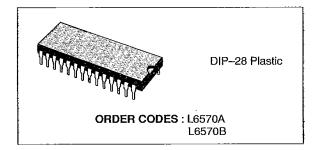
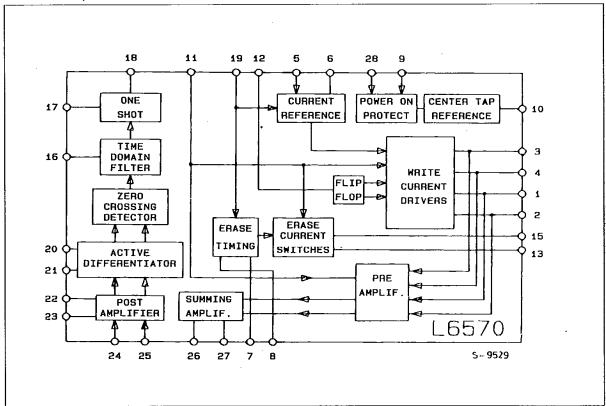


L6570A L6570B

S G S-THOMSON


2-CHANNEL FLOPPY DISK READ/ WRITE CIRCUITS

- TWO GAIN VERSIONS (A AND B)
- COMPATIBLE WITH 8", 5.25" AND 3.5" DRIVES.
- INTERNAL WRITE AND ERASE CURRENT SOURCES, EXTERNALLY SET
- INTERNAL CENTER TAP VOLTAGE SOURCE
- CONTROL SIGNALS ARE TTL COMPATIBLE
- TTL SELECTABLE WRITE CURRENT BOOST
- OPERATES ON + 12 V AND + 5 V POWER SUP-PLIES


DESCRIPTION

The L6570A/ B are integrated circuits which perform the functions of generating write signals and amplifying and processing read signals required for a double sided floppy disk drive. The L6570A fea-

tures a gain of 85 min and the L6570B of 300 min. All logic inputs and outputs are TTL compatible and all timing is externally programmable for maximum design flexibility.

BLOCK DIAGRAM

September 1988

1/7

ABSOL	JTE MAXIMUM RATIN	IGS G S-THOMSON	T-52-38	,
Symbol	-	Parameter	Test Conditions	Unit
Vcc	5V Supply Voltage		7	V
V _{DD}	12V Supply Voltage		14	V
T _{stg}	Storage Temperature		- 65 to 150	°C
T_{amb}	Ambient Operating Temp	erature	0 to + 70	°C
T _j .	Junction Operating Temp	erature	0 to + 130	
Vi	Logic Input Voltage		- 0.5 to 7.0	٧
Ptot	Power Dissipation		500	mW
ONNE	CTION DIAGRAM (top	view)	·	•.
		+HD0 1 28 Vcc		
		-HD0 2 27 3 +A0		
		+HD1 3 26 7-A0		
	· ·	-HD1		
		CB 5 24 -IN		
		Rw □ 6 23 □ G1		
		ReCe 7 22 3 62		-
	•	Re 🗆 8 - 21 🗆 D1	·	
		Vdd □ 9 20 □ D2		
		Vot 10 19 R/W		
		HSO/HS1		•
-		VOI 12 17 PW	•	•
	•	E1	•	
		L		
		5-9528		-
				·
HERM	AL DATA			
Rth J-amb	Thermal Resistance Junct	ion-ambient \(\lambda	Max 100	°C/W
-				
			-	
		·		•
	•	•		
				ė
-				
		•	•	
	•	·	•	
		•		
	•	.		
		·	•	
77.		SGS-THOMSON — NICROBLECTRONICS		

S G S-THOMSON.

T-52-38

ELECTRICAL CHARACTERISTICS (unless otherwise specified, 4.75V \leq V_{CC} \leq 5.25V ; 11.4V \leq V_{DD} \leq 12,6V ; 0 °C \leq T_{amb} \leq 70 °C ; R_W = 430 Ω ; R_{ED} = 62 KΩ ; C_E = 0.012 μF ; R_{EH} = 62 KΩ ; R_{EC} = 220Ω)

	Symbol	Parameter	Test Condtions	Min.	Тур.	Max.	Unit
--	--------	-----------	----------------	------	------	------	------

POWER SUPPLY CURRENTS

lcc	5V Supply Current	Read Mode Write Mode	35 38	mA mA
I _{DD}	12V Supply Current	Read Mode L6570A L6570B	26 35	mA mA
		Write Mode (exclude Write and Erase currents) L6570A L6570B	24 35	mA mA

LOGIC SIGNALS-READ/WRITE (R/W), CURRENT BOOST (CB)

L	٧ _{١L}	Input Low Voltage			0.8	V
	l _{i∟}	Input Low Current	V _{IL} = 0.4V		- 0.4	mA
	V _{tH}	Input High Voltage		2.0		V
	l _{IH}	Input High Current	V _{IH} = 2.4V		20	μА

LOGIC SIGNALS-WRITE DATA INPUT (WDI), HEAD SELECT (HS0/HS1)

-[V _T +	Threshold Voltage, Positive-going		1.4	 1.9	V
	V _T -	Threshold Voltage, Negative-going		0.6	1.1	٧
	V _T +, V _T -	Hysteresis		0.4		٧
	I _{IH} .	Input High Current	V _{IH} = 2.4V		20	μА
. [l _{ΙĽ}	Input Low Current	V _{IL} = 0.4V		- 0.4	mA

CENTER TAP VOLTAGE REFERENCE

V _{CT}	Output Voltage	I _{WC} + I _E = 3 mA to 60 mA	V _{DD} -1.5	V _{DD} -0.5	٧
Vcc	Turn-Off Threshold		4.0		٧
V_{DD}	Turn-Off Threshold		9.6		٧
V _{CT}	Disabled Voltage			1.0	V

ERASE OUTPUTS (E1, E0)

	Unselected Head Leakage	V _{EO} , V _{E1} = 12.6V		100	μΑ
V_{E1} , V_{E0}		l _E = 50 mA		0.5	V

SGS-THOMSON MICROELECTRORICS

3/7

L6570A-L657 <u> 7929237 0022181</u> 30E T-52-38 G Z-THOMZON **ELECTRICAL CHARACTERISTICS** (Continued) Symbol **Test Conditions** Parameter. Min. Max. Unit WRITE CURRENT Unselected Head Leakage V_{E1} , $V_{E0} = 12.6V$ 25 μΑ Write Current Range $R_W = 820 \Omega \text{ to } 180 \Omega$ 3 10 mΑ **Current Reference Accuracy** $l_{WC} = 2.3/R_{W}$ -5 +5 % V_{CB} (current boost) = 0.5V Write Current Unbalanced $I_{WC} = 3 \text{ mA to } 10 \text{ mA}$ 1.0 . % Differential Head Voltage Swing ΔI_{WC} ≤ 5 % 12.8 V_{pk} Current Boost $V_{CB} = 2.4V$ 1.25 lwc 1.35 lwc **ERASE TIMING** Erase Delay Range $R_{ED} = 39 \text{ K}\Omega \text{ to } 82 \text{ K}\Omega$ 0.1 1.0 ms $C_E = 0.0015 \,\mu\text{F}$ to 0.043 μF Erase Delay Accuracy $T_{ED} = 0.69 R_{ED} C_{E}$ - 15 + 15 $R_{ED} = 39 \text{ K}\Omega$ to 82 K Ω ΔTED x100 % $C_E = 0.0015 \,\mu\text{F} \text{ to } 0.043 \,\mu\text{F}$ TED Erase Hold Range R_{EH} + R_{ED} = 78 K Ω to 164 K Ω 0.2 2.0 ms $C_E = 0.0015 \ \mu F$ to 0.043 μF $T_{EH} = 0.69 (R_{ED} + \dot{R}_{ED}) C_E$ Erase Hold Accuracy - 15 % + 15 R_{EH} + R_{ED} = 78 K Ω to 164 K Ω ΔT_{ED} x 100 % $C_E = 0.0015 \ \mu F$ to 0.043 μF $T_{\,\text{ED}}$ ELECTRICAL CHARACTERISTICS (Unless otherwise specified: VIN (Preamplifier) =10mVpp sine wave, DC coupled to center tap. Summing amplifier load = 2 K Ω line-line, AC coupled. V_{IN} (Postamplifier)= 0.2 V_{pp} sine wave, AC coupled; R_G = open; Data pulse load = 1 $K\Omega$ to Vcc ; C_D = 240 pF ; C_{TD} = 100 pF ; R_{TD} = 7.5 KΩ ; C_{PW} = 47 pF ; R_{PW} = 7.5 KΩ). **READ MODE** Symbol **Parameter Test Conditions** Min. Max. Unit Typ. DDE AMOUNTED: OUMANING AMOUNTED

Diff	Voltage Gain	Freq. = 250 KHz	L6570A L6570B	85 300	115 400	1 1/1/1/
Ban	dwidth (- 3 dB)			3		MHz
Gai	n Flatness	Freq. = DC to 1.5 M	Hz		± 1.0) dB
Diff.	Input Impedance	Freq. = 250 KHz		20		ΚΩ
Max	c. Diff. Output Voltage Swing	V _{IN} = 250 KHz Sine THD ≤ 5 %	Wave L6570A L6570B	2.5 4.0		V _{pp}
I	all Signal Difference Output iistance	I _O ≤ 1.0 mA _{pp}			75	Ω
Cor	nmon Mode Rejection Ratio	V _{IN} = 300 mV _{pp} @ Inputs Shorted	500 KHz L6570A L6570B	50 40		dB

4/7	r ==	SGS-THOMSON MICROELECTRONICS	
608	_ 7/	MICROELECTRONICS	

Z G Z-THOMZON

T-52-38

ELECTRICAL	CHARACTERISTICS	(Continued)
	CHARACILINGING	(Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit

PREAMPLIFIER-SUMMING AMPLIFIER

	Power Supply Rejection Ratio	$\Delta V_{DD} = 300 \text{ mV}_{pp} @ 500 \text{ KHz}$ Inputs Shorted to V_{CT}	50			dB
	Channel Isolation	Unselected Channel V _{IN} =100 mV _{pp} @ 500 KHz. Selected Channel Input Connected to V _{CT}	40		·	dB
	Equivalent Input Noise	Power BW = 10 kHz to 1 MHz Inputs Shorted to V _{CT}			10	μV_{rms}
V _{CT}	Center Tap Voltage			1.5		V

POSTAMPLIFIER-ACTIVE DIFFERENTIATOR

AO, Diff. Voltage Gain + IN, - IN to D1, D2	Freq. = 250 KHz	8.5	11.5	V/V
 Bandwidth (- 3dB) + IN, - IN to D1, D2	$C_D = 0.1 \ \mu\text{F}, R_D = 2.5 \ \text{K}\Omega$	3		MHz
 Gain Flatness + IN, - IN to D1, D2	Freq. = DC to 1.5 MHz C_D = 0.1 μ F, R_D = 2.5 $K\Omega$		± 1.0	dB
Max. Diff. Output Voltage Swing	V _{IN} = 250 KHz Sine Wave, AC Coupled. ≤ 5 % THD in Voltage across C _D	5.0		V _{pp}
Max. Diff. Input Voltage	V_{IN} = 250 KHz Sine Wave, AC Coupled. \leq 5 % THD in Voltage across C_D , R_G = 1.5 KΩ	2.5		V _{pp}
 Diff. Input Impedance		10		ΚΩ
Gain Control Accuracy AR AR	$A_{R} = A_{O}R_{G}/(8 \times 10^{3} + R_{G})$ $R_{G} = 2 \text{ K}\Omega$	- 25	+ 25	%
Threshold Differential Input Voltage	Min. diff. input voltage at post amp. that results in a change of state at RDP $V_{IN}=250~\text{KHz square wave,} \\ C_D=0.1~\mu\text{F}~~R_D=500~\Omega, \\ T_R,~T_F\leq0.2~\mu\text{s. No overshoot;} \\ Data pulse from each V_{IN} transition$		3.7	mV _{pp}
 Peak Differential Network Current		1.0		mA

SGS-THOMSON MECROELECTRONICS

5/7

NOZMOHT-Z D Z

ELECTRICAL CHARACTERISTICS (Continued)

7	-5	2	38	

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit

TIME DOMAIN FILTER

 Delay Accuracy ΔT _{TD} x 100 %	$\begin{split} T_{TD} &= 0.58~R_{TD} \cdot \left(C_{TD} + 10^{-11}\right) + \\ 150~\text{ns.} \\ R_{TD} &= 5~\text{K}\Omega~\text{to}~10~\text{K}\Omega \\ C_{TD} &= 56~\text{pF} \\ V_{IN} &= 50~\text{mV}_{pp} @~250~\text{KHz sq.} \\ \text{wave} \\ T_{R},~T_{F} &\leq 20~\text{ns,}~\text{AC coupled.} \\ \text{Delay measured from 50 \% input amplitude to 1.5 V data pulse} \end{split}$	- 15	+ 15	%
 Delay Range	T_{TD} = 0.58 R_{TD} = (C_{TC} + 10 ⁻¹¹) + 150 ns. R_{TD} = 5 KΩ to 10 KΩ C_{TD} = 56 pF to 240 pF R_{D} = 500 Ω C_{D} = 0.1 μF.	240	2370	ns

DATA PULSE

Width Accuracy ΔT _{PW} T _{PW} x 100 %	T_{PW} = 0.58 R_{PW} x (C_{PW} + 8 x 10 ⁻¹²) + 20 ns R_{PW} = 5 K Ω to 10 K Ω C_{PW} ≥ 36 pF with measured at 1.5V amplitudes	- 20		+ 20	%
Active Level Output Voltage	l _{OH} = 400 μA	2.7			V
Inactive Level Output Leakage	I _{OL} = 4 mA		-	0.5	٧
Pulse Width	$T_{PW} = 0.58 R_{PW} \times (C_{PW} + 8)$ $\times 10^{-12}$) + 20 ns $R_{PW} = 5 KΩ$ to 10 KΩ $C_{PW} = 36 pF$ to 200 pF	145		1225	ns

TEST SCHEMATICS

Figure 1: Preamplifier Characteristics.

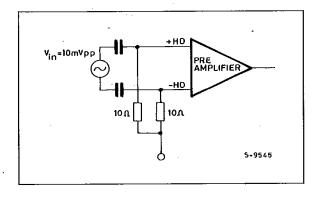
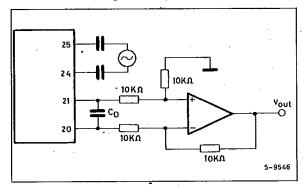



Figure 2: Postamplifier Differential Output Voltage Swing and Voltage Gain.

6/7

610

SGS-THOMSON

Figure 3: Postamplifier Threshold Differential Input Voltage.

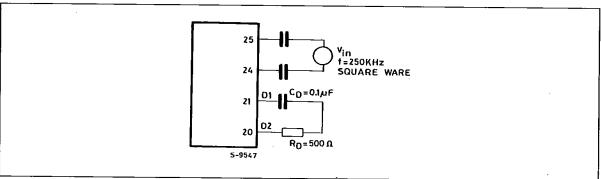
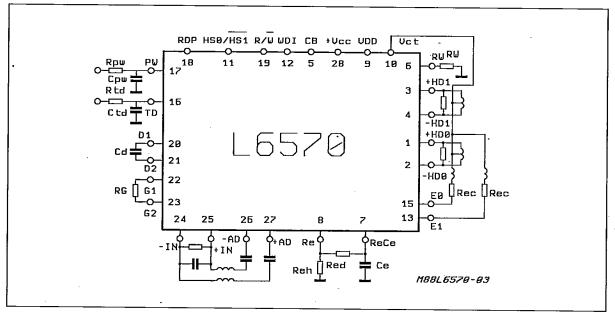



Figure 4 : Complete Test Circuit.

SGS-THOMSON MICROSLECTIFICATES

7/7