R2J20701NP

Peak Current Mode Synchronous Buck Controller with Power MOS FETs

REJ03G1459-0400
Rev. 4.00
Jun 30, 2008

Description

This all-in-one SiP for POL (point-of-load) applications is a multi-chip module incorporating a high-side MOS FET, low-side MOS FET, and PWM controller in a single QFN package. The on and off timing of the power MOS FET is optimized by the built-in driver circuit, making this device suitable for large-current high-efficiency buck converters.
In a simple peak-current mode topology, stable operation is obtained in a closed power loop, and a fast converter is easily realized with the addition of simple components. Furthermore, the same topology can be applied to realize converters for parallel synchronized operation with current sharing, and two-phase operation.
The package also incorporates a high-side bootstrap Schottky barrier diode (SBD), eliminating the need for an external SBD for this purpose.

Features

- Three chips in one package for high-efficiency and space saving
- Large average output current (35 A)
- Wide input voltage range: 8 to 14 V
- 0.6 V reference voltage accurate to within 1%
- Wide programmable switching frequency: 200 kHz to 1 MHz
- Fast response by peak-current-mode topology.
- Simple current sharing (up to five modules in parallel)
- Two-phase operation in parallel operation
- Built-in SBD for boot strapping
- On/off control
- Hiccup operation under over load condition
- Tracking function
- Thin small package: 56 -pin QFN ($8 \mathrm{~mm} \times 8 \mathrm{~mm}$)
- Pb-free

Applications

- Network equipment
- Telecommunications equipment
- Servers
- POL modules

Typical Characteristic Curve

Application Circuit Example

Block Diagram

Pin Arrangement

Note: All die-pads (three pads in total) should be soldered to PCB.

R2J20701NP

Pin Description

Pin Name	Pin No.	Description	Remarks
VIN	10 to 20	Input voltage for the buck converter.	
SW	9, 21, 40 to 48	Switching node. Connect a choke coil between the SW pin and dc output node of the converter.	
PGND	22 to 39	Ground of the power stage.	Should be externally connected to SGND.
SGND	6, 52	Ground of the IC chip.	Should be externally connected to PGND.
VCIN	7	Input voltage for the control circuit.	Should be externally connected to VIN.
BOOT	8	Bootstrap voltage pin. A bootstrap capacitor should be connected between the BOOT and SW pin.	To be supplied +5 V through the internal SBD.
REG5	5	+5 V logic power-supply output.	Requires decoupling from the GND plane by a capacitance $0.1 \mu \mathrm{~F}$.
ON/OFF	50	Signal disable pin.	Disabled when ON/OFF pin is in the low state.
IREF	4	Reference current generator for the IC.	Should be connected via $27 \mathrm{k} \Omega$ to the SGND pin.
CT	55	Timing capacitor pin for the oscillator. This pin has a select function for operation in slave mode.	If the pin voltage is $<1 \mathrm{~V}$ or $>4 \mathrm{~V}$, the IC operates in slave mode.
SYNC	49	I/O pin for synchronous operation.	
TRK-SS	56	Start-up timing control input.	
FB	1	Feedback voltage input for the closed loop.	
EO	3	Error amplifier output pin.	Requires connection to an RC circuit for loop compensation.
Ishare	2	For current-sharing bus.	Simply connect the Ishare pins of all devices to get balanced current.
RAMP	54	RAMP signal input pin for peak current mode PWM control.	
CS	53	Current output pin of active current sensing circuit.	Appropriate resistance is required between CS and the GND plane.
DRV5	51	+5.25 V generator output for driving power MOS FETs.	Requires decoupling from the GND plane by a capacitance from $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$.

Absolute Maximum Ratings

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$				
Item	Symbol	Rating	Unit	Note
Power dissipation	$\mathrm{Pt}(25)$	25	W	1
	$\mathrm{Pt}(100)$	8		1
Average output current	lout	35	A	
Input voltage	Vin (dc), Vcin (dc)	-0.3 to +16	V	2
	Vin (ac), Vcin (ac)	20		2, 4
Switch node voltage	Vsw (dc)	16	V	2
	Vsw (ac)	20		2, 4
BOOT pin voltage	Vboot (dc)	22	V	2
	Vboot (ac)	25		2, 4
ON/OFF pin voltage	Von/off	-0.3 to VIN	V	2
SYNC pin voltage	Vsync	-0.3 to +5.5	V	2
Voltage on other pins	Vic	-0.3 to (REG5 + 0.3)	V	2
REG5 current	Ireg5	-10 to 0	mA	3
Ishare current	Ishare	-500 to 0	$\mu \mathrm{A}$	3
TRK-SS dc current	Itrk	0 to 1	mA	3
IREF current	Iref	-120 to 0	$\mu \mathrm{A}$	3
EO sink current	leo	0 to 2	mA	3
Operating junction temperature	Tj-opr	-40 to +150	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

Notes: 1. Pt(25) represents a PCB temperature of $25^{\circ} \mathrm{C}$, and $\mathrm{Pt}(100)$ represents $100^{\circ} \mathrm{C}$.
2. Rated voltages are relative to voltages on the SGND and PGND pins.
3. For rated current, (+) indicates inflow to the chip and (-) indicates outflow.
4. Ratings for which "ac" is indicated are limited to within 100 ns .

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VIN}=\mathrm{VCIN}=12 \mathrm{~V}\right.$, unless otherwise specified)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Supply	VIN start threshold	VH	6.8	7.2	7.6	V	
	VIN shutdown threshold	VL	6.45	6.85	7.25	V	
	UVLO hysteresis	dUVL	-	$0.35 *^{1}$	-	V	
	Input bias current	lin	36	73	110	mA	$\begin{aligned} & \text { CT }=68 \mathrm{pF}, \\ & \text { Duty cycle }=50 \% \\ & \hline \end{aligned}$
	Input shutdown current	Isd	3.0	4.5	6.0	mA	On/off = 0 V
5-V regulator	Output voltage	Vreg	4.8	5.0	5.2	V	
	Line regulation	Vreg-line	-5	0	+5	mV	$\mathrm{VIN}=10$ to 16 V
	Load regulation	Vreg-load	-8	-3	+2	mV	Ireg $=0$ to 10 mA
$5.25-\mathrm{V}$ regulator	Output voltage	Vdrv	5.04	5.25	5.46	V	
Remote On/off	Disable threshold	Voff	1.0	1.3	1.6	V	
	Enable threshold	Von	2.0	2.5	3.0	V	
	Input current	Ion/off	0.5	2.0	5.0	$\mu \mathrm{A}$	Von/off = 1 V
Reference current generator	IREF pin voltage	VIref	2.6	2.7	2.8	V	Riref $=27 \mathrm{k} \Omega$
Oscillator	CT oscillating frequency	Fct	-	$930{ }^{* 1}$	-	kHz	$\mathrm{CT}=68 \mathrm{pF}$
	SW switching frequency	Fsw	418	465	512	kHz	$\mathrm{CT}=68 \mathrm{pF}$
	CT higher trip voltage	Vhct	-	3 *1	-	V	$\mathrm{CT}=68 \mathrm{pF}$
	CT lower trip voltage	VIct	-	$2^{* 1}$	-	V	$\mathrm{CT}=68 \mathrm{pF}$
	CT source current	Ict-src	-170	-160	-150	$\mu \mathrm{A}$	$\mathrm{CT}=1.5 \mathrm{~V}$
	CT sink current	Ict-snk	150	160	170	$\mu \mathrm{A}$	$\mathrm{CT}=3.5 \mathrm{~V}$
	CT threshold for twophase operation	Vct-two	3.6	4.0	4.4	V	
	CT threshold for synchronous operation	Vct-one	0.8	1.0	1.2	V	
SYNC and pulse generator	SYNC frequency	Fsync	418	465	512	kHz	$\mathrm{CT}=68 \mathrm{pF}$
	SYNC high voltage	Vh-sync	4.0	5.0	-	V	Rsync $=51 \mathrm{k} \Omega$ to GND
	SYNC low voltage	VI-sync	0	-	1.0	V	Rsync $=51 \mathrm{k} \Omega$ to REG5
	SYNC input threshold	Vsync	1.0	2.0	3.0	V	$\mathrm{CT}=0 \mathrm{~V}$ or 5 V
Error amplifier	Feedback voltage	Vfb	594	600	606	mV	TRK-SS $=1 \mathrm{~V}$
	Input bias current	Ifb	-0.1	0	+0.1	$\mu \mathrm{A}$	$\mathrm{FB}=0.6 \mathrm{~V}$
	Output source current	Io-src	150	200	250	$\mu \mathrm{A}$	$\mathrm{EO}=4 \mathrm{~V}, \mathrm{FB}=0 \mathrm{~V}$
	Output sink transient current	Io-snk	5.0	10.6	19.0	mA	$\mathrm{EO}=1 \mathrm{~V}, \mathrm{FB}=1 \mathrm{~V}$
	Voltage gain	Av	-	$80^{* 1}$	-	dB	
	Band width	BW	-	$15^{* 1}$	-	MHz	
	Resistance connected to the Ishare pin	Rshare	70	100	130	k Ω	$\mathrm{EO}=0 \mathrm{~V}$. Ishare $=1 \mathrm{~V}$

Note: 1. These are reference values for design and have not been 100% tested in production.
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VIN}=\mathrm{VCIN}=12 \mathrm{~V}\right.$, unless otherwise specified)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Current sense	CS current ratio	Idh/Ics	-	$18500^{* 1}$	-	-	
	Leading edge blanking time	TLD	-	$55^{* 1}$	-	ns	
	CS comparator delay to output	Td-cs	-	$50 *^{* 1}$	-	ns	
	OCP comparator threshold on CS pin	Vocp	1.43	1.5	1.57	V	
	Hiccup interval	Tocp	1.98	2.20	2.42	ms	$\mathrm{CT}=68 \mathrm{pF}$
	RAMP offset voltage	Vramp-dc	77	92	107	mV	
	CS offset current	Ics-dc	-	$490{ }^{* 1}$	-	$\mu \mathrm{CS}=0 \mathrm{~V}$	

Note: 1. These are reference values for design and have not been 100% tested in production.

Description of Operation

Peak Current Control

The control IC operates in a current-programmed control mode, in which the output of the converter is controlled by the choice of the peak current from the high-side MOS FET. The current from this MOS FET is sensed by an active current-sensing circuit (ACS), the output current of which is $1 / 18500$ (54 ppm) of the MOS FET current. The ACS current is then converted to a certain voltage by the external resistor on the CS pin. The CS voltage is fed to the RAMP pin by an external connection, then compared with the current-control signal which is determined from the error amplifier output voltage (EO) via an NPN transistor and resistor network.

To start with, the RES pulse from the pulse generator resets a latch, then the high-side MOS FET is turned on. The latch output (Q bar) is toggled when the voltage on RAMP reaches the level of the current-control signal on EO, the high-side MOS FET is turned off, and the low-side MOS FET is turned off after a certain dead-time interval. The IC remains in this state until the arrival of the next RES pulse.

Since current information is used in the control loop, loop compensation design for the converter is simple and easy.

Maximum Duty-Cycle Limitation

If the current-sense comparator output is not toggled $50-\mathrm{ns}$ prior to the arrival of the next RES pulse, an internal maximum duty pulse is generated and forces toggling of the SR latch. So, the duty cycle of the high-side MOS FET is limited by the maximum duty period.

The maximum duty period of the high-side MOS FET depends on its switching frequency.

$$
\text { Maximum duty period }=1-50 \mathrm{~ns} \times \text { Fsw }
$$

OCP Hiccup Operation

Once the voltage of CS exceeds 1.5 V , OCP hiccup circuit disables switching operation of the IC and MOS FETs.
Internal circuitry also pulls the TRK-SS pin down to SGND. The IC is turned off for a period of 1024 RES pulses; after this has elapsed, switching operation of the IC is restarted from the soft-start state.

UVLO and On/off Control

When VIN (=Vcin) is below the start-up voltage, that is, is in the UVLO condition, functioning of the IC is disabled. The oscillator is turned off, both high- and low-side MOS FETs are turned off, and the TRK-SS pin is pulled down.

Furthermore, if the ON/OFF pin is in the low state or left open, functioning of the IC is disabled and both MOS FETs are turned off.

Oscillator and Pulse Generator

The frequency of oscillation is set by the value of the external capacitor connected to the CT pin. This frequency is twice as high as the actual switching frequency. The frequencies are determined by the following equations:

$$
\begin{aligned}
& \text { Oscillator frequency; Fct }=160 \mu \mathrm{~A} /\{2 \times(\mathrm{CT}(\mathrm{~F})+18 \mathrm{pF}) \times 1 \mathrm{~V}\} \quad \text { (in } \mathrm{Hz}) \\
& \text { Switching frequency; Fsw }=0.5 \times \mathrm{Fct} \quad(\mathrm{~Hz})
\end{aligned}
$$

When the chip is operating in standalone mode or as the master chip for parallel operation, it requires a capacitor on the CT pin. In this case, the SYNC pin outputs a synchronization signal with a frequency of Fsw.

In operation as a slave chip, the CT pin must be connected to SGND or REG5, after which it acts as an input pin for the synchronized operation by external clock. The internal circuit is synchronized its rising edge when $\mathrm{CT}<0.8 \mathrm{~V}$, falling edge when $\mathrm{CT}>4.4 \mathrm{~V}$. In two-phase operation in parallel configuration, the CT pin should be at a voltage over 4.4 V .

Item	Mode			
	Standalone	Master	Slave $-\mathbf{0}^{\circ}$	Slave $-\mathbf{1 8 0}^{\circ}$
CT pin	Has a cap.	Has a cap.	$<0.8 \mathrm{~V}$	$>4.4 \mathrm{~V}$
SYNC pin	Output mode	Output mode	Input mode	Input mode
Synchronizing trigger	-	-	Rising	Falling

The internal RES pulse and maximum duty-cycle-control pulses are produced from the signal at half the oscillator frequency in standalone and master operating modes. In slave mode, internal pulses are produced from the externally supplied input signal on the SYNC pin.

Current Sharing

It is easy to obtain balanced-current operation in a parallel configuration due to the application of peak current control.
To obtain current-sharing operation, simply tie the buffered error-amplifier outputs of all of the devices (Ishare pins) together.

No more than five devices can operate in parallel.

Soft Start

Both simple soft starting and tracking start-up can be realized with the setup of the TRK-SS pin provided for soft-starts. The error amplifier has three inputs, two of which are designed to give priority to low-level non-inverting inputs for the amplifier. All that is required to realize soft-start operation is to simply attach an RC charging circuit to the TRK-SS pin.

The soft-start period is determined by the following equation, with C and R as the values for the RC charging circuit attached to the TRK-SS pin.
Tss = -C • R • Ln (1 - 0.6 V / REG5)

Application Example

Start-up Settings

Case 1) Standalone or master chip in parallel operation
With the RC network on the TRK-SS pin, the voltage on the pin should ramp up slowly.

Case 2) Coincident tracking
The TRS-SS signal for channel two is the voltage from Vout 1 after division by a resistor network. Vout 1 must be greater than Vout2. Cross-talk is not generated between the channels.

Case 3) Retiometric tracking
The TRS-SS of channel two is tied to TRK-SS of channel 1.
No cross talk is observed between the channels.

Case 4) Current sharing or two-phase operation
In the case of master-slave operation, the TRK-SS pin on the master device should be attached to an RC network for soft starts. TRK-SS pins of slave devices should be tied to the master's TRK-SS pin. The error amplifiers on the slave devices can be disabled by pulling up the corresponding FB pins to REG5, and the slave devices do not require loop-compensation networks.

Choice of The Resistance of CS Pin

The CS pin is a current-output pin. A current $1 / 18500$ of that of the high-side MOS FET flows through this pin, which also has a dc current offset of $490 \mu \mathrm{~A}$. The converter's maximum current is determined by the voltage on the CS pin, i.e. 1.5 V , and by the value of the external resistor attached to this pin. The resistance is determined as shown below.

$$
\text { Specification: L = } 360 \mathrm{nH}, \mathrm{Vin}=12 \mathrm{~V} \text {, Vout }=1.8 \mathrm{~V}, \mathrm{Fsw}=500 \mathrm{kHz} \text {, lout }(\max)=25 \mathrm{~A}
$$

Current through the choke coil is

$$
\text { ILpp }=(\text { Vin }- \text { Vout }) \times \text { Vout } /(L \times \operatorname{Vin} \times F s w)=8.5 A(p-p)
$$

Peak choke current is the current when Io is at its maximum, i.e.

$$
\operatorname{IImax}=\mathrm{lo}(\max)+0.5 \times \mathrm{ILpp}=25 \mathrm{~A}+4.25 \mathrm{~A}=29.25 \mathrm{~A}
$$

Maximum CS pin output current is;

$$
\text { Icsmax }=\text { IImax } / 18500+\text { Ics-dc }=29.25 \mathrm{~A} / 18500+490 \mu \mathrm{~A}=2.071 \mathrm{~mA}
$$

The ideal resistance for attachment to the CS pin is

$$
\mathrm{RCS}=\mathrm{Vcl} / \text { Icsmax }=1.5 \mathrm{~V} / 2.071 \mathrm{~mA}=724 \Omega
$$

Therefore choose 750Ω as the value of the resistor for attachment to the CS pin.

Output Voltage Setting

The error amplifier of the device has an accurate 0.6 V reference voltage. Feedback thus leads to a voltage of about 0.6 V on the FB pin once the converter system has stabilized, so the output voltage is

$$
\text { Vout }=0.6 \mathrm{~V} \times(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2
$$

Loop Compensation

Peak-current control makes design in terms of phase margins easier than is the case with voltage control. This is because of differences between the characteristics of the PWM modulator and power stage in the two methods.

Figures 1 and 2 show the behavior of the PWM modulator and power stage in the cases of voltage control and peak current control, respectively.

Feed-forward current to the modulator in the case of peak-current control means that the system is single pole, so we see a $-20 \mathrm{~dB} /$ decade cutoff and phase margin of 90° in the Bode plot. In voltage control, the system configures a twopole pole system. That is why rather complicated loop compensation of the error amplifier is required, such as type-III compensation.
The design of effective compensation is thus much simpler in the case of peak-current control (refer to figure 3).

Figure 3 Error Amplifier Compensation

Design example

Specification: $\mathrm{L}=360 \mathrm{nH}, \mathrm{Co}=600 \mu \mathrm{~F}, \mathrm{Fsw}=500 \mathrm{kHz}, \mathrm{Vin}=12 \mathrm{~V}$, Vout $=1.8 \mathrm{~V}, \mathrm{R} 1=2 \mathrm{k} \Omega, \mathrm{R} 2=1 \mathrm{k} \Omega$, RCS $=750 \Omega$

1. Flat-band gain of error amplifier

The flat-band gain is; $\mathrm{Af}=\mathrm{Rf} /(\mathrm{R} 1 / / \mathrm{R} 2) / 2 \times\{\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)\}$
Hence, $R f=2 \times A f \times R 1 \ldots \ldots(1)$

In the Bode plot, the total gain should be less than $1(0 \mathrm{~dB})$ at the switching frequency.
The total gain at Fsw (= Asw) depends on the flat-band gain, so Af should be expressed as follows.

$$
\begin{align*}
& \text { Af }=\text { Asw } \times 2 \pi \times \mathrm{Fsw} \times \mathrm{Co} \times \mathrm{RCS} / \mathrm{Nt} \ldots \ldots(\tag{2}\\
& \text { Here }, \mathrm{Nt}=\mathrm{Idh} / \mathrm{Ics}=18500
\end{align*}
$$

In the typical way, the value chosen for Asw is in the range from 0.1 to 0.5 , since this produces a stable control loop.
The transient response will be faster if a larger Asw is adopted ,but the system might be unstable.
We choose 0.2 for Asw in the example below.

$$
\begin{aligned}
& \mathrm{Af}=0.2 \times 2 \pi \times 500 \mathrm{kHz} \times 600 \mu \mathrm{~F} \times 750 \Omega / 18500=15.283 \\
& \mathrm{Rf}=2 \times 15.283 \times 2 \mathrm{k} \Omega=61.132 \mathrm{k} \Omega
\end{aligned}
$$

Therefore, we select a value of $62 \mathrm{k} \Omega$ for Rf.
2. Selecting the Cf value to determine the frequency of the zero

The frequency of the zero established by Cf and Rf is about ten times the frequency of the pole for the power stage and modulator.
We must start with the dc gain of the power stage and modulator.

$$
\begin{equation*}
\mathrm{A} 0=\frac{2 \times \mathrm{Nt} / \mathrm{RCS} \times \mathrm{L} \times \mathrm{Vin} \times \mathrm{Fsw}}{\mathrm{SQRT}\left\{\mathrm{Vin}^{2}-8 \times \mathrm{L} \times \operatorname{Vin} \times \mathrm{Fsw} \times(\mathrm{VCSO} \times \mathrm{Nt} / \mathrm{RCS})\right\}} \tag{3}
\end{equation*}
$$

Here VCS0 is the peak ac voltage on the CS pin when the load current is zero, thus

$$
\begin{aligned}
\text { VCSO } & =0.5 \times \mathrm{RCS} \times(\text { Vin }- \text { Vout }) \times \text { Vout } /(\mathrm{L} \times \mathrm{Vin} \times \mathrm{Fsw}) / 18500 \ldots \ldots . .(4) \\
& =0.5 \times 750 \Omega \times(12 \mathrm{~V}-1.8 \mathrm{~V}) \times 1.8 \mathrm{~V} /(360 \mathrm{nH} \times 12 \mathrm{~V} \times 500 \mathrm{kHz}) / 18500 \\
& =0.172 \mathrm{~V}
\end{aligned}
$$

Equation (3)

$$
\begin{align*}
\mathrm{A} 0 & =\frac{2 \times \mathrm{Nt} / \mathrm{RCS} \times \mathrm{L} \times \mathrm{Vin} \times \mathrm{Fsw}}{\mathrm{SQRT}\left\{\mathrm{Vin}^{2}-8 \times \mathrm{L} \times \mathrm{Vin} \times \mathrm{Fsw} \times(\mathrm{VCSO} \times \mathrm{Nt} / \mathrm{RCS})\right\}} \cdots \ldots .(3) \tag{3}\\
& =\frac{2 \times 18500 / 750 \Omega \times 360 \mathrm{nH} \times 12 \mathrm{~V} \times 500 \mathrm{kHz}}{\operatorname{SQRT}\left\{12 \mathrm{~V}^{2}-8 \times 360 \mathrm{nH} \times 12 \mathrm{~V} \times 500 \mathrm{kHz} \times(0.172 \mathrm{~V} \times 18500 / 750 \Omega)\right\}} \\
& =\frac{106.56}{\operatorname{SQRT}\{70.687\}} \\
& =12.674
\end{align*}
$$

The frequency of the pole established by the power stage and modulator is

$$
\begin{equation*}
\mathrm{FO}=\mathrm{Nt} /(2 \pi \times \mathrm{Co} \times \mathrm{RCS} \times \mathrm{A} 0) \tag{5}
\end{equation*}
$$

\qquad

Thus,

$$
\text { F0 }=18500 /(2 \pi \times 600 \mu \mathrm{~F} \times 750 \Omega \times 12.674)=516 \mathrm{~Hz}
$$

Therefore, the frequency of the zero established by Cf and Rf is
Fzero $=10 \times \mathrm{FO}=5.16 \mathrm{kHz}$
$\mathrm{Cf}=(2 \pi \times \text { Fzero } \times \mathrm{Rf})^{-1}=(2 \pi \times 5.16 \mathrm{kHz} \times 62 \mathrm{k} \Omega)^{-1}=497 \mathrm{pF}$
Therefore, we select the value 510 pF for Cf .
Basically, the transient response is faster when Cf is smaller, but too small a value will make the system-loop unstable.

Figure 4

Study of Vout Accuracy

The nominal output voltage is calculated as

$$
\begin{equation*}
\text { Vout }=V F B \times(R 1+R 2) / R 2 \tag{6}
\end{equation*}
$$

Here, the typical feedback voltage is 0.6 V .

The accuracy of Vout is strongly dependent on the variation of VFB, R1 and R2. VFB has a variation of 1% and resistance intrinsically has a certain variation. When we take the variation in resistance into account, equation (6) is extended to produce equation (7).

$$
\begin{align*}
\text { Vout } & =\frac{R 1 \times K 1+R 2 \times K 2}{R 2 \times K 2} \times V F B \\
& =\frac{R 1 \times K 1 / K 2+R 2}{R 2} \times V F B \tag{7}
\end{align*}
$$

Here, K1 and K2 are coefficients. Both are 1.00 in the ideal case.

By equation (6), R1 is chosen as

$$
\begin{equation*}
\mathrm{R} 1=\left[\frac{\text { Vout (typical) }}{\text { VFB (typical) }}-1\right] \times \mathrm{R} 2 \tag{8}
\end{equation*}
$$

Substituting this expression for R1 into equation (7) yields the following.

$$
\begin{equation*}
\text { Vout }=\text { VFB } \times\left\{\left[\frac{\text { Vout (typical) }}{\text { VFB (typical) }}-1\right] \times \frac{\mathrm{K} 1}{\mathrm{~K} 2}+1\right\} \tag{9}
\end{equation*}
$$

Therefore, variation in Vout is expressed as

$$
\begin{equation*}
\frac{\text { Vout }}{\text { Vout (typical) }}=\left[\frac{\text { VFB }}{\text { Vout (typical) }} \times\left\{\left[\frac{\text { Vout (typical) }}{\text { VFB (typical) }}-1\right] \times \frac{\mathrm{K} 1}{\mathrm{~K} 2}+1\right\}-1\right] \times 100(\%) \tag{10}
\end{equation*}
$$

R2J20701NP

The accuracy of Vout can be estimated by using equation (10).
For example, if Vout (typical) $=1.8 \mathrm{~V}$, resistance variation is 1% (i.e. $\mathrm{K} 1, \mathrm{~K} 2=1.01$ and 0.99), and $\mathrm{VFB}=594 \mathrm{mV}$ to 606 mV :

$$
\begin{aligned}
\frac{\text { Vout }}{\text { Vout (typical) }} & =\left[\frac{\mathrm{VFB}}{\text { Vout (typical) }} \times\left\{\left[\frac{\text { Vout (typical) }}{\mathrm{VFB}(\text { typical) }}-1\right] \times \frac{\mathrm{K} 1}{\mathrm{~K} 2}+1\right\}-1\right] \times 100(\%) \\
& =\left[\frac{606 \mathrm{mV}}{1.8 \mathrm{~V}} \times\left\{\left[\frac{1.8 \mathrm{~V}}{600 \mathrm{mV}}-1\right] \times \frac{1.01}{0.99}+1\right\}-1\right] \times 100(\%) \\
& =2.36 \% \\
& =\left[\frac{594 \mathrm{mV}}{1.8 \mathrm{~V}} \times\left\{\left[\frac{1.8 \mathrm{~V}}{600 \mathrm{mV}}-1\right] \times \frac{0.99}{1.01}+1\right\}-1\right] \times 100(\%) \\
& =-2.31 \%
\end{aligned}
$$

Therefore, the output accuracy will be $\pm 2.3 \%$ under the above conditions.
Figure 5 shows the relationship between the accuracy of the resistance and the accuracy of the output voltage. The resistor value must have an accuracy of 0.5% if the variation in output voltage from the system is to be kept within two percent across the voltage range from 0.6 to 3.3 V .

Figure 5 Vout Accuracy vs. Vout Set Voltage

Current Sharing

External Synchronization

Current Sharing and Synchronization

Two-Phase Operation

Timing Chart

Peak Current Control

Note: Propagation delay is ignored

Oscillator and Pulse Generator

1. Standalone operation or operation as the master chip in a parallel configuration with other chips.

Note: Propagation delay is ignored.

Frequency of oscillation for CT:

$$
\begin{equation*}
\text { Fct }=\frac{160 \mu \mathrm{~A}}{2 \times(\mathrm{CT}(\mathrm{~F})+18 \mathrm{pF}) \times 1 \mathrm{~V}} \tag{Hz}
\end{equation*}
$$

Switching frequency

$$
\text { Fsw }=0.5 \times \text { Fct } \quad(H z)
$$

Frequency setting range (for Fsw): 200 kHz to 1 MHz (i.e. 400 kHz to 2 MHz for Fct)

R2J20701NP

2. Operation as a slave chip (simple synchronous operation)

Note: Propagation delay is ignored.
3. Operation as a slave chip in a parallel configuration (two-phase operation)

Note: Propagation delay is ignored.

Hiccup Operation when the Over-Current Limit (OCL) is Reached

Note: Propagation delay is ignored.

Main Characteristics

Package Dimensions

RenesasTechnology Corp. Sales Straetegic Planning Div. Nippon Bldg., 2---2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and reguation included in this document such as product data, diagram
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
3. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular
With the exception of products specified by Renesas as suitable for automon and use of the information in this document or Renesas products. or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notw artificial life support devices or systems
(2) artificical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
. Although Renesas endeavors to improve the quality and relified ranges.
. aused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products Renesas shall have no liability for damages arising out of such detachment
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.
http://www.renesas.com

RENESAS SALES OFFICES

RENESAS

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA $95134-1368$, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852>2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

