Dual Low Side Driver

Features

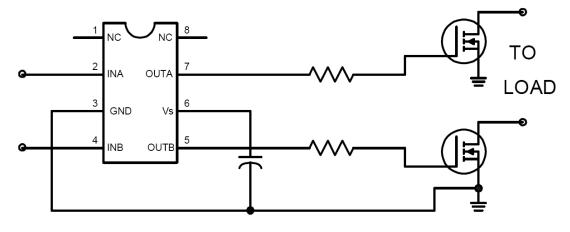
- Gate drive supply range from 6V to 20V
- CMOS Schmitt-triggered inputs
- Matched propagation delay for both channels
- Outputs in phase with inputs

Product Summary

Package Options

I _{O+/-}	1.5A / 1.5A
Vout	6V – 20V
Ton/off (typ.)	85 & 65 ns

Description


The IR25600 is a low voltage, high speed power MOSFET and IGBT driver. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. Propagation delays between two channels are matched.

Ordering Information

Dees Dert Number		Standar	d Pack	Orderskie Bert Number
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IR25600SPBF	SO8N	Tube	95	IR25600SPBF
IR25600SPBF	SO8N	Tape and Reel	2500	IR25600STRPBF

Typical Connection Diagram

www.irf.com © 2012 International Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
Vs	Fixed supply voltage	-0.3	25	
Vo	Output voltage	-0.3	V _S + 0.3	V
V _{IN}	Logic input voltage	-0.3	V _S + 0.3	
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	_	200	°C/W
TJ	Junction temperature	—	150	_
T _S	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		300	

Recommended Operating Conditions

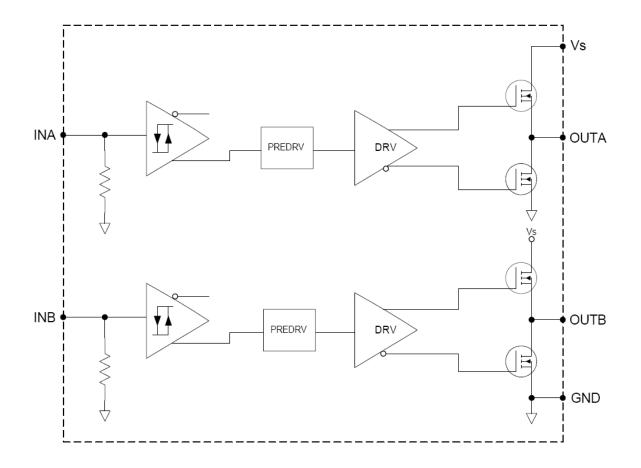
For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages references to GND.

Symbol	Definition	Min.	Max.	Units
Vs	Fixed supply voltage	6	20	
Vo	Output voltage	0	Vs	V
V _{IN}	Logic input voltage (IN & SD)	0	Vs	
T _A	Ambient temperature	-40	125	°C

Dynamic Electrical Characteristics

 V_{BIAS} (V_S) = 15V, CL = 1000 pF and T_A = 25°C unless otherwise specified.

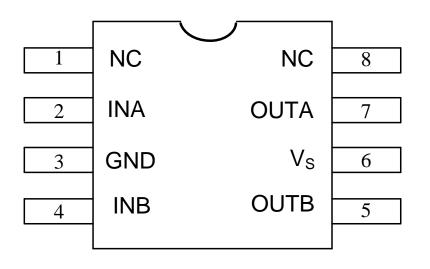
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	—	85	160		
t _{off}	Turn-off propagation delay	_	65	150	ns	Figure 4
tr	Turn-on rise time	_	15	35	115	rigure 4
t _f	Turn-off fall time		10	25		


Static Electrical Characteristics

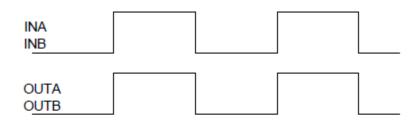
 V_{BIAS} (V_S) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND and are applicable to input leads INA and INB. The V_O and I_O parameters are referenced to GND and are applicable to the respective output leads: OUTA and OUTB.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage (OUTA = HI and OUTB = HI)	2.7	_			
VIL	Logic "0" input voltage (OUTA = LO and OUTB = LO)	_	_	0.8	V	
V _{OH}	High level output voltage, V_{BIAS} - V_{O}	_	_	1.2		I _O = 0A
V _{OL}	Low level output voltage, V _O	_	_	0.1		I _O = 0A
I _{QS}	Quiescent V _S supply current	—	100	200		$V_{IN} = 0V \text{ or } V_S$
I _{IN+}	Logic "1" input bias current (OUT = HI)	_	5	15	μA	$V_{IN} = V_S$
I _{IN-}	Logic "0" input bias current (OUT = LO)	_	-10	-30		$V_{IN} = 0V$
I _{O+}	Output high short circuit pulsed current	1.5	2.3		A	V _O = 0V, V _{IN} = V _S PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current	1.5	3.3			V _O = 15V , V _{IN} = 0V PW ≤ 10 µs

Functional Block Diagram

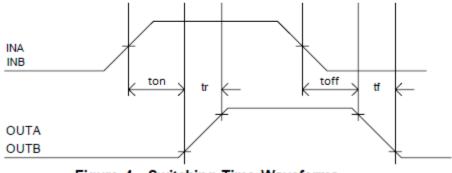
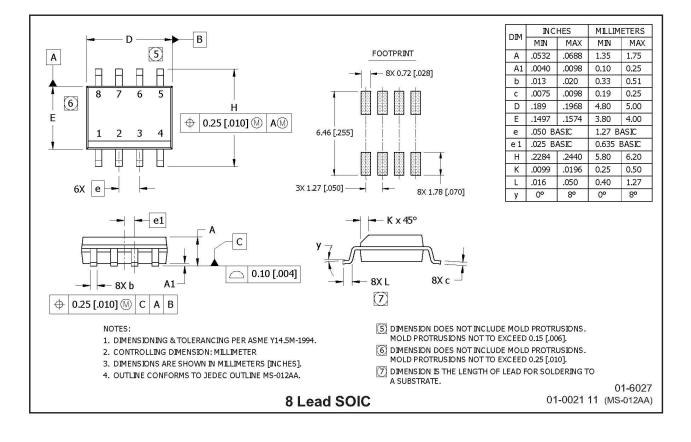


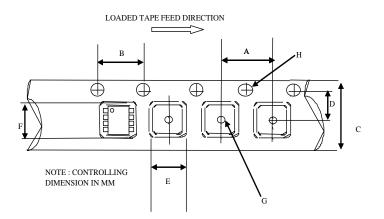
Lead Definitions


Symbol	Description
INA	Logic input gate driver output (OUTA), in phase
INB	Logic input gate driver output (OUTB), in phase
OUTA	Gate drive output A
OUTB	Gate drive output B
Vs	Supply Voltage
GND	Ground

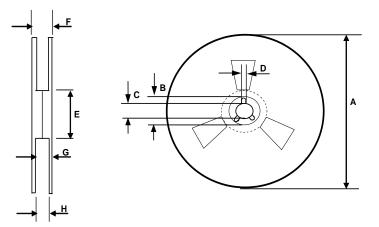
Lead Assignments

Advance information


Figure 4. Switching Time Waveforms

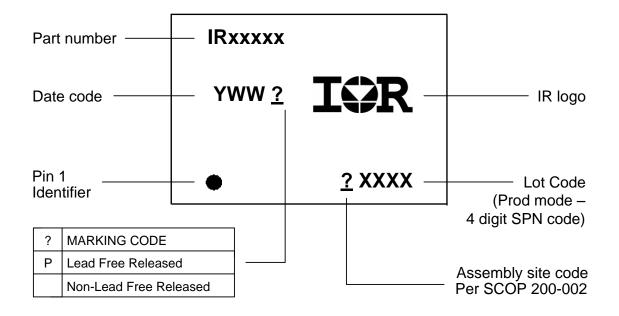
Package Details



Tape and Reel Details (SO8N)

CARRIER TAPE DIMENSION FOR 8SOICN

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Qualification Information[†]

	Industrial ^{††}
	(per JEDEC JESD 47E)
Qualification Level	Comments: This family of ICs has passed JEDEC's
	Industrial qualification. IR's Consumer qualification level is
	granted by extension of the higher Industrial level.
Majatura Sanaitivity Laval	MSL2 ^{†††}
Moisture Sensitivity Level	(per IPC/JEDEC J-STD-020C)
RoHS Compliant	Yes

- + Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- ++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- +++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center <u>http://www.irf.com/technical-info/</u>

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

10

www.irf.com © 2012 International Rectifier