DESCRIPTION

The LX1695 is a general purpose DC to PWM generator with supervisory functions for switched Royer CCFL inverter modules used in single or multiple lamp desktop monitors and LCD TV sets. It integrates a PWM that generates digital (burst mode) dimming from a DC brightness control input, and a protection circuit that shuts off the Royer oscillator if lamp ignition does not occur in a timely manner, or in the event of one or more open lamps. Strike and initial open lamp timeout is user programmable with an external RC, and PWM frequency is programmable with a single external resistor.

IMPORTANT: For the most current data, consult MICROSEMI's website:

- DC to PWM Generator
- Single or Multi Lamp Designs
- Desktop Monitors
- LCD TV
- Industrial Displays

THERMAL DATA

M Plastic 8-Pin DIP

THERMAL RESISTANCE-JUNCTION Ambient, $\theta_{\text {JA }} \quad \mathbf{8 5}^{\circ} \mathrm{C} / \mathrm{W}$

DM Plastic 8-Pin SOIC

THERMAL RESISTANCE-JUNCTION AMBIENT, $\theta_{\text {JA }}$
$163^{\circ} \mathrm{C} / \mathrm{W}$

RoHS / Pb-free 100\% Matte Tin Lead Finish

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$.
The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS

| Parameter | LX1695 | | Units | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Min | Typ | | |
| Supply Voltage $\left(V_{D D}\right)$ | 4.5 | | 5.5 | V |
| BRITE Linear DC Voltage Range | 0 | | 1.95 | V |
| DIM_FREQ, ENABLE, FLT_DLY | 0 | | $\mathrm{~V}_{\mathrm{DD}}$ | V |
| Royer Output Frequency Range | 30 | 250 | 600 | Hz |

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, specifications apply over the range: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{R}_{\text {DIM_FREQ }}=25.2 \mathrm{~K}$ ohms, Royer $=1000 \mathrm{pF}$ ENABLE $=\mathrm{V}_{\mathrm{DD}}$, BRITE_IN $=1.0 \mathrm{~V}$, FLT_DLY $=3 \mathrm{~V}$

Parameter	Symbol	Test Conditions	LX1695			Units
			Min	Typ	Max	
- POWER						
$\mathrm{V}_{\text {Vod }}$ Dynamic Current	$I_{\text {D }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		4.0		mA
Output Off Mode Current	I_OUT OFF	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$; Enable $\leq 0.4 \mathrm{~V}$		3.5		mA
Enable Threshold	V_{H}		2			V
	$\mathrm{V}_{\text {LL_ }}$				0.8	V
ENABLE Input High Current		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; ENABLE $=5 \mathrm{~V}$	-1	0.01	1	$\mu \mathrm{A}$
ENABLE Input Low Current	$\mathrm{ILLENable}^{\text {a }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; ENABLE $=0 \mathrm{~V}$	-1	-0.01	1	$\mu \mathrm{A}$
UV Threshold	UV ${ }_{\text {TH }}$	$V_{D D}$ Rising	3.7	4	4.3	V
UV Hysteresis				350		mV
- ROYER						
ROYER Output Sink Current	$\mathrm{I}_{\text {SK_ROYER }}$	BRITE_IN $=2 \mathrm{~V}$ ROYER $=0.4 \mathrm{~V}$	40	75		mA
ROYER Output Source Current	$\mathrm{I}_{\text {SRC_ROYER }}$	BRITE_IN $=2 \mathrm{~V}$ ROYER $=$ VDD-0.5V		100		mA
ROYER Output Rise Time	T_{R}	$\mathrm{Cout}^{\text {out }}$ = 1000pF		20	100	nS
ROYER Output Fall Time	TF	$\mathrm{C}_{\text {out }}=1000 \mathrm{pF}$		20	100	nS
- DIM FREQ						
DIM_FREQ Voltage	$V_{\text {dim_frea }}$			1		V
DIM_FREQ ISC	ISC ${ }_{\text {dim_FREQ }}$	DIM_FREQ $=0 \mathrm{~V}$; self limiting		-600		$\mu \mathrm{A}$
LOW ROYER Output Frequency	$\mathrm{F}_{\text {Royer Low }}$	$\mathrm{R}_{\text {DIM_FREQ }}=215 \mathrm{~K}$	27	30	33	Hz
NOMINAL ROYER Output Frequency	$\mathrm{F}_{\text {Royer nom }}$	$\mathrm{R}_{\text {DIM_FREQ }}=25.2 \mathrm{~K}$	237	250	263	Hz
HIGH ROYER Output Frequency	$\mathrm{F}_{\text {ROYER HIGH }}$	$\mathrm{R}_{\text {DIM_FREQ }}=10 \mathrm{~K}$	555	600	645	Hz
DIM_FREQ IIH	IIH ${ }_{\text {dim_FREQ }}$	DIM_FREQ $=3 \mathrm{~V}$; No R RIM_FREQ		120		$\mu \mathrm{A}$
DIM_FREQ IIL	IILIIM_FREQ	DIM_FREQ $=0.4 \mathrm{~V}$; No R $\mathrm{DIM}_{\text {_ }}$ FREQ		-475		$\mu \mathrm{A}$
EXT CLK ROYER Output Frequency	$\mathrm{F}_{\text {Royer Ext_CLK }}$	DIM_FREQ $=15 \mathrm{KHz}$ to 300 KHz Square Wave		$\frac{\text { DIM_FREQ }}{512}$		Hz
- BRITE_IN / DUTY CYCLE CONTROL						
BRITE_IN Input High Current	$\mathrm{I}_{\mathrm{H}_{\text {_ }} \text { BRITE_IN }}$	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$; BRITE_ $\mathrm{IN}=2 \mathrm{~V}$	-1	0.01	1	$\mu \mathrm{A}$
BRITE_IN Input Low Current	IL__BRITE_IN	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$; BRITE_IN $=0 \mathrm{~V}$	-1	-0.01	1	$\mu \mathrm{A}$
Duty Cycle 0	DC 0	BRITE_IN = OV;	2.5	3.125	5	\%
Duty Cycle 1	DC_{1}	BRITE_IN = 1V		52		\%
Duty Cycle 2	DC_{1}	BRITE_IN $=1.95$	95	100		\%
VDAC Ramp Valley Voltage	$\mathrm{VDAC}_{\text {RP }}$	For reference only		40		mV
VDAC Ramp Peak Voltage	$\mathrm{VDAC}_{\text {RV }}$	For reference only		1.9		V
- OLSNS / FAULT DELAY THRESHOLD						
OLSNS Threshold Voltage	$\mathrm{V}_{\text {TH_SLSNS }}$		2.92	3	3.05	V
OLSNS Clock Cycle Delay	OLSNS ${ }_{\text {Dr }}$	Note 1		48		cycles
FLT_DLY Threshold	FLT_DLY ${ }_{\text {TH }}$			2.1		V

Note 1 : If duty cycle is set to less than 10% open lamp sensing is internally disabled

Figure 1 - Simplified Block Diagram

APPLICATION CIRCUIT

Figure 2 - Typical Application

THEORY OF OPERATION

Digital Dimming PWM

A DC voltage to PWM converter provides an accurate digital dimming brightness control by varying Royer on time from 100% to as low as 3.125%. Minimum duty cycle is implemented by causing the Royer output signal to be high any time the DAC clock count is less than 8 . Since the DAC is dual slope, this insures duty will be at least 16 out of the full 512 counts per cycle (See figure 3).

The PWM includes an on chip oscillator that provides dimming burst rates between 30 and 600 Hz . The oscillator frequency is trimmed to $\pm 3 \%$ accuracy (+20 to $+65^{\circ} \mathrm{C}$) to prevent unwanted display artifacts that can be caused by the lamp dimming frequency beating with the displays video.

Burst frequency can be controlled in two ways: An external resistor from DIM_FREQ to ground sets the frequency of the on chip oscillator. The formula for calculating a given ROYER output frequency based on the DIM_FREQ resistor to ground is as follows:
$R_{\text {DIM_FREQ }}=\frac{(1 / \text { ROYER Output Frequency }-184.32 \mathrm{E}-6)}{151.23 \mathrm{E}-9}$
As an example, if a ROYER output frequency of 120 Hz is desired then:
$\mathrm{R}_{\text {DIM_FREQ }}=\frac{(1 / 120-184.32 \mathrm{E}-6)}{151.23 \mathrm{E}-9}=53885$
The closed nominal 1% resistor value would be 53.6 K , nominally yielding a just slightly higher than 120 Hz output.

Dimming frequency becomes the oscillator frequency divided by 512 or a logic level pulse supplied through a 10 K resistor to the DIM_FREQ pin overrides the internal timing circuits causing the dimming frequency to be input frequency divided by 512. The 10 K external series resistor limits current into the ESD structure at the DIM_FREQ pin.

The duty cycle at the Royer output is directly and linearly proportional to the DC level of signal BRITE_IN. Two (2.0) volts corresponds to 100% duty and zero volts corresponds to minimum duty. Minimum duty is internally limited to 3.125% even if BRITE_IN is zero volts

High input impedance ($>10 \overline{\mathrm{M}} \Omega$) at the BRITE_IN pin makes it easy to set up minimum and maximum duty cycle outputs using only a few external resistors. The input pin is also directly compatible with Microsemi's LX1970 and 1971 ambient light sensors that provide automatic brightness control.

Start-up Fault Delay

Open lamp detection is disabled for a programmable period after power turn-on, giving the Royer oscillators sufficient time to ignite all lamps. An external resistor and capacitor at pin FLT_DLY controls this time. The capacitor begins to charge at power on, and its exponential voltage rise is compared to a 2.1 volt reference to signal the end of fault delay interval. This condition is latched and then the external capacitor is discharged by an on chip NMOS transistor. Discharge time is about 10% of charge time, and the capacitor value can be up to 10 uF . The resistor will typically be less than 1 megohm.

OPEN LAMP DETECTION

The open lamp detection circuit can sense if any lamp in the entire array is not conducting and shut the system off to prevent possible catastrophic system failure. Lamp current sensing is gated only during Royer on time and is delayed from its leading edge so that reliable detection is provided, even while dimming with very low duty cycles. Delay is 48 counts of the DAC clock beginning when Royer goes high. This gives the actual Royer oscillators time to come up to full power before testing for a broken lamp. At low dimming levels when the output duty cycle less than 12.5% open lamp sensing is internally disabled. This corresponds to about 0.25 V on the BRITE_IN pin.

An external R/C time out at pin FLT_DLY programs a delay after power-on to mask fault detection while the lamps are igniting. Typically this time-out is in the one to two second range, but can be as long as 5 seconds. Maximum recommended value of the resistor is 1 megohm to prevent error due to leakage current on the PCB, and low leakage ceramic capacitors are recommended.

Typically this time-out is in the one to two second range, but can be as long as 5 seconds.

LX1695
Switched Royer CCFL Inverter Monitor IC
Production Data Sheet

Figure 3 - Timing Diagram

PACKAGE DIMENSIONS

DM 8-Pin Plastic SOIC

Dim	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.83	5.00	0.190	0.197
B	3.81	3.94	0.150	0.155
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
F	-	0.77	-	0.030
G	1.27		0.050	
	BSC		BSC	
J	0.19	0.25	0.007	0.010
K	0.13	0.25	0.005	0.010
L	4.80	5.21	0.189	0.205
M	-	$8{ }^{\circ}$	-	8°
P	5.79	6.20	0.228	0.244
*LC	-	0.10	-	0.004

*Lead Coplanarity

M 8-Pin Plastic Mini Dip

Dim	Milcimeters		INCHES	
	MIN	MAX	MIN	MAX
A	-	10.16	-	0.400
B	6.10	6.60	0.240	0.260
C	-	5.08	-	0.200
D	0.38	0.51	0.0145	0.020
F	0.76	1.52	0.030	0.060
G	2.54 BSC		0.100 BSC	
H	0.76	1.27	0.030	0.050
J	0.20	0.38	0.008	0.015
K	3.18	-	0.125	-
L	7.62 BSC		0.300 BSC	
M	-	15°	-	15°
*Lead Coplanarity				

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side. Lead dimension shall not include solder coverage.

\downarrow NOTES

PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

