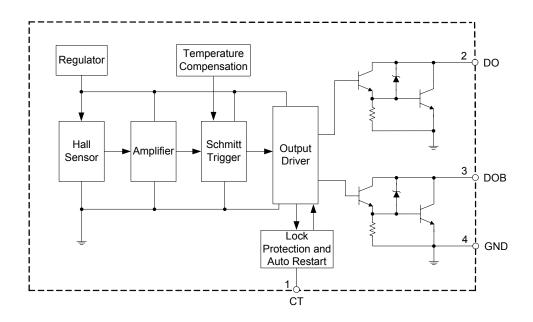
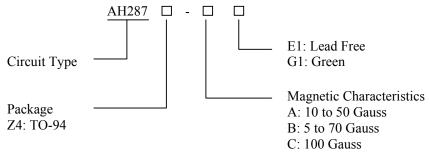



Figure 3. Functional Block Diagram of AH287

Ordering Information

Doolsogo	Temperature	Part N	umber	Marki	Packing	
Package	Range	Lead Free	Green	Lead Free	Green	Type
		AH287Z4-AE1	AH287Z4-AG1	AH287Z4-E1	AH287Z4-G1	Bulk
TO-94	-20 to 85°C	AH287Z4-BE1	AH287Z4-BG1	AH287Z4-E1	AH287Z4-G1	Bulk
		AH287Z4-CE1	AH287Z4-CG1	AH287Z4-E1	AH287Z4-G1	Bulk

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green package.

AH287

Absolute Maximum Ratings (Note 1, T_A=25°C)

Parameter		Symbol	Value	Unit
Supply Voltage		V _{CC}	20	V
Magnetic Flux	Density	В	Unlimited	Gauss
	Continuo	S	350	mA
Output Curren	t Hold	I_{OUT}	550	mA
	Peak (Star	t Up)	750	mA
Power Dissipation		P_{D}	550	mW
Thermal	Die to Atmosphere	θ_{JA}	227	°C/W
Resistance	Die to Package Cas	e θ_{JC}	49	°C/W
Junction Temp	erature	T_{J}	150	°C
Storage Tempe	erature	T_{STG}	-50 to 150	°C
ESD (Machine	Model)		300	V
ESD (Human	Body Model)		3000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

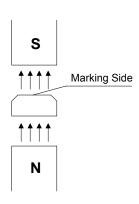
Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	4	18	V
Ambient Temperature	T_A	-20	85	°C

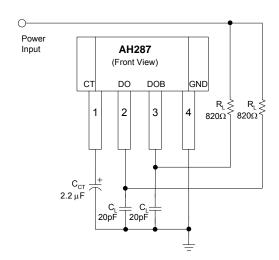
AH287

Electrical Characteristics

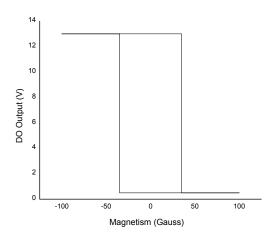
 V_{CC} =14V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Saturation	V_{SAT}	$\begin{array}{c} B{>}150 \; Gauss, V_{CC}{=}5V, \\ V_{DOB}{=}V_{CC}, I_{DO}{=}100mA \\ (or B < -150 \; Gauss, V_{CC} = 5V, \\ V_{DO}{=}V_{CC}, I_{DOB}{=}100mA) \end{array}$		1	1.15	V
Voltage	V SAT	$\begin{array}{c} B{>}150 \text{ Gauss,} \\ V_{DOB}{=}\ V_{CC}, I_{DO}{=}350\text{mA} \\ \text{(or B < -150 Gauss,} \\ V_{DO}{=}\ V_{CC}, I_{DOB}{=}350\text{mA}) \end{array}$		1.2	1.35	V
Supply Current	I _{cc}	$B>150$ Gauss, $V_{DOB}=V_{CC}$ (or $B<-150$ Gauss, $V_{DO}=V_{CC}$)		5	6.5	mA
Output Rise Time	tr	$R_L=820\Omega$, $C_L=20pF$		3	10	μs
Output Fall Time	tf	$R_L=820\Omega$, $C_L=20pF$		0.3	1.5	μs
Switch Time Differential	Δt	R_L =820 Ω , C_L =20pF		3	10	μs
Output Zener Breakdown Voltage	V _Z			55		V
Charge Current	I _{CHG}	V _{CT} =1 to 2.5V		5		μΑ
Discharge Current	I _{DHG}	V _{CT} =3.5 to 2.5V		0.5		μΑ
Clamp Voltage	V _{CL}	Limiting voltage		3.2		V
Comparator Voltage	V_{CP}	Limiting voltage		2.2		V




AH287

Magnetic Characteristics (T_A=25°C)


Parameter	Symbol	Grade	Min	Тур	Max	Unit
		A	10		50	
Operating Point	B_{OP}	В	5		70	Gauss
		С			100	
		A	-50		-10	
Releasing Point	B_{RP}	В	-70		-5	Gauss
		С	-100			
Hysteresis	B_{HYS}			70		Gauss

Test Circuit

Magnetic Hysteresis Characteristics

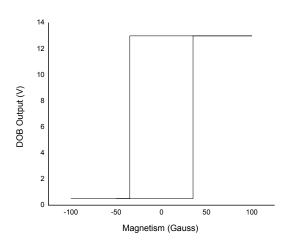
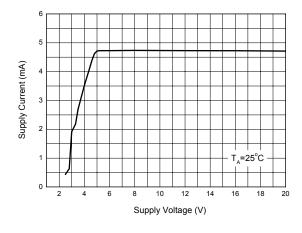



Figure 4. DO Output vs. Magnetism

Figure 5. DOB Output vs. Magnetism

Typical Performance Characteristics

(YE) treating of the second of

Figure 6. Supply Current vs. Supply Voltage

Figure 7. Supply Current vs. Ambient Temperature

AH287

Typical Performance Characteristics (Continued)

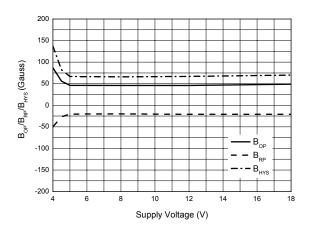
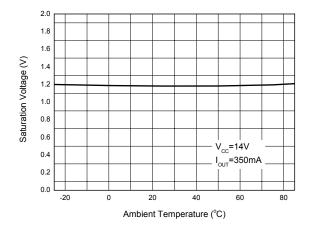



Figure 8. Bop/BRP/BHYS vs. Supply Voltage

Figure 9. B_{OP}/B_{RP}/B_{HYS} vs. Ambient Temperature

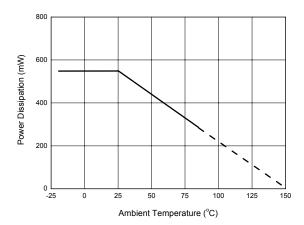
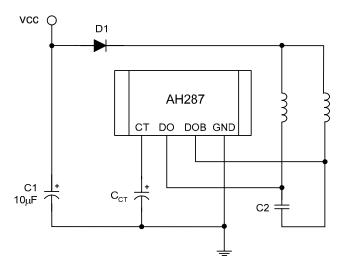


Figure 10. Saturation Voltage vs. Ambient Temperature

Figure 11. Power Dissipation vs. Ambient Temperature (Table 1)

Table 1:

$T_A(-)$	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65
P _D (mW)	551	551	551	551	551	551	551	551	551	551	529	507	485	463	441	419	396	374
T _A ()	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	
P _D (mW)	352	330	308	286	264	242	220	198	176	154	132	110	88	66	44	22	0	

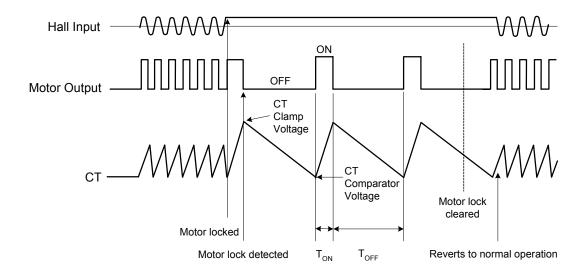

Aug. 2008 Rev. 1. 1

BCD Semiconductor Manufacturing Limited

AH287

Typical Application (Note 2)

Note 2:


- 1. The minimum startup voltage is 3.5V when D1 is disconnected.
- 2. The capacitances of C_{CT} and C2 are adjustable base on system requirements. The recommended values are as below:

C_{CT}	C2
1μF/9V~2.2μF/9V	1μF/50V~2.2μF/50V

Figure 12. Typical Application of AH287

AH287

Operating Diagram (Note 3)

Note 3: The automatic restart circuit detects a motor lock condition and automatically turns off the output current. When the lock is cleared, the IC automatically restarts and allows the motor to run. In AH287, automatic restart is performed in the following manner. A motor lock condition is detected when the Hall signal stops switching. The output is ON when CT pin is being charged, and OFF when CT pin is being discharged.

$$T_{\text{ON}} = \frac{C * (V_{\text{CL}} - V_{\text{CP}})}{I_{\text{CHG}}} (\text{Sec})$$

$$T_{OFF} = \frac{C * (V_{CL} - V_{CP})}{I_{DHG}} (Sec)$$

Output ON time (T_{ON}) and OFF time (T_{OFF}) are determined by C, the capacitance of the CT pin external capacitor.

$$\begin{split} &V_{CL} \text{ is the CT pin clamp voltage} \\ &V_{CP} \text{ is the CT pin comparator voltage} \\ &I_{CHG} \text{ is the CT pin charge current} \\ &I_{DHG} \text{ is the CT pin discharge current} \end{split}$$


Figure 13. Control Timing Diagram of AH287

AH287

Mechanical Dimensions

TO-94 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen, 518026, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988

Fax: +1-510-324-2788

Downloaded from Elcodis.com electronic components distributor