Smart Highside Power Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection ${ }^{1}$)
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of $V_{b b}$ protection
- Electrostatic discharge (ESD) protection

Product Summary

Overvoltage protection	$V_{\mathrm{bb}(\mathrm{AZ})}$	65	V
Operating voltage	$V_{\mathrm{bb}(\mathrm{on})}$	$4.7 \ldots 42$	V
On-state resistance	$R \mathrm{ON}$	220	$\mathrm{~m} \Omega$
Load current (ISO)	$\mathrm{L}(\mathrm{ISO})$	1.8	A
Current limitation	$\mathrm{I} \mathrm{L}(\mathrm{SCr})$	2.7	A

Application

- $\mu \mathrm{C}$ compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- Most suitable for inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ${ }^{\circledR}$ technology. Providing embedded protective functions.

${ }^{1}$) With external current limit (e.g. resistor $\mathrm{R}_{\mathrm{GND}}=150 \Omega$) in GND connection, resistors in series with IN and ST
connections, reverse load current limited by connected load.

Pin	Symbol		Function
1	GND	-	Logic ground
2	IN	1	Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	O	Output to the load

Maximum Ratings at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	$V_{\text {bb }}$	65	V
Load dump protection ${ }^{2}$) $V_{\text {LoadDump }}=U_{\mathrm{A}}+V_{\mathrm{s}}, U_{\mathrm{A}}=13.5 \mathrm{~V}$ $R_{1}{ }^{3}=2 \Omega, R_{\mathrm{L}}=6.6 \Omega, t_{\mathrm{d}}=400 \mathrm{~ms}, \mathrm{IN}=$ low or high	$V_{\text {Load dump }}{ }^{4}$	100	V
Load current (Short circuit current, see page 4)	IL	self-limited	A
Operating temperature range	T_{j}	-40 ... 150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-55 ... +150	
Power dissipation (DC), $\mathrm{T}_{\mathrm{C}} \leq 25{ }^{\circ} \mathrm{C}$	$P_{\text {tot }}$	50	W
Inductive load switch-off energy dissipation, single pulse $\begin{array}{r} \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, T_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, T_{\mathrm{C}}=150^{\circ} \mathrm{C} \text { const. } \\ I_{\mathrm{L}}=1.8 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=2.3 \mathrm{H}, 0 \Omega: \end{array}$	$E_{\text {AS }}$	4.5	J
Electrostatic discharge capability (ESD)IN: (Human Body Model) acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993.	$V_{\text {ESD }}$	1	kV
Input voltage (DC)	$V_{\text {IN }}$	-0.5 .. +6	V
Current through input pin (DC)	$I_{\text {IN }}$	± 5.0	mA
Current through status pin (DC) see internal circuit diagrams page 6	$I_{\text {ST }}$	± 5.0	

Thermal Characteristics

Parameter and Conditions	Symbol	Values			Unit
		min	typ	max	
Thermal resistance chip - case:	$R_{\text {thJc }}$	--	--	2.5	K/W
junction - ambient (free air):	$R_{\text {thJA }}$	--	--	75	
SMD version, device on PCB^{5}):		--	35	--	

[^0]
Electrical Characteristics

Parameter and Conditions	Symbol	Values			Unit
at $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

On-state resistance (pin 3 to 5)

$\begin{array}{lr} L=1.6 \mathrm{~A} & \begin{array}{r} T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}=}=150^{\circ} \mathrm{C}: \end{array} \\ \hline \end{array}$	$\mathrm{R}_{\text {ON }}$	--	$\begin{aligned} & 190 \\ & 390 \end{aligned}$	$\begin{aligned} & 220 \\ & 440 \end{aligned}$	$\mathrm{m} \Omega$
Nominal load current, ISO Norm (pin 3 to 5) $V_{\mathrm{ON}}=0.5 \mathrm{~V}, T_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$L_{\text {LISO }}$	1.6	1.8	--	A
Output current (pin 5) while GND disconnected or GND pulled up, $V_{b b}=30 \mathrm{~V}, V_{\mathbb{I N}}=0$, see diagram page $7, T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$	$L_{\text {L(GNDhigh) }}$	--	--	1	mA
Turn-on time IN \checkmark to $90 \% V_{\text {OUT: }}:$ Turn-off time IN L to 10% $R_{\text {OUT }}=12 \Omega, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$	$\begin{aligned} & t_{\mathrm{on}} \\ & t_{\mathrm{off}} \end{aligned}$	12 5	--	125 85	$\mu \mathrm{S}$
Slew rate on 10 to $30 \% V_{\text {OUt, }} R_{\mathrm{L}}=12 \Omega, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$	$\mathrm{d} V / \mathrm{dt}_{\mathrm{on}}$	--	--	3	V/ $\mu \mathrm{s}$
Slew rate off 70 to $40 \% V_{\text {OUt, }} R_{\mathrm{L}}=12 \Omega, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$	-dV/dtoff	--	--	6	V/ $/ \mathrm{s}$

Operating Parameters

Operating voltage ${ }^{6}$, $T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(on) }}$	4.7	--	42	V
Undervoltage shutdown	$V_{\text {bb(under) }}$	$\begin{aligned} & 2.9 \\ & 2.7 \end{aligned}$	--	4.5 4.7	V
Undervoltage restart $\quad T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(}}$ rst)	--	--	4.9	V
Undervoltage restart of charge pump see diagram page 13	$V_{\text {bb(ucp) }}$	--	5.6	6.0	V
Undervoltage hysteresis $\Delta V_{\mathrm{bb} \text { (under) }}=V_{\mathrm{bb}(\mathrm{urst})}-V_{\mathrm{bb}}$ (under)	$\Delta V_{\text {bb(under) }}$	--	0.1	--	V
Overvoltage shutdown $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb (over) }}$	42	--	52	V
Overvoltage restart $\quad T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb }(0 \mathrm{rst})}$	40	--	--	V
Overvoltage hysteresis $\quad T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:	$\Delta V_{\text {bb(over }}$	--	0.1	--	V
$\begin{aligned} & \text { Overvoltage protection }{ }^{7} \quad T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}: \\ & \mathrm{I}_{\mathrm{bb}}=4 \mathrm{~mA} \end{aligned}$	$V_{\text {bb(AZ }}$	65	70	--	V
Standby current (pin 3) $T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}:$ $V_{\text {IN }}=0$ $T_{\mathrm{j}}=150^{\circ} \mathrm{C}:$	lbb (off)	--	10 18	15 25	$\mu \mathrm{A}$
Leakage output current (included in $I_{\text {bb(off) }}$) $V \operatorname{IN}=0$	$L_{\text {(0ff) }}$	--	--	20	$\mu \mathrm{A}$
Operating current (Pin 1) ${ }^{8}, V_{\mathrm{IN}_{\mathrm{N}}=5 \mathrm{~V} \text {, }}$ $T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$	IGND	--	1	2.1	mA

[^1]BTS 410 F2
Parameter and Conditions
at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	\min	typ	\max	

Protection Functions ${ }^{9}$

Initial peak short circuit current limit (pin 3 to 5$)^{10}$), ($\max 450 \mu \mathrm{~s}$ if $V_{\mathrm{ON}}>V_{\mathrm{ON}(\mathrm{SC})}$)	L(SCp)				
$\begin{array}{r} T_{\mathrm{j}}=-40^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \end{array}$		$\begin{aligned} & 4.0 \\ & 3.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 11 \\ 10 \\ 7.5 \end{array}$	A
Overload shutdown current limit	L(SCr)				
$V_{\mathrm{ON}}=8 \mathrm{~V}, T_{\mathrm{j}}=T_{\mathrm{jt}}$ (see timing diagrams, page 11)		--	2.7	--	A
Short circuit shutdown delay after input pos. slope $V_{\text {on }}>V_{\text {ON(SC) }}$, $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$ min value valid only, if input "low" time exceeds $60 \mu \mathrm{~s}$	$t_{\text {d(SC) }}$	--	--	450	$\mu \mathrm{S}$
Output clamp (inductive load switch off) at $V_{\text {OUT }}=V_{\mathrm{bb}}-V_{\mathrm{ON}(\mathrm{CL})} / \mathrm{L}=40 \mathrm{~mA}, T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}$:	$V_{\text {ON(CL) }}$	61	68	73	V
$I_{\mathrm{L}}=1 \mathrm{~A}, T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}$:		--	--	75	
Short circuit shutdown detection voltage(pin 3 to 5)	$V_{\text {ON(SC) }}$	--	8.5	--	V
Thermal overload trip temperature	$T_{\text {jt }}$	150	--	--	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	--	10	--	K
Reverse battery (pin 3 to 1) ${ }^{11}$)	$-V_{\text {bb }}$	--	-	32	V

Diagnostic Characteristics

Open load detection current (on-condition)	$T_{\mathrm{j}=}=-40 . .150^{\circ} \mathrm{C}$:	$\mathrm{L}_{\mathrm{L}(\mathrm{OL})}$	2	--	150	mA

${ }^{9}$) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
${ }^{10}$) Short circuit current limit for max. duration of $\operatorname{td}(\mathrm{SC}) \max =450 \mu \mathrm{~s}$, prior to shutdown
${ }^{11}$) Requires 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

Parameter and Conditions
at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	min	typ	\max	

Input and Status Feedback ${ }^{12}$)

Input turn-on threshold voltage $-\sim T_{\mathrm{j}}=-40 . .+150$	$V_{\text {IN(}(++)}$	1.5	--	2.4	V
Input turn-off threshold voltage \quad _ $T_{\mathrm{j}}=-40 . .+150^{\circ}$	$V_{\text {IN(T-) }}$	1.0	--	--	V
Input threshold hysteresis	$\Delta V_{\operatorname{IN}(\mathrm{T})}$	--	0.5	--	V
Off state input current (pin 2), $V_{\text {IN }}=0.4 \mathrm{~V}$	$I_{\text {IN(off }}$	1	--	30	$\mu \mathrm{A}$
On state input current (pin 2), $V_{\text {IN }}=5 \mathrm{~V}$	$I_{\text {IN(on) }}$	10	25	70	$\mu \mathrm{A}$
Status invalid after positive input slope $\text { (short circuit) } \quad T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST SC) }}$	${ }^{--}$	--	450	$\mu \mathrm{S}$
Status invalid after positive input slope (open load) $\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST) }}$	300	--	1400	$\mu \mathrm{s}$
Status output (open drain)					
Zener limit voltage $\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$, $\mathrm{I}_{\text {ST }}=+50 \mathrm{uA}$:	$V_{\text {ST(high }}$	5.0	6	--	V
ST low voltage $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{ST}}=+1.6 \mathrm{~mA}$:	$V_{\text {ST (low) }}$	--	--	0.4	

[^2]Truth Table

	Inputlevel	Output level	Status				
			$\begin{gathered} 412 \\ \text { B2 } \end{gathered}$	$\begin{gathered} 410 \\ \text { D2 } \end{gathered}$	$\begin{gathered} 410 \\ \text { E2/F2 } \end{gathered}$	$\begin{gathered} 410 \\ \text { G2 } \end{gathered}$	$\begin{gathered} 410 \\ \mathrm{H} 2 \end{gathered}$
Normal operation	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$			
Open load	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \left.{ }^{13}\right) \\ & \text { H } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$
Short circuit to GND	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Short circuit to V_{bb}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} H \\ H\left(L^{14)}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H}\left(\mathrm{~L}^{14)}\right) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H}\left(\mathrm{~L}^{14)}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$
Overtemperature	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$				
Undervoltage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L}^{15)} \\ & \mathrm{L}^{15)} \end{aligned}$	$\begin{aligned} & \left.\mathrm{L}^{15}\right) \\ & \left.\mathrm{L}^{15}\right) \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
Overvoltage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$

$L=$ "Low" Level	$X=$ don't care $\quad Z=$ high impedance, potential depends on external circuit
$H=$ "High" Level	Status signal after the time delay shown in the diagrams (see fig 5 . page 12...13)

Terms

Input circuit (ESD protection)

ZD ${ }_{11} 6 \mathrm{~V}$ typ., ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

[^3]
Status output

ESD-Zener diode: 6 V typ., max 5 mA ;
RST(ON) < 250Ω at 1.6 mA , ESD zener diodes are not to be used as voltage clamp at DC conditions.
Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Short circuit detection

Fault Condition: $V_{\mathrm{ON}}>8.5 \mathrm{~V}$ typ.; IN high

Inductive and overvoltage output clamp

Von clamped to 68 V typ.

Overvolt. and reverse batt. protection

$V_{\mathrm{Z} 1}=6.2 \mathrm{~V}$ typ., $V_{\mathrm{Z} 2}=70 \mathrm{~V}$ typ., $R_{\mathrm{GND}}=150 \Omega, \mathrm{R}_{\mathrm{IN}}$,
$R \mathrm{ST}=15 \mathrm{k} \Omega$

Open-load detection
ON-state diagnostic condition: $V_{\mathrm{ON}}<R_{\mathrm{ON}}{ }^{*} I_{\mathrm{L}(\mathrm{OL})}$; IN high

GND disconnect

Any kind of load. In case of Input=high is $V_{O U T} \approx V_{\operatorname{IN}}-V_{\operatorname{IN}\left(\mathrm{T}_{+}\right)}$. Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{V}_{\mathrm{ST}}=$ low signal available.

GND disconnect with GND pull up

Any kind of load. If $\mathrm{V}_{\mathrm{GND}}>\mathrm{V}_{\mathrm{IN}}-V_{\mathrm{IN}\left(\mathrm{T}_{+}\right)}$device stays off Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{V}_{\mathrm{ST}}=$ low signal available.
$V_{b b}$ disconnect with energized inductive load

Normal load current can be handled by the PROFET itself.
V_{bb} disconnect with charged external inductive load

If other external inductive loads L are connected to the PROFET, additional elements like D are necessary.

Inductive Load switch-off energy dissipation

Energy stored in load inductance:

$$
E_{L}=1 /\left.2 \cdot L \cdot\right|_{L} ^{2}
$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$
E_{\mathrm{AS}}=\mathrm{E}_{\mathrm{bb}}+\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{R}}=\mathrm{V}_{\mathrm{ON}(\mathrm{CL})} \cdot \dot{L}_{\mathrm{L}}(\mathrm{t}) \mathrm{dt},
$$

with an approximate solution for $R_{L}>0 \Omega$:

$$
E_{A S}=\frac{I_{L} \cdot L_{L}}{2 \cdot R_{L}} \cdot\left(V_{b b}+\left|V_{O U T(C L)}\right|\right) \cdot \ln \left(1+\frac{I_{L} \cdot R_{L}}{\left|V_{\text {OUT }(C L)}\right|}\right)
$$

Maximum allowable load inductance for a single switch off

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection with 150Ω in GND connection, protection against loss of ground

Type BTS	412 B 2	410D2	410E2	410F2	410G2	410H2	307	308
Logic version	B	D	E	F	G	H		
Overtemperature protection with hysteresis								
$T_{j}>150^{\circ} \mathrm{C}$, latch function $\left.{ }^{16}\right)^{17}$) $T_{\mathrm{j}}>150^{\circ} \mathrm{C}$, with auto-restart on cooling	X	X	X	X	X	X	X	X
Short circuit to GND protection								
switches off when $V_{\mathrm{ON}}>3.5 \mathrm{~V}$ typ. and $V_{\text {bb }}>7 \mathrm{~V}$ typ ${ }^{16)}$ (when first turned on after approx. $150 \mu \mathrm{~s}$)						X		X
switches off when $V_{\mathrm{ON}}>8.5 \mathrm{~V}$ typ. ${ }^{16)}$ (when first turned on after approx. $150 \mu \mathrm{~s}$) Achieved through overtemperature protection	X	X	X	X	x		X	
Open load detection								
in OFF-state with sensing current $30 \mu \mathrm{~A}$ typ. in ON-state with sensing voltage drop across power transistor	X	X	X	X	X	X	X	X
Undervoltage shutdown with auto restart	X	X	X	X	X	X	X	X
Overvoltage shutdown with auto restart ${ }^{18}$)	X	X	X	X	X	X	-	X
Status feedback for								
overtemperature	X	X	X	X	X	X	X	X
short circuit to GND	x	X	X	x	-	x	x	x
short to V_{bb}	x	-19)	- ${ }^{19}$	-19)	-19)	x	x	x
open load	X	X	X	x	X	X	X	X
undervoltage	X	X	-	-	-	-	X	-
overvoltage	X	X	-	-	-	-	-	-
Status output type								
CMOS	X	X	x	x	x	x	x	X
Output negative voltage transient limit (fast inductive load switch off)								
to $V_{\mathrm{bb}}-V_{\mathrm{ON}(\mathrm{CL}}$	X	x	X	x	x	x	x	X
Load current limit								
high level (can handle loads with high inrush currents) low level (better protection of application)	X	X	X	X	X	X	X	X
Protection against loss of GND	X	X	X	X	X	X	X	X

${ }^{16}$ Latch except when $V_{\mathrm{bb}}-V_{\mathrm{OUT}}<V_{\mathrm{ON}(\mathrm{SC})}$ after shutdown. In most cases $V_{\text {OUT }}=0 \mathrm{~V}$ after shutdown ($V_{\mathrm{OUT}} \neq$ 0 V only if forced externally). So the device remains latched unless $V_{\mathrm{bb}}<V_{\mathrm{ON}(\mathrm{SC})}$ (see page 4). No latch between turn on and $\mathrm{t}_{\mathrm{d}(\mathrm{SC})}$.
${ }^{17}$ With latch function. Reseted by a) Input low, b) Undervoltage
${ }^{18}$ No auto restart after overvoltage in case of short circuit
${ }^{19}$ Low resistance short V_{bb} to output may be detected in ON -state by the no-load-detection

Timing diagrams

Figure 1a: V_{bb} turn on:

in case of too early $V_{\mathrm{IN}}=$ high the device may not turn on (curve A) $\left.t_{\mathrm{d}(\mathrm{bb}} \mathrm{IN}\right)$ approx. $150 \mu \mathrm{~s}$

Figure 2a: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit,

$\mathrm{t}_{\mathrm{d}}(\mathrm{SC})$ approx. $--\mu \mathrm{s}$ if $V_{\mathrm{bb}}-V_{\text {Out }}>8.5 \mathrm{~V}$ typ.

Figure 3b: Turn on into overload,

Heating up may require several seconds,
$V_{\text {bb }}-V_{\text {OUT }}<8.5 \mathrm{~V}$ typ.

BTS 410 F2

Figure 3c: Short circuit while on:

${ }^{* *}$) current peak approx. $20 \mu \mathrm{~s}$

Figure 4a: Overtemperature,
Reset if (IN=low) and ($T_{\mathrm{j}}<T_{\mathrm{jt}}$)

${ }^{*}$) ST goes high, when $V_{\mathrm{IN}}=$ low and $T_{\mathrm{j}}<T_{\mathrm{jt}}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

$\mathrm{t}_{\mathrm{d}(\mathrm{ST} \text { OL1) }}=\mathrm{tbd} \mu \mathrm{s}$ typ., $\mathrm{t}_{\mathrm{d}(\mathrm{ST} \text { OL2) }}=\mathrm{tbd} \mu \mathrm{s}$ typ

BTS 410 F2
Figure 7a: Overvoltage:
Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

charge pump starts at $V_{\mathrm{bb}(\mathrm{ucp})}=5.6 \mathrm{~V}$ typ.

Figure 9a: Overvoltage at short circuit shutdown:

BTS 410 F2

Package and Ordering Code

All dimensions in mm

SMD TO-220AB/5, Opt. E3062 Ordering code
BTS410F2 E3062A \mid T\&R: ${ }^{2}$ Q67060-S6103-A4

Changed since 04.96

Date	Change
Mar. 1997	EAS maximum rating and diagram and ZthJC diagram added
	ESD capability (except Input) specified to 2kV, RthJA SMD specified
	lL(GND high) max reduced from 10 to 1 mA
	Option Overview table columns for BTS307/308 added
	Fig. 1a: V $_{\text {out }}$ spike at $\mathrm{V}_{\text {bb-turn-on }}$ added

Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{2}$) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ)}}$ require an external current limit for the GND and status pins, e.g. with a 150Ω resistor in the GND connection and a $15 \mathrm{k} \Omega$ resistor in series with the status pin. A resistor for the protection of the input is integrated.
 ${ }^{3}$) $\quad R_{l}=$ internal resistance of the load dump test pulse generator
 ${ }^{4}$) $\quad \mathrm{V}_{\text {Load dump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 ${ }^{5}$) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm}^{*} 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air.

[^1]: ${ }^{6}$) At supply voltage increase up to $V_{b b}=5.6 \mathrm{~V}$ typ without charge pump, $V_{\text {OUT }} \approx V_{b b}-2 \mathrm{~V}$
 ${ }^{7}$) Meassured without load. See also $V_{O N(C L)}$ in table of protection functions and circuit diagram page 7.
 ${ }^{8}$) Add $I_{S T}$, if $I_{\text {ST }}>0$, add I_{IN}, if $V_{\text {IN }}>5.5 \mathrm{~V}$

[^2]: ${ }^{12)}$ If a ground resistor $\mathrm{R}_{\mathrm{GND}}$ is used, add the voltage drop across this resistor.

[^3]: ${ }^{13)}$ Power Transistor off, high impedance, versions BTS 410H, BTS 412B: internal pull up current source for open load detection.
 ${ }^{14}$) Low resistance short $V_{\text {bb }}$ to output may be detected in ON-state by the no-load-detection
 ${ }^{15}$) No current sink capability during undervoltage shutdown

